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Abstract: Rosacea is a chronic inflammatory skin disease characterized by recurrent erythema,
flushing, telangiectasia, papules, pustules, and phymatous changes in the central area of the face.
Patients with this condition often experience a significant negative impact on their quality of life,
self-esteem, and overall well-being. Despite its prevalence, the pathogenesis of rosacea is not yet
fully understood. Recent research advances are reshaping our understanding of the underlying
mechanisms of rosacea, and treatment options based on the pathophysiological perspective hold
promise to improve patient outcomes and reduce incidence. In this comprehensive review, we
investigate the pathogenesis of rosacea in depth, with a focus on emerging and novel mechanisms,
and provide an up-to-date overview of therapeutic strategies that target the diverse pathogenic
mechanisms of rosacea. Lastly, we discuss potential future research directions aimed at enhancing
our understanding of the condition and developing effective treatments.

Keywords: rosacea; inflammation; inflammatory skin disease; pathogenesis; therapeutic strategies;
treatment options

1. Introduction

Rosacea is a common chronic inflammatory cutaneous disorder that affects about 5.46%
of the global adult population [1]. It primarily affects the central facial skin and presents
with symptoms such as recurrent episodes of flushing, persistent erythema, telangiecta-
sia, papules, pustules, edema, phymatous changes, or a combination of these symptoms.
Rosacea can be classified into four subtypes based on these symptoms: erythematotelang-
iectatic rosacea (ETR), papulopustular rosacea (PPR), phymatous rosacea (PhR), and ocular
rosacea (OR) [2,3]. Although the pathophysiological mechanisms of rosacea remain unclear,
the prevailing consensus is that the condition primarily stems from immune dysregulation
and/or neurovascular dysfunction, as well as an impaired skin barrier. Triggers such as
ultraviolet radiation, temperature changes, diet, and stress can exacerbate the underlying
innate immune response and/or neurovascular dysfunction [4]. Recent studies have also
highlighted the role of microbial dysbiosis, neuroimmune interactions, metabolic dysfunc-
tion, and sebaceous gland dysregulation in the development of rosacea. Other factors such
as genetic predisposition and oxidative stress are also thought to play a role (Figure 1).

Regarding treatment, various guidelines and expert consensus offer a range of thera-
peutic options tailored to different phenotypes [2,5–7]. In terms of addressing the patho-
genesis of rosacea, the most traditional and commonly employed approach is through the
use of anti-inflammatory treatments. Novel drugs targeting neurological and psychological
factors have recently gained attention. Several other therapeutic options have emerged
targeting other specific pathways, including vascular dysregulation, and microbial dysbio-
sis. New formulations or routes of administration for some drugs are also being explored.
Physical therapies, such as laser and photodynamic therapy, have also shown promising
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results in managing the symptoms of rosacea. Combination therapy with multiple agents
has also shown potential for synergistic effects and improved clinical outcomes in the
treatment of rosacea.
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Figure 1. Schematic diagram illustrating the original and emerging factors implicated in the patho-
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In this article, we provide a detailed and comprehensive investigation of the pathogen-
esis of rosacea, with a particular focus on the emerging and novel mechanisms that may
contribute to its development. Drawing from both the current and emerging research, our
review offers a thorough and up-to-date overview of the various therapeutic strategies that
target the pathogenic mechanisms underlying rosacea. Finally, we present an outlook on
potential future research directions that aim to enhance our understanding of the pathogen-
esis of rosacea and advance the development of novel and effective treatment approaches
for this prevalent dermatological disorder.

