View full-text article in PMC Sci Prog. 2020 Aug 6;103(3):0036850420936120. doi: 10.1177/0036850420936120 Search in PMC Search in PubMed View in NLM Catalog Add to search Copyright and License information © The Author(s) 2020 This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage). PMC Copyright notice Table 1. Alternative Feature Indicators and Their Parameter Definitions. Feature indicator Parameter definition Feature indicator Parameter definition Mean x¯=1n∑i=1nxi Root mean square x¯x=1n∑i=1nxi2 Geometric mean xg=x1·x2⋯xnn Range r=xmax−xmin Harmonic mean Hn=n∑i=1n1xi Waveform index Sf=1n∑i=1nxi2|x¯| Peak index Cf=xmax1n∑i=1nxi2 E3,0 E3,0=∫0t1|x3,0k(t)|2dt=∑k=1m|x3,0k|2 Kurtosis index Kf=1n∑i=1n(xi−x¯)4[1n∑i=1n(xi−x¯)2]2 E3,1 E3,0=∫0t1|x3,0k(t)|2dt=∑k=1m|x3,0k|2 Margin index CLf=xmax(1n∑i=1n|xi−x¯|)2 E3,2 E3,2=∫t1t2|x3,2k(t)|2dt=∑k=1m|x3,2k|2 2-Order moment(variance) M2′=1n∑i=1n(xi−x¯)2 E3,3 E3,3=∫t2t3|x3,3k(t)|2dt=∑k=1m|x3,3k|2 3-Order moment(skewness) M3′=1n∑i=1n(xi−x¯)3 E3,4 E3,4=∫t3t4|x3,4k(t)|2dt=∑k=1m|x3,4k|2 4-Order moment M4′=1n∑i=1n(xi−x¯)4 E3,5 E3,5=∫t4t5|x3,5k(t)|2dt=∑k=1m|x3,5k|2 5-Order moment M5′=1n∑i=1n(xi−x¯)5 E3,6 E3,6=∫t5t6|x3,6k(t)|2dt=∑k=1m|x3,6k|2 6-Order moment M6′=1n∑i=1n(xi−x¯)6 E3,7 E3,7=∫t6t7|x3,7k(t)|2dt=∑k=1m|x3,7k|2 7-Order moment M7′=1n∑i=1n(xi−x¯)7