Skip to main content
. 2020 Aug 6;103(3):0036850420936120. doi: 10.1177/0036850420936120

Table 1.

Alternative Feature Indicators and Their Parameter Definitions.

Feature indicator Parameter definition Feature indicator Parameter definition
Mean x¯=1ni=1nxi Root mean square x¯x=1ni=1nxi2
Geometric mean xg=x1·x2xnn Range r=xmaxxmin
Harmonic mean Hn=ni=1n1xi Waveform index Sf=1ni=1nxi2|x¯|
Peak index Cf=xmax1ni=1nxi2 E3,0 E3,0=0t1|x3,0k(t)|2dt=k=1m|x3,0k|2
Kurtosis index Kf=1ni=1n(xix¯)4[1ni=1n(xix¯)2]2 E3,1 E3,0=0t1|x3,0k(t)|2dt=k=1m|x3,0k|2
Margin index CLf=xmax(1ni=1n|xix¯|)2 E3,2 E3,2=t1t2|x3,2k(t)|2dt=k=1m|x3,2k|2
2-Order moment
(variance)
M2=1ni=1n(xix¯)2 E3,3 E3,3=t2t3|x3,3k(t)|2dt=k=1m|x3,3k|2
3-Order moment
(skewness)
M3=1ni=1n(xix¯)3 E3,4 E3,4=t3t4|x3,4k(t)|2dt=k=1m|x3,4k|2
4-Order moment M4=1ni=1n(xix¯)4 E3,5 E3,5=t4t5|x3,5k(t)|2dt=k=1m|x3,5k|2
5-Order moment M5=1ni=1n(xix¯)5 E3,6 E3,6=t5t6|x3,6k(t)|2dt=k=1m|x3,6k|2
6-Order moment M6=1ni=1n(xix¯)6 E3,7 E3,7=t6t7|x3,7k(t)|2dt=k=1m|x3,7k|2
7-Order moment M7=1ni=1n(xix¯)7