2. Pathogenesis
2.1. Immune Dysregulation

Rosacea is characterized by immune dysfunction involving both innate and adaptive
immunity, with alterations to the TLR2/KLK5/LL37 pathway being the most well-studied
pathological mechanism (Figure 2). Toll-like receptors (TLRs) are a family of transmem-
brane receptors expressed on various skin cell types, including keratinocytes (KCs) and
fibroblasts, which can recognize pathogen-associated molecular patterns (PAMPs) and
damage-associated molecular patterns (DAMPs). Additionally, TLRs are also expressed
by various resident innate immune system cells in the skin, including dermal mast cells
(MCs), phagocytes, and dendritic cells, as well as epidermal Langerhans cells, and re-
cruitable cells from the blood, such as neutrophils, macrophages, and γ-δ T cells [8–10].
TLR stimulation activates innate immunity, leading to the controlled activation of nuclear
factor-kappa B (NF-κB) signaling and the subsequent production of cytokines, chemokines,
and cathelicidin for host defense [11–13]. However, excessive TLR activation can result in
inappropriate inflammation. In rosacea patients, TLR2 is overexpressed in KCs and infil-
trating dermal cells at the site of skin lesions [11], leading to an overactive innate immune
response. SIRT7 downregulation in aging skin cells has been shown to downregulate TLR2
and inhibit NF-κB pathway activation, potentially explaining the decreased incidence or
symptom relief of rosacea in the elderly population [14]. Increased tumor necrosis factor
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(TNF)-α or LL37 signaling in rosacea patients can directly activate the transcription factor
NF-κB, inducing the expression of interleukin (IL)-1α, IL-1β, IL-18, and IL-33 [15]. The
arylhydrocarbon receptor (AhR), when activated, can improve rosacea-like skin lesions
and inhibit the expression of TLR2 and downstream chemokines, such as chemokine (C-C
motif) ligand (CCL) 5 [16]. Following TLR2 stimulation, AhR has been found to promote
the expression of inflammatory genes by increasing JNK/mitogen-activated protein kinase
signaling and FosB expression, while inhibiting the expression of TLR2 to prevent excessive
amplification of inflammation [17].
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signify a positive feedback loop, which contributes to the chronicity of the disease. The figure was
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As an important molecule for host defense against pathogenic microorganisms, cathe-
licidin is an antimicrobial peptide critical to innate immunity [18]. In humans, the only
endogenous cathelicidin is LL37/hCAP-18, which is expressed in both epithelial cells
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and leukocytes [19–22]. Trypsin-like serine protease kallikrein 5 (KLK5) cleaves hCAP18
encoded by the human Camp gene into its active form, LL37. KLK5 has been shown to
be upregulated in patients with rosacea, leading to the aberrant accumulation of active
LL37 [15]. Although LL37 is primarily responsible for its antibacterial function, it can also
promote inflammation through multiple pathways. Specifically, LL37 activates the janus
kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, inducing
the upregulation of pro-inflammatory cytokines, such as TNF-α, IL-6, IL-8, and monocyte
chemoattractant protein-1 [15]. Furthermore, LL37 binds to TLR2 on KCs to activate the
mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, leading to in-
creased cathelicidin expression and the formation of a positive feedback loop that amplifies
and sustains inflammation. LL37 also activates the NF-κB signaling pathway through the
mTORC1 signaling pathway [23]. Additionally, LL37 promotes leukocyte chemotaxis and
mast cell degranulation, inducing the release of pro-inflammatory mediators, such as IL-6
and matrix metalloproteinase 9 (MMP9). Neutrophils recruited during this process express
LL37 and MMP9 [15]. MMP-9 activates KLK5 by cleaving its preproenzyme form [24],
leading to the cleavage of hCAP18 into LL-37 peptide and augmenting the inflammatory
response. In addition, LL37 promotes the assembly and activation of the NOD-like receptor
family pyrin domain containing 3 (NLRP3) inflammasome, inducing cell death and acti-
vating many other pro-inflammatory factors, such as IL-8, TNF-α, and MMPs, to maintain
innate immunity [25]. Thus, the intradermal injection of LL37 has become a widely used
animal model for studying rosacea [26]. Additionally, two novel antimicrobial peptides,
S100A15 and S100A9, which are elevated in skin lesions of rosacea and contribute to chronic
inflammation, have gained attention [27–30]. NEAT1, a long non-coding RNA, has been
shown to promote inflammation by upregulating the expression of S100A9 [31].

