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Abstract: Introduction: The use of antibiotics leads to antibiotic resistance (ABR). Different methods
have been used to predict and control ABR. In recent years, artificial intelligence (AI) has been
explored to improve antibiotic (AB) prescribing, and thereby control and reduce ABR. This review
explores whether the use of AI can improve antibiotic prescribing for human patients. Methods:
Observational studies that use AI to improve antibiotic prescribing were retrieved for this review.
There were no restrictions on the time, setting or language. References of the included studies
were checked for additional eligible studies. Two independent authors screened the studies for
inclusion and assessed the risk of bias of the included studies using the National Institute of Health
(NIH) Quality Assessment Tool for observational cohort studies. Results: Out of 3692 records, fifteen
studies were eligible for full-text screening. Five studies were included in this review, and a narrative
synthesis was carried out to assess their findings. All of the studies used supervised machine
learning (ML) models as a subfield of AI, such as logistic regression, random forest, gradient boosting
decision trees, support vector machines and K-nearest neighbours. Each study showed a positive
contribution of ML in improving antibiotic prescribing, either by reducing antibiotic prescriptions or
predicting inappropriate prescriptions. However, none of the studies reported the engagement of AB
prescribers in developing their ML models, nor their feedback on the user-friendliness and reliability
of the models in different healthcare settings. Conclusion: The use of ML methods may improve
antibiotic prescribing in both primary and secondary settings. None of the studies evaluated the
implementation process of their models in clinical practices. Prospero Registration: (CRD42022329049).

Keywords: antibiotic prescribing; antibiotic resistance; artificial intelligence (AI); machine learning (ML);
prediction; human patients

1. Introduction

Between 2000 and 2010, global human antibiotic consumption increased by 35%, with
a noticeable increase in the use of ‘last resort’ antibiotics, especially in middle-income
countries [1]. Antibiotic resistance (ABR) is defined as the ability of bacteria to grow and
adapt in the presence of antibiotics [2–4]. There is a direct association between antibiotic
consumption and the emergence of antibiotic resistance (ABR) [5–7]. Inappropriate and
excessive prescribing of antibiotics contributes to the spread of ABR [6,8,9]. ABR is asso-
ciated with morbidities, hospital admissions, increased cost of healthcare, and treatment
failures [10–12], and it has been listed as one of the top ten threats by the World Health
Organization (WHO) [13]. In 2019, ABR was associated with 4.95 million deaths globally,
of which 1.27 million deaths were directly attributable to ABR, with the highest number
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of deaths in Western Sub-Saharan Africa and the lowest number of deaths in Australa-
sia [14]. Without concerted action, it is estimated that by 2050, worldwide, ABR will result
in 300 million deaths, reduce GDP by 2.5–3% and losses of USD 60–100 trillion [15].

Different methods have been used to improve antibiotic prescribing, such as antibiotic
stewardship programs (ASPs) (defined as set of interventions that promote the responsible
usage of antibiotics) [16,17], and clinical decision support systems (CDSSs) (which are a
source of patient-related recommendations and assessments for clinicians to help in their
decision making [18]. These methods target a change in behaviour [19,20]. In addition,
ASPs generally have a short-term effect [21], and need continued effort to obtain relatively
small reductions in prescribing [22]. CDSSs are computer-based systems that are not
always easy to integrate into the patient management systems, or in the workflow of
the clinician [23].

Artificial intelligence (AI) is the ability of a machine, such as a computer, to “inde-
pendently replicate intellectual processes typical of human cognition in deciding on an
action in response to its perceived environment to achieve a predetermined goal” [24].
Machine learning (ML) is a subfield of AI [24,25], where machines are able to learn from
data and improve their analyses by using computational algorithms [26,27]. Types of
ML algorithms are supervised learning, unsupervised learning and reinforcement learn-
ing [24,28,29]. Supervised learning algorithms are those that perform prediction, and some
of these algorithms perform classification based on previous data examples [28]. Exam-
ples of supervised learning algorithms are logistic regression [30], naïve bayes, support
vector machine (SVM), decision trees [31], random forests [32], artificial neural networks
(ANNs) [33] and gradient boosting [34]. On the other hand, unsupervised learning algo-
rithms have the ability to explore patterns in data [28], for example, principal component
analysis (PCA). Reinforcement learning algorithms are concerned with how an agent (i.e.,
algorithm) takes action in a space so that it can maximise a cumulative reward [31]. AI and
ML, and other terms, such as data science, are often used interchangeably [35].

ML has been utilised in solving medical challenges [36], such as predicting cancer
types, medical imaging, wearable sensors [37], healthcare monitoring [38], drug develop-
ment, disease diagnostics, analysis of health plans, digital consultations and medical and
surgical personalised treatments [39]. Recently, ML methods have been explored as means
to guide the rational use of antibiotics, explore suitable antibiotic combinations or identify
new antibiotic peptides (ABPs) [33]. No previous reviews were identified on the use of AI
to improve antibiotic prescribing. The aim of this review was to explore the use of AI to
improve antibiotic prescriptions for human patients.

2. Materials and Methods

The protocol for this review was registered in the PROSPERO database (CRD42022329049),
and the “Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)”
guideline [40] was used to design and report findings.

2.1. Eligibility Criteria

• Participants and setting: Participants were human patients without restrictions on their
characteristics (i.e., gender, age, weight, morbidities). No restrictions were applied for
setting (i.e., primary, secondary, or tertiary care), timing of publication or language
of the studies included. The “no restriction” on participants′ inclusion, setting or
language was applied to ensure that all relevant studies were retrieved;

• Study design: the studies included in this review were cohort studies or any observa-
tional study that examined the potential or actual use of AI, machine learning or data
analytics to improve antibiotic prescribing or consumption in human patients;

• Outcome measures:

# The relative reduction of antibiotic prescriptions (primary outcome);
# The prediction of inappropriate antibiotics prescriptions;



Antibiotics 2023, 12, 1293 3 of 19

# The relative reduction in re-consultations of patients, irrespective of the reason
for re-consultation (infection recurrence or worsening of patient’s condition).

2.2. Data Sources and Search Strategy

• Data sources: the search strategy was applied to Scopus, OVID, ScienceDirect, EMBASE,
Web of Science, IEEE Xplore and the Association for Computing Machinery (ACM);

• Search strategy: the search strategy, which can be accessed in [41], was based on three
different concepts: (1) artificial intelligence, (2) prescriptions, and (3) population, and
was customised to each database, depending on the special filters of these databases.
The search for studies stopped in April 2022, and the snowball search (i.e., screening
the references of the included studies for additional eligible studies) was conducted in
August 2022.

2.3. Study Records
2.3.1. Study Selection

Two independent authors (DA, NG, AGP, SP, HV) scanned titles and abstracts of the
studies to assess eligibility. Manuscripts of eligible studies were retrieved for full-text
screening, and their references were checked for additional studies (i.e., snowball search).
Two independent authors (DA, NG, SP) screened the full text of the retrieved studies.
Whenever a conflict occurred, a third reviewer (AV) was involved in the resolution.

2.3.2. Data Extraction and Management

A customised data extraction sheet was developed, where the main sections were:

• Study information, for example, publication type, country, name of publication outlet,
authors, year of publication, title, aim of study and funding source;

• Population, for example, total number of participants, cohorts, sample size calculation,
methods of recruitment, age group, gender, race/ethnicity, illness, comorbidities and
inclusion/exclusion criteria of patients;

• Methods and setting, for example, design of the study, data source, setting, start and
end dates, machine learning methods used, training and test sets, predictors, data
overfitting, valuation and validation of performance and handling of missing data;

• Outcomes, such as outcome(s) name(s) and definition and, if applicable, unit of
measurement and scales;

• Results, limitations and key conclusions.

One author (DA) extracted the data, which was reviewed by a second author (NG, SP).

2.3.3. Assessment of Risk of Bias

The National Institute of Health (NIH) Quality Assessment Tool for Observational
Cohort and Cross-Sectional Studies was used to assess the quality of included studies [42].
The assessment was carried out by three authors (DA, NG, SP), and conflicts were resolved
by discussion.

2.3.4. Data Synthesis

Due to the small number of included studies, it was not feasible to assess the hetero-
geneity using I2 statistics. Instead, a narrative synthesis was adopted to analyse the studies
in this review.

3. Results

A total of 5223 citations were retrieved, and after removing the duplicates and ir-
relevant records (for example, posters, book chapters, and abstracts), 3692 records were
included for screening. A total of fifteen studies were eligible for full-text screening; ten
studies resulted from abstract screening, and five additional studies were identified from
references screening (see Supplementary Materials Table S4 for reasons of exclusion in title
and abstract screening). A final five studies [43–47] were included in the narrative synthesis
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and risk of bias assessment (see Figure 1). The characteristics of the included studies are
available in Supplementary Materials Table S1, and the list of excluded studies is available
in Supplementary Materials Table S2.
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3.1. Included Studies
3.1.1. Study Information and Population

Patients included were from different populations; female patients with UTIs
(18–55 years old) [43], inpatients receiving an antibiotic [45], inpatients with UTIs [46]
and children [44,47]. The children who were included in the Cambodian study had
bloodstream infections (BSI) [47]. The population sizes ranged from 243 children with
BSI [47] to 700,000 episodes of community-acquired urinary tract infections (UTIs), with
5,000,000 records of antibiotic purchases [46].

The five included studies [43–47] were in English and published between 2016 and
2022. The countries where the studies were conducted were the United States [43], South
Korea [44], Canada [45], Israel [46] and Cambodia [47]. There was no information provided
in any of the five studies [43–47] about sample size calculation, nor comorbidities or ethnicity.

3.1.2. Methods and Settings

• Study design and setting: four studies [43,44,46,47] were retrospective, and one [45] was
prospective (see Supplementary Materials Table S1). The setting in four studies [43–45,47]
was secondary care and primary care in one study [46]. The data sources in four
studies [43–45,47] were the electronic health records (EHRs) of the hospitals, while in
a study by Yelin et al., the data of community- and retirement home-acquired urinary
tract infections (UTIs) was obtained from Maccabi Healthcare Services (MHS), the second
largest healthcare maintenance organisation in Israel [46]. All five studies [43–47] used
supervised machine learning algorithms [28];

• Machine learning models in included studies:
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# Duration: the time frame of the data in the five included studies [43–47] ranged
from 11 months to 10 years;

# Predicted (outcome) variables: the primary outcome (relative reduction in
antibiotic prescriptions) was reported in one study [43]; however, it was re-
ported as a “proportion of recommendations for second-line antibiotics” (i.e.,
reduction in the use of second-line antibiotics) (see Table 1 and Supplementary
Materials Table S1). The second outcome (prediction of inappropriate antibiotic
prescriptions) was reported in five studies [43–47]; however, it was defined
differently in each of them (Supplementary Materials Table S1). In a study
by Kanjilal et al., it was reported as a “proportion of recommendations for
inappropriate antibiotic therapy” [43], while in a study by Lee et al., a predic-
tion of “antibiotic prescription errors” [44]. In a study by Beaudoin et al., it
was reported as a prediction of “inappropriate prescriptions of piperacillin–
tazobactam” [45]. The outcome in the study by Yelin et al. was a prediction of
“mismatched treatments” (i.e., when the sample is resistant to the prescribed
antibiotic) [46], and in a study by Oonsivilai et al., the outcome was a prediction
of “susceptibility to antibiotics” [47]. None of the five studies [43–47] reported
the third outcome (i.e., the relative reduction in re-consultations of patients);

# Predictors: predictors in the studies included in this review were categorised
as either “bedside” or “non-bedside” to make a distinction in the data a clin-
ician had access to at diagnosis and prescription of the (empiric) treatment,
and data that was only available after laboratory or other investigations [49].
Furthermore, predictors were divided into 10 groups: labs, antibiotics, demo-
graphics, geographical, temporal, socioeconomic conditions, gender-related,
comorbidities, vital signs and medical history of patients (see Supplementary
Materials Table S3). All groups of predictors used in the five studies [43–47]
belonged to the “bedside” category, except for the lab′s group of predictors,
which belonged to the “non-bedside” category. Since the clinical predictors are
indicative in prescribing treatments, the inclusion in the development of ML
models provides more accurate prediction compared to the clinicians who did
not have this information at the time of prescribing.

Labs predictors were used in the five studies [43–47], while antibiotic-related predictors
were used in four studies [43,44,46,47]. Demographic data were used in four studies [43,45–47],
geographical predictors were used in three studies [43,45,46], and temporal predictors
were used in two studies [46,47]. The study by Oonsivilai et al. was the only one that
used socioeconomic-related predictors [47], and the study by Yelin et al. was the only one
that included gender-related predictors (i.e., pregnancy) since its population was females
with UTIs [46]. The comorbidities predictor was used in one study [43], as were vital
signs predictors [45]. The medical history of patient-related predictors were reported in
three studies [43,44,47] (Table 1). In addition, in a study by Kanjilal et al., there were
two population-level predictors that belonged to both clinical and antibiotics groups
of predictors [43].
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Table 1. Characteristics of ML models in included studies.