Mast cells represent one of the main sources of cathelicidin and its activating enzymes
in the skin [32] and are markedly increased in various subtypes of rosacea lesions [33–35].
The involvement of MCs in LL37-induced rosacea inflammation in mice has been confirmed
by the demonstrated alleviation of these effects through the inhibition of MC activation
or degranulation or direct MC ablation [36–38]. The classical pathway of MC activation
is IgE-mediated degranulation but can also be mediated by other pattern recognition
receptors (PRRs), such as NLRP3 and TLRs [4]. LL37 accumulated abnormally within
rosacea skin lesions upregulates the expression of multiple PRRs, such as TLRs [39,40],
on mast cells, which can enhance their ability to detect invading pathogens. LL37, in
conjunction with neuropeptides (NPs), another key mediator involved in the pathogenesis
of rosacea, can activate MCs through the Mas-related G protein-coupled receptor member
X2 (MRGPRX2, mouse homologue MrgprB2) [41–43]. Once activated, MCs can release
histamine, tryptase, and chymase stored in granules, along with various cytokines such as
IL-1, TGF-β, TNF-α, and vascular endothelial growth factor (VEGF) [4], to further activate
MCs themselves. Additionally, activated MCs express MMP9 to promote the production
of LL37 [38]. In conclusion, LL37-mediated MC activation leads to further production of
LL37 by activated MCs, resulting in amplified inflammation. Furthermore, MCs recruit
fibroblasts and promote their proliferation to contribute to rosacea fibrosis [38,44].

Neutrophil and macrophage infiltration are prominent features of rosacea
lesions [45,46]. Neutrophils contribute to a positive feedback loop by expressing nitric
oxide (NO), reactive oxygen species (ROS), LL37, and MMP9, promoting inflammation at
the sites of lesions [15]. Interestingly, some N2 neutrophils in rosacea patients and mouse
models exhibit anti-inflammatory effects by regulating vascular factors and inhibiting
CD4+ T cell proliferation [47]. Macrophages also play a role in rosacea pathogenesis by
expressing TLR2 and NLRP3, which activate inflammation [48–50]. ADAM-like Decysin-1
(ADAMDEC1) and guanylate-binding protein 5 (GBP5) are particularly highly expressed
in rosacea tissues and participate in the polarization of M1 macrophages, resulting in the
release of a broad spectrum of pro-inflammatory cytokines and chemokines [48,51].

The current understanding of adaptive immunity in rosacea is limited, with stud-
ies indicating a high prevalence of CD4+ T cell infiltration around hair follicles and
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blood vessels in affected skin lesions, while there is no significant increase in CD8+ T
cells [46,52–54]. These infiltrating T cells tend to polarize towards Th1 and Th17, expressing
Th1-signature cytokines IFN-γ and TNF-α, as well as Th17-signature cytokine IL-17 [46,55].
Elevated IL-17 levels in rosacea patients have been linked to angiogenesis, inflammation,
and the induction of MMP-9 and LL37 expression [56,57]. Demodex mite infestation is
associated with increased levels of Treg cells and Th9 cells [58]. As for humoral immunity,
while CD20+ B cells comprise 10–20% of the infiltrating inflammatory cells [33,46], their
precise role needs further research.

Overall, while the involvement of innate immune cells in the pathogenesis of rosacea
has been extensively investigated, the roles of adaptive immunity and specialized cells
in this condition are still largely unknown (Figure 3). Given the important functions of
these cells in immune responses, further studies are necessary to better understand their
contributions to the development of rosacea. For instance, sebocytes, known for sebum
secretion, produce immunomodulatory molecules relevant to inflammatory skin conditions,
but their precise roles in rosacea inflammation are unclear. Interactions among immune
cells, the nervous system, blood vessels, and microbiota should also be considered for a
comprehensive understanding of rosacea development.
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2.2. Vascular, Neurovascular, and Neuroimmune Dysregulation

Rosacea is a multifaceted skin disorder characterized by facial erythema and flushing,
which can be attributed to various physiological changes, including increased skin blood
flow, vasodilation, angiogenesis, elevated permeability, and upregulated levels of vascular
endothelial growth factor (VEGF), a critical mediator of angiogenesis and vasopermeabil-
ity [59–63]. However, conventional drugs that focus on constricting blood vessels have
limited efficacy and duration. This suggests that vascular dysregulation alone does not
fully explain blood vessel regulation in rosacea. Recent research suggests the involvement
of the nervous system and intricate neuroimmune interactions. (Figure 4). These find-
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ings present opportunities for innovative therapeutic strategies targeting neurovascular or
neuroimmune communication in rosacea.
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on 28 June 2023).