Title Time Frame Predicted (Outcome)
Variable Predictors’ Groups Training/Test Sets Machine Learning

Models Used
Ways to Avoid Data

Overfitting
Handling Missing

Data

Evaluation of
Models’

Performance
Results

A decision algorithm
to promote
outpatient

antimicrobial
stewardship for
uncomplicated

urinary tract
infection [43].

10 years (1 January
2007–31 December

2016).

The proportion of
recommendations

for second-line
antibiotics and the

proportion of
recommendations
for inappropriate
antibiotic therapy.

Labs, antibiotics,
demographics,
geographical,

comorbidities and
medical history of

patients.

Training dataset (n =
10,053 patients, and

thus
11,865 specimens)

and test dataset (n =
3629 patients, and

thus
3941 specimens).

Logistic regression,
decision trees,
random forest

models.

Regularisation was
used in the logistic
regression model.

No information.

AUROCs for
nitrofurantoin and

TMP-SMX were poor
(0.56 and 0.59). For
ciprofloxacin and
levofloxacin, the

AUROCs were poor
as well (0.64).

The ML model was
able to make a

recommendation for
an antibiotic in 99%

of the specimens,
and chose

ciprofloxacin or
levofloxacin for 11%

of the specimens,
relative to 34% in the
case of clinicians (a

67% reduction).
Furthermore, the

model’s
recommendation

resulted in an
inappropriate

antibiotic therapy
(i.e., second-line

antibiotics) in 10% of
the specimens

relative to 12% in the
case of clinicians
(18% reduction).

A hybrid method
incorporating a

rule-based approach
and deep learning

for prescription error
prediction [44].

1 year (1 January–
31 December

2018).

Antibiotic
prescription errors.

Labs, medical
history of patients

and antibiotics.
No information.

An advanced
rule-based deep
neural network

(ARDNN).

No information.

2.45% of height and
weight missing data
were predicted, and

other empty data
records were deleted.

Data outliers were
treated as missing

values.

The performance
was evaluated with a

precision of 73%,
recall of 81% and
F1 score of 77%.

Out of
15,407 prescriptions
by clinicians, there

were
179 prescription

errors. A validated
prediction model for
prescription errors
correctly detected
145 prescription
errors out of the

179 errors, implying
a precision of 81%,
recall of 73% and
F1 score of 77%.
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Table 1. Cont.

Title Time Frame Predicted (Outcome)
Variable Predictors’ Groups Training/Test Sets Machine Learning

Models Used
Ways to Avoid Data

Overfitting
Handling Missing

Data

Evaluation of
Models’

Performance
Results

Evaluation of
machine learning

capability for a
clinical decision

support system to
enhance

antimicrobial
stewardship

programs [45].

11 months (2012 and
2013), where phase

one was from
1 February to

30 November 2012,
and phase two was
from 18 November

to 20 December
2013).

Inappropriate
prescriptions of

piperacillin–
tazobactam.

Labs, demographics,
geographical and

vital signs.
No information.

A supervised
learning module

(temporal induction
of classification

models (TIM), which
combines

instance-based
learning and rule

induction).

The J-measure was
used for measuring
the improvement of

a rule (i.e., the
higher the

information content
of a rule reflected by
the high J-measure,

the higher the
predictive accuracy

of the model).

No information.

The overall system
achieved a precision
of 74%, recall of 96%
and accuracy of 79%.

44 learned rules
were extracted to

identify
inappropriate
piperacillin–
tazobactam

prescriptions. When
tested against the

data set, they were
able to identify
inappropriate

prescriptions with a
precision of 66%,
recall of 64% and
accuracy of 71%.

Personal clinical
history predicts

antibiotic resistance
to urinary tract
infections [46].

10 years (1 July
2007–30 June 2017).

Mismatched
treatment.

Labs, antibiotics,
demographics,
geographical,
temporal and

gender-related.

Training dataset: all
data collected from
1 Jul 2007 to 30 Jun

2016; test dataset: all
data collected from
Jul 2016 to 30 Jun

2017.

Logistic regression
and

gradient-boosting
decision trees

(GBDTs).

The model
performance on the

test set was
contrasted with the
model performance
on the training set to

identify data
overfitting.

Missing data for
resistance

measurements were
defined as not

available (N/A), and
such samples were

not used in the
models.

AUROC was
acceptable at 0.7

[amoxicillin-CA] to
excellent at 0.83
[ciprofloxacin].

The unconstrained
algorithm resulted in

a predicted
mismatch treatment

of 5% (42% lower
than the mismatch

treatment of 8.5% in
the case of clinicians’
prescriptions), and

the constrained
resulted in a

predicted mismatch
of 6%.
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Table 1. Cont.

Title Time Frame Predicted (Outcome)
Variable Predictors’ Groups Training/Test Sets Machine Learning

Models Used
Ways to Avoid Data

Overfitting
Handling Missing

Data

Evaluation of
Models’

Performance
Results

Using machine
learning to guide

targeted and locally
tailored empiric

antibiotic
prescribing in a

children’s hospital in
Cambodia [47].

3 years (from
February 2013 to

January 2016).

Susceptibility to
antibiotics.

Labs, antibiotics,
demographics,

temporal,
socioeconomic
conditions and

medical history of
patients.

The dataset was split
80% versus 20% for

training and test
datasets.

Logistic regression,
decision trees,

random forests,
boosted decision

trees, linear support
vector machines

(SVM), polynomial
SVMs, radial SVMs

and K-nearest
neighbours.

Regularisation was
used in the logistic
regression model;

however, no details
about the rest of the

ML models were
used.

Missing data for the
binary predictors
were treated as

being “negative”.

AUROC of the
random forest
method was

excellent at 0.80 for
ceftriaxone,

acceptable at 0.74 for
ampicillin and
gentamicin and

0.71 for Gram-stain.

The random forest
method had the best

predictive
performance in

predicting
susceptibility to

antibiotics (such as
ceftriaxone,

ampicillin and
gentamicin, and

Gram-stain), which
will be used to guide

appropriate
antibiotic therapy. In
addition, the authors

reported the
AUROC values of
different models

rather than the ML
models’ results.



Antibiotics 2023, 12, 1293 9 of 19

# Training and test datasets: A train/test split approach is used to ensure that the
performance of an ML model is validated [50]. Three studies [43,46,47] reported
that a train/test split approach was used, while two studies [44,45] did not report
information about a train/test split. In the study by Kanjilal et al., the train/test split
consisted of a training dataset of 10,053 patients versus a test dataset of 3941 patients [43],
while in the study by Yelin et al., the data was divided in a way that all data collected from
1 July 2007 to 30 June 2016 was treated as a training set, and data collected from 1 July
2016 to 30 June 2017 was treated as test set [46]. In the remaining study, Oonsivilai et al.
made an 80% versus 20% train/test split [47];

# Machine learning models: All models [43–47] belong to the supervised machine learn-
ing models [28]. Three studies [43,46,47] used logistic regression and decision trees,
while random forest models were used in two studies [43,47]. Gradient boosting
decision trees (GBDTs) were used in [46,47], in addition to linear, radial and polyno-
mial support vector machines (SVMs) and K-nearest neighbours (KNNs) in [47]. Two
studies [44,45] used different models: an advanced rule-based deep neural network
(ARDNN) and a supervised learning module (i.e., temporal induction of classification
models (TIM));

# Method to avoid data overfitting: Data overfitting occurs when an ML model perfectly
fits training data but fails to generalise to test data [51], for which regularisation can
be a solution [52]. Regularisation adds a penalty to the algorithm’s smoothness or
complexity to avoid overfitting and improve the generalisation of the algorithm [53].
In the studies by Kanjilal et al. [43] and Oonsivilai et al. [47], regularisation was used
to avoid data overfitting. In the study by Beaudoin et al. [45], the “J-measure”, which is
defined as a measure of the goodness-of-fit of a rule [54], was used to reduce overfitting,
and in the study by Yelin et al., the model’s performance on the test set was contrasted
with the training set to identify data overfitting [46]. The study by Lee et al. did not
report on data overfitting [44];

# Handling missing data: Two studies [43,45] did not report how missing data were
handled. In the study by Lee et al., 2.45% of height and weight missing data were
predicted, other empty data records were deleted, and data outliers were treated
as missing values [44]. In the study by Yelin et al., the missing data for antibiotic
resistance was treated as “not available” and eventually dropped from the mod-
els [46]. In the study by Oonsivilai et al., missing data for binary variables were
considered “negative”; however, no further explanation for these negative values
was provided [47];

# Evaluation of models’ performance: The predictive ability of an algorithm is assessed
by the accuracy of the predicted outcomes in the test dataset [55]. Different measures
are used to evaluate the predictive performance, for example, the area under the
receiver operating characteristic curve (AUROC) [56], accuracy, sensitivity (i.e., recall),
specificity, precision and F1 score [57].

To evaluate the predictive performance of their models, three studies [43,46,47] re-
ported using AUROCs. In the study by Kanjilal et al., AUROC was poor for all antibiotics
predictions [43], while in the study by Yelin et al., it ranged from acceptable to excellent for
predicting susceptibility to amoxicillin-CA and ciprofloxacin, respectively [46], and in the
study by Oonsivilai et al., it was excellent for all antibiotics susceptibility predictions [47].
On the other hand, two studies [44,45] reported using the recall and precision measures,
with both measures ranging from 73–96%, which indicates high-performing models, in
addition to the F1-score measure of 77% reported in [44], and the accuracy measure of 79%
reported in [45] (Table 1).

# Findings of included studies: All five studies [43–47] used ML models to predict
their outcomes. They included both bedside and non-bedside predictors that were
extracted from either EHRs, or information systems of healthcare services organi-
sations, and thus the ML models included complete patients’ information for their
development. Regarding the primary outcome, the study by Kanjilal et al. reported
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that their algorithm was able to make a recommendation for an antibiotic in 99%
of the specimens, and chose ciprofloxacin or levofloxacin for 11% of the specimens,
relative to 34% in the case of clinicians (a 67% reduction) [43].

On the other hand, the secondary outcome (prediction of inappropriate antibiotic pre-
scriptions) was reported as the proportion of recommendations for inappropriate antibiotic
therapy (i.e., second-line antibiotics) in the study by Kanjilal et al., whose algorithm’s rec-
ommendation resulted in an inappropriate antibiotic therapy (i.e., second-line antibiotics),
in 10% of the specimens relative to 12% in case of clinicians (18% reduction) [43]. In the
study by Lee et al., the authors reported success in predicting antibiotic prescription errors
and that their algorithm was able to predict 145 prescription errors out of 179 predefined
errors [44], while in the study by Beaudoin et al., pharmacists reviewed 374 prescriptions
of piperacillin–tazobactam, of which 209 were defined as inappropriate [45]. The ML
algorithm predicted 270 out of the 374 prescriptions as inappropriate, with a positive
predictive value of 74%. Furthermore, in the study by Yelin et al., the authors reported
that both algorithms used (unconstrained and constrained) were able to reduce the mis-
matched treatments as compared to prescribing by clinicians; the unconstrained resulted in
a predicted mismatch of 5% (42% lower than the mismatch of 8.5% in case of clinicians),
while the constrained resulted in a predicted mismatch of 6%, which is higher than the
unconstrained models, however still lower than the 8.5% in case of clinicians [46]. In the
study by Oonsivilai et al., the authors reported positive results in predicting susceptibility
to antibiotics, which is used to guide antibiotic prescribing using their ML algorithms, and
that was reflected by the AUROC values for the different ML models, rather than the results
of the prediction models themselves [47]. In addition, the authors reported that when
the performance of different ML algorithms was compared, the random forest algorithm
outperformed the other ML algorithms in predicting susceptibility. (See Table 1).

3.1.3. Assessing the Risk of Bias

The assessment of the quality of the included studies in this review is shown in
Table 2. Five studies [43–47] had a “Fair” rating, meeting 8 out of 14 criteria. Some of the
criteria in this quality assessment tool [42] were not applicable to the studies included.
For example, the third criterion (i.e., the participation rate for eligible persons), the fifth
criterion (i.e., sample size justification), the eighth criterion (i.e., measurement of different
levels or amounts of exposures), and the thirteenth criterion, (i.e., loss to follow-up). No
study [43–47] reported any information regarding the 12th and 14th criteria (i.e., blinding
of the outcome assessors and the measurement of the confounding variables).
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Table 2. Assessment of Risk of Bias.

Criteria

A Decision Algorithm to
Promote Outpatient

Antimicrobial Stewardship for
Uncomplicated Urinary Tract

Infection [43]

Hybrid Method Incorporating a
Rule-Based Approach and Deep
Learning for Prescription Error

Prediction [44]

Evaluation of a Machine
Learning Capability for a
Clinical Decision Support

System to Enhance
Antimicrobial Stewardship

Programs [45]

Personal Clinical History
Predicts Antibiotic Resistance
of Urinary Tract Infections [46]

Using Machine Learning to
Guide Targeted and Locally
Tailored Empiric Antibiotic
Prescribing in a Children’s
Hospital in Cambodia [47]

1. Was the research question or
objective in this paper clearly

stated?
Yes Yes Yes Yes Yes

2. Was the study population
clearly specified and defined? Yes Yes Yes Yes Yes

3. Was the participation rate of
eligible persons at least 50%? NA NA NA NA NA

4. Were all the subjects selected
or recruited from the same or

similar populations (including
the same time period)? Were

inclusion and exclusion criteria
for being in the study

prespecified and applied
uniformly to all participants?