The complex pathophysiology of vascular dysregulation involves the activation of
multiple pro-angiogenic mediators. One such mediator, LL37, activates the formyl pep-
tide receptor 1 (FPR1) receptors, epidermal growth factor receptors (EGFR), and down-
stream signaling in epithelial cells to promote angiogenesis. LL37 also increases VEGF
levels in epidermal KCs and the expression of adhesion molecules in endothelial cells [15].
Moreover, LL37 induces angiogenesis in human endothelial cells through mTORC1 signal-
ing [64]. MCs, highly activated in rosacea skin lesions, release a multitude of pro-angiogenic
molecules, such as vascular endothelial growth factor (VEGF), fibroblast growth factor
(FGF), histamine, and tryptase [4]. Lee et al.’s study found that upregulated Hippo signal-
ing in rosacea skin lesions also participates in VEGF-mediated angiogenesis [65]. Systemic
metabolic changes may also play a role, as elevated levels of glutamic acid and aspartic acid
in rosacea patients can stimulate nitric oxide production, contributing to vessel dilation [66].
This novel insight warrants further investigation to fully elucidate.

Patients with rosacea present with sensitivity to various triggering factors, such as
cold, heat, ultraviolet (UV) radiation, capsaicin, alcohol, and stress, which are defining
characteristics of sensitive skin. Neurological and psychiatric factors have also been im-
plicated in the onset of rosacea, as evidenced by their association with dementia, sleep
disorders, depression, and anxiety [67–69]. Transient receptor potential (TRP) ion channels
are expressed in sensory neurons and non-neuronal cells. These channels mediate various
symptoms triggered by different stimuli, such as flushing and sensitivity [70]. Elevated
levels of TRP channels and neuropeptides have been documented in both neuronal and
non-neuronal cells across all subtypes of rosacea [71–74]. As a result, these cells are more
prone to activation by external specific stimuli. Upon activation, various vasodilatory neu-
ropeptides, such as pituitary adenylate cyclase-activating polypeptide (PACAP), substance
P (SP), vasoactive intestinal peptide (VIP), and calcitonin gene-related peptide (CGRP),
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are released, which mediate a range of effects, including pain, itching, vasodilation, and
increased permeability [15,70]. An abnormal release of serotonin (5-HT) from MCs and
platelets, as well as its involvement in thermoregulation, may also play a role in the facial
vascular dysfunction observed in rosacea [75–77].

Recent studies have shed light on the intricate interplay between the nervous and
immune systems. Upon the activation of TPR ion channels, the release of CGRP and SP
by neurons binds to receptors on endothelial cells, fibroblasts, and some immune cells,
inducing the production of other pro-inflammatory mediators, and thereby contributing to
the maintenance of cutaneous neurogenic inflammation in rosacea [78]. Immune cells in the
skin barrier are often found in close proximity to peripheral nervous system nerve fibers.
These immune cells express receptors for neuropeptides and neurotransmitters, which
enable them to be modulated by the nervous system [79,80]. Meanwhile, neurons have been
observed to express immune-related receptors, like PRRs and cytokine receptors [81–83], to
mediate neurogenic inflammation and receive immune cell regulation. MCs are increasingly
recognized as important contributors to neuroimmune crosstalk, particularly in the skin [78].
Evidence suggests that MCs and sensory neurons form closely associated clusters in the
skin, allowing for rapid communication between the two cell types [84]. The activation
of sensory neurons results in the release of NPs, which can act on MRGPRX2/MrgprB2
receptors and then prompt MC degranulation, as well as chemokine/cytokine production,
thereby mediating inflammation and vasodilation [38,71,84,85]. Conversely, histamine,
tryptase, and other mediators released by MCs have been shown to sensitize sensory
neurons, generating action potentials that mediate pain and itching, and inducing the
release of NPs in peripheral endings [81,86]. This creates a bidirectional loop between MCs
and sensory neurons, leading to neurogenic inflammation.

Neurological aspects of rosacea pose significant clinical challenges due to recurring
and resistant episodes. The intricate interplay among the nervous system, vasculature,
and inflammation necessitates thorough exploration to comprehend underlying mecha-
nisms. Despite several hypotheses, the precise pathogenesis of neurological symptoms
in rosacea remains elusive. Elucidating the mechanisms underlying the association be-
tween neurological dysfunction and rosacea may help identify novel therapeutic targets for
this condition.