Yes Yes Yes Yes Yes

5. Was a sample size justification,
power description, or variance
and effect estimates provided?

NA NA NA NA NA

6. For the analyses in this paper,
were the exposure(s) of interest

measured prior to the outcome(s)
being measured?

Yes Yes Yes Yes Yes

7. Was the timeframe sufficient so
that one could reasonably expect

to see an association between
exposure and outcome if it

existed?

Yes Yes Yes Yes Yes
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Table 2. Cont.

Criteria

A Decision Algorithm to
Promote Outpatient

Antimicrobial Stewardship for
Uncomplicated Urinary Tract

Infection [43]

Hybrid Method Incorporating a
Rule-Based Approach and Deep
Learning for Prescription Error

Prediction [44]

Evaluation of a Machine
Learning Capability for a
Clinical Decision Support

System to Enhance
Antimicrobial Stewardship

Programs [45]

Personal Clinical History
Predicts Antibiotic Resistance
of Urinary Tract Infections [46]

Using Machine Learning to
Guide Targeted and Locally
Tailored Empiric Antibiotic
Prescribing in a Children’s
Hospital in Cambodia [47]

8. For exposures that can vary in
amount or level, did the study
examine different levels of the

exposure as related to the
outcome (e.g., categories of

exposure or exposure measured
as a continuous variable)?

NA NA NA NA NA

9. Were the exposure measures
(independent variables) clearly

defined, valid, reliable, and
implemented consistently across

all study participants?

Yes Yes Yes Yes Yes

10. Was the exposure(s) assessed
more than once over time? Yes Yes Yes Yes Yes

11. Were the outcome measures
(dependent variables) clearly
defined, valid, reliable, and

implemented consistently across
all study participants?

Yes Yes Yes Yes Yes

12. Were the outcome assessors
blinded to the exposure status of

participants?
NR NR NR NR NR

13. Was the loss to follow-up
after baseline 20% or less? NA NA NA NA NA

14. Were key potential
confounding variables measured
and adjusted statistically for their

impact on the relationship
between exposure(s) and

outcome(s)?

NR NR NR NR NR

Quality Rating Fair (57.1%) Fair (57.1%) Fair (57.1%) Fair (57.1%) Fair (57.1%)

Note: Quality would be rated poor if (0–4 out of 14 questions), fair if (5–10 out of 14 questions), and good if (11–14 out of 14 questions); NA: not applicable, NR: not reported.
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4. Discussion
4.1. Summary of Main Findings

This review included five studies [43–47] to evaluate the use of artificial intelligence
in improving antibiotic prescribing for human patients. All studies used supervised ML
models as a means to improve prescribing, and all of them focused solely on antibiotics,
and no other form of antimicrobial (i.e., antivirals or antifungals) was reported. One
study [43] reported a relatively decreased second-line antibiotic (primary outcome), while
all studies [43–47] reported the ability of their algorithms to predict inappropriate antibiotic
prescriptions (secondary outcome). These findings align with what Fanelli et al. suggested,
namely that ML contributes to increasing appropriate antibiotic therapies and minimising
the risks of antibiotic resistance [58].

4.2. Using ML Models to Improve Antibiotic Prescribing

Developing an ML model in a healthcare context, such as the models in this review,
developed to improve antibiotic prescribing, has to go through the following phases:

• Problem selection and definition;
• Data collection/curating datasets;
• ML development;
• Evaluation of ML models;
• Assessment of impacts;
• Deployment and monitoring [59].

Table 3 assesses the adherence of the studies included in this review to the prior
mentioned six phases.

Problem selection and definition: The first step in developing ML models in a healthcare
context is to carefully select and define the predictive task and make sure the data needed
is available [59]. In addition, careful study design is necessary to generalise the models
for future clinical use [60]. Furthermore, data variation [58], which leads to better model
results [61–63], is achieved by preparing the dataset and choosing the predictors well [64].
All five studies [43–47] provided clear definitions for the problems they were modelling,
and reported the size of the population included in their studies, which was not necessarily
large, such as in the case of the study by Oonsivilai et al. (i.e., the number of patients
included were 243) [47]. Furthermore, all studies [43–47] reported the predictors they used
in their models, which were both bedside and non-bedside predictors. However, there
was no justification for how or why these predictors were chosen or if there were any
associations (which may result in multicollinearity) between them.

Data collection/curating datasets: In this step, the datasets used in the model are con-
structed, and the development/validation sets (i.e., train/test splits) are generated [59].
None of the included studies [43–47] reported any information about their sample size
calculation. Three studies [43,46,47] reported a train/test split for the data; however, no
justification for this split was provided.

ML development: The choice of an ML model is based on several factors, such as size,
type and complexity of data. Higher-performing ML models in problems relevant to ABR,
such as support vector machines (SVM), random forests (RFs) and artificial neural networks
(ANN), are less frequently used than simpler models, such as decision trees (DTs) and
logistic regression (LR) [65]. All five studies [43–47] reported the ML models they used in
their studies. In the study by Kanjilal et al., the authors reported using logistic regression
based on interpretability and validation performance as compared to decision tree and
random forest models [43]. However, they provided no justification for the three models
they chose. And in the study by Lee et al., the authors reported that they collected the rules
they used for their model, based on consultation with a clinician; however, no information
was reported on further involvement of the clinician in the development of their model [44].
On the other hand, three studies [45–47] did not provide justification for their choices of
the ML models they used, nor the suitability of these models for the nature or complexity
of their data.
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Table 3. Adherence to the five phases of the development of a classifier.

Studies
Phase (1) Phase (2) Phase (3) Phase (4) Phase (5) Phase (6)

Problem
Selection and

Definition

Data Collec-
tion/Curating

Datasets

ML
Development

Evaluation of the
ML Model

Assessment of
Impact

Deployment and
Monitoring

A decision
algorithm to

promote
outpatient

antimicrobial
stewardship for
uncomplicated

urinary tract
infection [43].

Yes

Yes, information
about the dataset
and training/test
split is provided.

However, no
justification was
provided for the
train/test split.

Logistic
regression was

chosen based on a
comparison with
decision tree and

random forest
models; however,

no justification
was provided on
why these three

models were
chosen.

Yes No information No information

Hybrid Method
Incorporating a

Rule-Based
Approach and
Deep Learning
for Prescription
Error Prediction

[44].

Yes

Yes, information
about the dataset

is provided.
However, no

information was
provided for the
train/ test split.

No justification
was provided for
choosing the ML
model; however,

the authors
reported that the
rules they used

with their model
were based on

consultation with
a clinician.

Yes No information No information

Evaluation of a
machine
learning

capability for a
clinical decision
support system

to enhance
antimicrobial
stewardship

programs [45].

Yes

Yes, information
about the dataset

is provided.
However, no

information was
provided for the
train/ test split.

No justification
was provided for
choosing the ML

model.

Yes No information No information

Personal clinical
history predicts

antibiotic
resistance to
urinary tract

infections [46].

Yes

Yes, information
about the dataset
and training/ test
split is provided.

However, no
justification was
provided for the
train/test split.

No justification
was provided for
choosing the ML

model.

Yes No information No information

Using machine
learning to guide

targeted and
locally tailored

empiric
antibiotic

prescribing in a
children’s
hospital in

Cambodia [47].

Yes

Yes, information
about the dataset
and training/test
split is provided.

However, no
justification was
provided for the
train/test split.

No justification
was provided for
choosing the ML

model.

Yes No information No information

Evaluation of ML model: There are two categories for the evaluation measures of ML
models, which are discrimination and calibration. Discrimination measures check the ability
to distinguish or rank two classes, such as recall, precision, specificity and the area under
the receiver operating characteristic curve (AUROC). On the other hand, the calibration
measures evaluate how well the predicted probabilities match the actual probability, for
example, the Hosmer–Lemeshow statistic. In addition, in healthcare research, subgroup
analysis is used as an aspect of evaluation. Although this is not applicable in ML models,
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however, it can be conducted via the inclusion or exclusion of certain subgroups in an
ML model [59]. All five studies [43–47] used discrimination measures to evaluate the
performance of their models, and only two studies [43,45] reported age groups of included
patients. In addition, in the study by Beaudoin et al., the authors reported that they used
the results of a previous antimicrobial prescription surveillance system (APSS) used by
three hospital pharmacists during the evaluation of their model’s performance [45].

Assessment of Impact: There are several challenges in using ML in a healthcare con-
text, such as making sure a system based on an ML model would be user-friendly and
reliable [59], in addition to considering automation bias [60]. None of the studies provided
any information on whether their ML models were used or tested by prescribing clinicians
or would be reliable tools to use in clinical practices to guide antibiotic prescribing.

Deployment and monitoring: There are several factors to consider when implementing
technologies based on ML models, such as hardware and software infrastructures, reliable
internet, firewalls and ethical/ privacy/regulatory/legal frameworks [59]. None of the
five studies [43–47] provided any information on deployment or monitoring. In addition,
no information was provided about any ethical, privacy or legal requirements (i.e., ap-
provals from health departments) for the models to be deployed as tools to guide antibiotic
prescriptions in different healthcare settings. This implies that there is a gap between
the current studies and their application as tools to guide antibiotic prescribing in the
real world.

More on ML Models and Generalisation

In Section 3.1.2, methods to avoid data overfitting and improve generalisation were
discussed. Moreover, there are two more factors that have an impact on a generalisation of
an ML model: bias and robustness.

# Reproducing bias in ML models: Bias can lead to the lack of generalisation in an ML
model [66]. If an ML model is trained on a dataset that was generated on a biased
process, the output of the model may also be biased (i.e., bias reproduction), which
is a real challenge when using healthcare data sources, such as EHRs [67]. This
type of bias is called “algorithmic bias” [66]. Other sources of bias in an ML model
may be “data-driven” (for example, bias due to ethnicity or socioeconomic status)
or “human”, in which the persons who develop the ML system reflect their personal
biases [66]. Two of the included studies [43,46] reported biases in their data. In the
study by Kanjilal et al. [43], the authors reported data bias, for most of their data was
for Caucasian patients. And to minimise producing biased predictions, they used
a national criterion adopted for uncomplicated urinary tract infections. The second
bias reported was the prediction of non-susceptibility more often in environments
in which the ABR prevalence is higher than what exists in the training data, and
thus the authors have assessed the temporality by using longitudinal data and have
confounded by indication [43]. In the study by Yelin et al. [46], the authors reported
some aspects of the data they used that would introduce bias in their results, such
as the later use of a purchased antibiotic (shall produce a bias towards higher odds
ratio for purchases before infection), patients who used antibiotics that were not
made via the information system the authors used to extract the data (shall produce
a bias towards lower odds ratio for drug purchases), the UTIs that are empirically
treated without culture (shall produce a bias towards measuring of more resistant
samples), the elective culture testing for cultures made after failure of treatment
(shall produce a bias towards measure of more resistant samples, in addition to a
strong association of drug purchases and resistance), in addition to the dependence of
elective cultures on demographics (shall produce associations between demographics
and resistance). However, the authors did not report any means to avoid these biases,
and they have reported that their models were still able to predict resistance well and
for their recommendation algorithms to reduce the chances of antibiotic prescribing
for a resistant infection [46]. However, this implied that there was still a chance to
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reproduce these biases in their predictions. On the other hand, the three remaining
studies [44,45,47] did not report biases indicating the chance of bias reproducibility in
their predictions;

# Robustness of ML models: The robustness of an ML model is how well the model is
trained to face adversarial examples [68]. It considers the sensitivity of the model (i.e.,
how the model’s output is sensitive to a change in its input) [69]. In addition, robust-
ness has been used to derive generalisation in a supervised learning ML model [70].
All five studies [43–47] have used different performance measures, which help in
understanding the sensitivity of their models and, thus, how robust they are. They
reported measures such as recall (i.e., sensitivity), F1 score, AUROC, etc., which
contribute to indicating how sensitive their models were to changes in inputs. In
addition, in the study by Kanjilal et al. [43], the authors reported carrying out a sen-
sitivity analysis with several false negative rates for each antibiotic to translate the
output of their models into susceptibility phenotypes. And in the study by Beaudoin
et al. [45], the authors reported that they selected a distance threshold (below which
a prescription for piperacillin–tazobactam was classified as inappropriate) based on
previous experimentations (i.e., sensitivity analysis).

4.3. ML Models Versus AB Prescribing Clinicians

The lack of information about the engagement of clinicians or their feedback in the
development process of the ML models nor their usability and applicability in clinical set-
tings may align with what the authors in the study by Waring et al. reported regarding the
lack of ML expertise among healthcare workers [71]. In addition, this lack of engagement
renders the use of ML in AB prescribing a theoretical exercise, rather than a promising tool
for improving AB prescribing. Furthermore, the improvements in prescribing presented
by the ML models compared to clinicians could be the result of the additional laboratory
information, which was not available to the clinicians at the time of prescribing.

Limitations of this review lay in the difficulty of including relevant non-peer-reviewed
publications in mediums, such as arXiv and the small number of included studies that
made it unsuitable to use I2 statistics to assess their heterogeneity. In addition, not all of
the included studies provided enough information about the reproducibility of bias, and
avoiding overfitting in their models, nor their robustness, which makes the generalisability
of these models inconclusive. And the lack of implementation in clinical practices makes it
hard to understand the potential problems (i.e., hardware problems, software problems,
training needs, etc.) towards successful adoption of these models.

5. Conclusions

ML models may improve AB prescribing in different clinical settings; however, pre-
scribing clinicians were not involved in the development process of the ML models nor
in their evaluation of the ML models. Future research should consider a baseline ML
model, developed with the same information that clinicians have at the time of prescribing,
putting into consideration issues such as overfitting, bias reproduction, and robustness
of their model to improve its generalisation. In addition, prescribing clinicians should be
engaged in the development and deployment processes of ML models in clinical practices.
Furthermore, it should explore the potential contribution of higher-performing ML models,
such as support vector machines (SVMs) and artificial neural networks (ANNs), to improve
AB prescribing.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/antibiotics12081293/s1, Table S1. Characteristics of the included
studies; Table S2. Excluded studies (full-text screening); Table S3. Groups of predictors; Table S4.
Excluded studies reasons (title & abstract screening).
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36. Pogorelc, B.; Bosnić, Z.; Gams, M. Automatic recognition of gait-related health problems in the elderly using machine learning.
Multimed. Tools Appl. 2012, 58, 333–354. [CrossRef]

37. Shehab, M.; Abualigah, L.; Shambour, Q.; Abu-Hashem, M.; Shambour, M.K.Y.; Alsalibi, A.I.; Gandomi, A. Machine learning in
medical applications: A review of state-of-the-art methods. Comput. Biol. Med. 2022, 145, 105458. [CrossRef]

38. Gharaibeh, M.; Alzu’bi, D.; Abdullah, M.; Hmeidi, I.; Al Nasar, M.R.; Abualigah, L.; Gandomi, A.H. Radiology imaging scans for
early diagnosis of kidney tumors: A review of data analytics-based machine learning and deep learning approaches. Big Data
Cogn. Comput. 2022, 6, 29. [CrossRef]

39. Malik, P.A.; Pathania, M.; Rathaur, V.K. Overview of artificial intelligence in medicine. J. Fam. Med. Prim. Care 2019, 8, 2328–2331.
40. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA

statement. BMJ 2009, 339, b2535. [CrossRef]
41. Amin, D.; Garzón-Orjuela, N.; Garcia Pereira, A.; Parveen, S.; Vornhagen, H.; Vellinga, A. Search Strategy–Artificial Intelligence to

Improve Antimicrobial Prescribing–A Protocol for a Systematic Review; Figshare: Iasi, Romania, 2022.
42. NIH. Quality Assessment Tool for Observational Cohort and Cross-sectional Studies. 2018; Volume 2020. Available online:

https://www.nhlbi.nih.gov/healthtopics/study-quality-assessment-tools (accessed on 15 December 2022).
43. Kanjilal, S.; Oberst, M.; Boominathan, S.; Zhou, H.; Hooper, D.C.; Sontag, D. A decision algorithm to promote outpatient

antimicrobial stewardship for uncomplicated urinary tract infection. Sci. Transl. Med. 2020, 12, eaay5067. [CrossRef]
44. Lee, S.; Shin, J.; Kim, H.S.; Lee, M.J.; Yoon, J.M.; Lee, S.; Kim, Y.; Kim, J.-Y.; Lee, S. Hybrid Method Incorporating a Rule-Based

Approach and Deep Learning for Prescription Error Prediction. Drug Saf. 2022, 45, 27–35. [CrossRef]
45. Beaudoin, M.; Kabanza, F.; Nault, V.; Valiquette, L. Evaluation of a machine learning capability for a clinical decision support

system to enhance antimicrobial stewardship programs. Artif. Intell. Med. 2016, 68, 29–36. [CrossRef]
46. Yelin, I.; Snitser, O.; Novich, G.; Katz, R.; Tal, O.; Parizade, M.; Chodick, G.; Koren, G.; Shalev, V.; Kishony, R. Personal clinical

history predicts antibiotic resistance of urinary tract infections. Nat. Med. 2019, 25, 1143–1152. [CrossRef] [PubMed]
47. Oonsivilai, M.; Mo, Y.; Luangasanatip, N.; Lubell, Y.; Miliya, T.; Tan, P.; Loeuk, L.; Turner, P.; Cooper, B.S. Using machine learning

to guide targeted and locally-tailored empiric antibiotic prescribing in a children′s hospital in Cambodia. Wellcome Open Res.
2018, 3, 131. [CrossRef] [PubMed]

48. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.;
Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71.
[CrossRef] [PubMed]

49. Quinn, M.; Forman, J.; Harrod, M.; Winter, S.; Fowler, K.E.; Krein, S.L.; Gupta, A.; Saint, S.; Singh, H.; Chopra, V. Electronic health
records, communication, and data sharing: Challenges and opportunities for improving the diagnostic process. Diagnosis 2019, 6,
241–248. [CrossRef]

50. Vabalas, A.; Gowen, E.; Poliakoff, E.; Casson, A.J. Machine learning algorithm validation with a limited sample size. PLoS ONE
2019, 14, e0224365. [CrossRef]

https://doi.org/10.1093/cid/ciw118
https://doi.org/10.1016/j.cmi.2017.02.028
https://doi.org/10.1038/s41585-019-0193-3
https://www.ncbi.nlm.nih.gov/pubmed/31092914
https://doi.org/10.1186/1475-925X-13-94
https://www.ncbi.nlm.nih.gov/pubmed/24998888
https://doi.org/10.1016/j.arth.2018.02.067
https://doi.org/10.1001/jama.2018.11103
https://www.ncbi.nlm.nih.gov/pubmed/30178068
https://doi.org/10.1016/j.metabol.2017.01.011
https://doi.org/10.7189/jogh.08.020303
https://doi.org/10.1016/j.beth.2020.05.002
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.bsheal.2020.08.003
https://doi.org/10.1016/S0167-9473(01)00065-2
https://doi.org/10.1055/s-0039-1677910
https://doi.org/10.1007/s11042-011-0786-1
https://doi.org/10.1016/j.compbiomed.2022.105458
https://doi.org/10.3390/bdcc6010029
https://doi.org/10.1136/bmj.b2535
https://www.nhlbi.nih.gov/healthtopics/study-quality-assessment-tools
https://doi.org/10.1126/scitranslmed.aay5067
https://doi.org/10.1007/s40264-021-01123-6
https://doi.org/10.1016/j.artmed.2016.02.001
https://doi.org/10.1038/s41591-019-0503-6
https://www.ncbi.nlm.nih.gov/pubmed/31273328
https://doi.org/10.12688/wellcomeopenres.14847.1
https://www.ncbi.nlm.nih.gov/pubmed/30756093
https://doi.org/10.1136/bmj.n71
https://www.ncbi.nlm.nih.gov/pubmed/33782057
https://doi.org/10.1515/dx-2018-0036
https://doi.org/10.1371/journal.pone.0224365


Antibiotics 2023, 12, 1293 19 of 19

51. Okser, S.; Pahikkala, T.; Aittokallio, T. Genetic variants and their interactions in disease risk prediction—Machine learning and
network perspectives. BioData Min. 2013, 6, 5. [CrossRef]

52. Moradi, R.; Berangi, R.; Minaei, B. A survey of regularisation strategies for deep models. Artif. Intell. Rev. 2020, 53, 3947–3986.
[CrossRef]

53. Tian, Y.; Zhang, Y. A comprehensive survey on regularisation strategies in machine learning. Inf. Fusion. 2022, 80, 146–166.
[CrossRef]

54. Bramer, M. Using J-Pruning to Reduce Overfitting in Classification Trees. Knowl. Based Syst. KBS 2002, 15, 301–308. [CrossRef]
55. Jin, H.; Ling, C.X. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 2005, 17, 299–310.
56. Ferri, C.; Hernández-Orallo, J.; Modroiu, R. An experimental comparison of performance measures for classification. Pattern

Recognit. Lett. 2009, 30, 27–38. [CrossRef]
57. Luque, A.; Carrasco, A.; Martín, A.; de las Heras, A. The impact of class imbalance in classification performance metrics based on

the binary confusion matrix. Pattern Recognit. 2019, 91, 216–231. [CrossRef]
58. Fanelli, U.; Pappalardo, M.; Chinè, V.; Gismondi, P.; Neglia, C.; Argentiero, A.; Calderaro, A.; Prati, A.; Esposito, S. Role of

Artificial Intelligence in Fighting Antimicrobial Resistance in Pediatrics. Antibiotics 2020, 9, 767. [CrossRef]
59. Chen, P.-H.C.; Liu, Y.; Peng, L. How to develop machine learning models for healthcare. Nat. Mater. 2019, 18, 410–414. [CrossRef]

[PubMed]
60. Finlayson, S.G.; Beam, A.L.; van Smeden, M. Machine Learning and Statistics in Clinical Research Articles—Moving Past the

False Dichotomy. JAMA Pediatr. 2023, 177, 448–450. [CrossRef] [PubMed]
61. Vuttipittayamongkol, P.; Elyan, E.; Petrovski, A. On the class overlap problem in imbalanced data classification. Knowl. Based Syst.

2021, 212, 106631. [CrossRef]
62. Vuttipittayamongkol, P.; Elyan, E. Neighbourhood-based undersampling approach for handling imbalanced and overlapped

data. Inf. Sci. 2020, 509, 47–70. [CrossRef]
63. Elyan, E.; Moreno-Garcia, C.F.; Jayne, C. CDSMOTE: Class decomposition and synthetic minority class oversampling technique

for imbalanced-data classification. Neural Comput. Appl. 2021, 33, 2839–2851. [CrossRef]
64. Elyan, E.; Gaber, M.M. A fine-grained Random Forests using class decomposition: An application to medical diagnosis. Neural

Comput. Appl. 2016, 27, 2279–2288. [CrossRef]
65. Elyan, E.; Hussain, A.; Sheikh, A.; Elmanama, A.A.; Vuttipittayamongkol, P.; Hijazi, K. Antimicrobial Resistance and Machine

Learning: Challenges and Opportunities. IEEE Access 2022, 10, 31561–31577. [CrossRef]
66. Norori, N.; Hu, Q.; Aellen, F.M.; Faraci, F.D.; Tzovara, A. Addressing bias in big data and AI for health care: A call for open

science. Patterns 2021, 2, 100347. [CrossRef]
67. Parikh, R.B.; Teeple, S.; Navathe, A.S. Addressing Bias in Artificial Intelligence in Health Care. JAMA 2019, 322, 2377–2378.

[CrossRef] [PubMed]
68. Bai, T.; Luo, J.; Zhao, J.; Wen, B.; Wang, Q. Recent advances in adversarial training for adversarial robustness. arXiv 2021. arXiv:210201356.
69. McCarthy, A.; Ghadafi, E.; Andriotis, P.; Legg, P. Functionality-Preserving Adversarial Machine Learning for Robust Classification

in Cybersecurity and Intrusion Detection Domains: A Survey. J. Cybersecur. Priv. 2022, 2, 154–190. [CrossRef]
70. Bellet, A.; Habrard, A. Robustness and generalisation for metric learning. Neurocomputing 2015, 151, 259–267. [CrossRef]
71. Waring, J.; Lindvall, C.; Umeton, R. Automated machine learning: Review of the state-of-the-art and opportunities for healthcare.

Artif. Intell. Med. 2020, 104, 101822. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1186/1756-0381-6-5
https://doi.org/10.1007/s10462-019-09784-7
https://doi.org/10.1016/j.inffus.2021.11.005
https://doi.org/10.1016/S0950-7051(01)00163-0
https://doi.org/10.1016/j.patrec.2008.08.010
https://doi.org/10.1016/j.patcog.2019.02.023
https://doi.org/10.3390/antibiotics9110767
https://doi.org/10.1038/s41563-019-0345-0
https://www.ncbi.nlm.nih.gov/pubmed/31000806
https://doi.org/10.1001/jamapediatrics.2023.0034
https://www.ncbi.nlm.nih.gov/pubmed/36939696
https://doi.org/10.1016/j.knosys.2020.106631
https://doi.org/10.1016/j.ins.2019.08.062
https://doi.org/10.1007/s00521-020-05130-z
https://doi.org/10.1007/s00521-015-2064-z
https://doi.org/10.1109/ACCESS.2022.3160213
https://doi.org/10.1016/j.patter.2021.100347
https://doi.org/10.1001/jama.2019.18058
https://www.ncbi.nlm.nih.gov/pubmed/31755905
https://doi.org/10.3390/jcp2010010
https://doi.org/10.1016/j.neucom.2014.09.044
https://doi.org/10.1016/j.artmed.2020.101822

	Introduction 
	Materials and Methods 
	Eligibility Criteria 
	Data Sources and Search Strategy 
	Study Records 
	Study Selection 
	Data Extraction and Management 
	Assessment of Risk of Bias 
	Data Synthesis 


	Results 
	Included Studies 
	Study Information and Population 
	Methods and Settings 
	Assessing the Risk of Bias 


	Discussion 
	Summary of Main Findings 
	Using ML Models to Improve Antibiotic Prescribing 
	ML Models Versus AB Prescribing Clinicians 

	Conclusions 
	References