2.3. Skin Barrier Dysfunction

The integrity of the skin barrier is of utmost importance in shielding the body against
external agents and preserving its internal balance. The main components responsible for
the epidermal permeability barrier include the stratum corneum and tight junctions [87].
Patients with rosacea display dry and sensitive facial skin, which is associated with a
notable elevation in the pH value, increased transepidermal water loss (TEWL), and a
marked reduction in stratum corneum hydration [88–91]. These changes are primarily
attributed to the decreased expression of claudins (CLDNs) [92], which represent the main
components of tight junctions. In a study conducted by Medgyesi et al., molecular-level
alterations in key components of the skin barrier, including CLDNs, LOR, and KRT1, were
observed in PPR [93]. Proper regulation of the calcium ion concentration gradient within
the epidermis is vital in maintaining skin barrier formation, permeability barrier home-
ostasis, and keratinocyte differentiation. Disruptions in the intracellular and extracellular
calcium ion concentrations due to the abnormal expression and function of TRP channels
in rosacea patients could impair skin barrier function [94,95]. Skin barrier dysfunction can
contribute to the development and progression of inflammatory skin disorders. Specifically,
an impaired skin barrier can trigger the activation of STAT3 in keratinocytes, prompting the
release of inflammatory cytokines that activate STAT1 in immune cells, thereby prompting
the release of additional inflammatory cytokines that can further disrupt the skin barrier
(Figure 5) [96]. The section below expounds on changes in lipids and microbiota, which
represent critical components of the skin barrier as well. These elements operate in conjunc-
tion with the conventional physical barrier of the skin. For instance, a study has indicated
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that the knockout of Claudin-1 could lead to sebaceous gland damage and impede the
functionality of sebaceous gland holocrine secretion [97]. Furthermore, the breakdown
of the skin barrier can also promote alterations in the composition of microbiota, which
may potentially participate in the pathogenesis of rosacea. Hence, it is evident that the
disruption of the skin barrier plays a crucial role in the complex network of pathogenesis
in rosacea. Recent attention has been increasingly focused on the functionality of the
skin barrier.
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2.4. Microbial Dysbiosis

The cutaneous microbiota, consisting of a diverse array of microorganisms, such as
bacteria, viruses, fungi, and mites that colonize both on and within the skin, constitutes
a crucial constituent of the skin’s barrier function. The composition of the microbiota is
shaped by various factors, such as gender and age, as well as local environmental factors,
such as pH, temperature, and lipid composition. Notably, changes in the facial skin mi-
crobiota have been observed in rosacea patients using 16S rRNA gene sequencing [98].
Among the skin microbiota linked to the inflammatory response in rosacea, Demodex mites
(and their associated bacterium, Bacillus oleronius) stand out (Figure 5). However, the
causative relationship between the mites and rosacea remains contentious, with current
evidence indicating a bidirectional causality between the two. Demodex mites, specifically
Demodex folliculorum and Demodex brevis, inhabit hair follicles and meibomian/sebaceous
glands, respectively [99]. While their density is found to be higher in rosacea patients and
is positively correlated with disease severity, it is not necessarily a factor in the develop-
ment of the disease [15,100–103]. Hair follicles are immune-privileged and can tolerate
moderate colonization of Demodex mites, allowing for a harmonious symbiosis. Mites have
developed mechanisms to evade immune responses and establish a persistent presence
in the follicle [104]. Type 2 innate immunity is implicated in maintaining the symbiosis,
and its diminished expression in PhR patients may lead to abnormal mite proliferation
and subsequent hair follicle inflammation [105]. Skin barrier dysfunction and an imbal-
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anced microbiota in rosacea patients can also lead to an escalation in the population of
Demodex mites [106].

In cases where the density of Demodex mites is elevated, their allergens have been
shown to activate the NLRP3 inflammasome and contribute to the activation of IL-1β [107].
Furthermore, chitin, present in the exoskeleton of mites, has been shown to induce an up-
regulation of TLR2 expression and a subsequent activation of TLR2, leading to the initiation
of an immune response. Mites’ claws and mouthparts can directly damage tissues [108],
while excessive mites obstruct hair follicles and sebaceous glands, disrupting the skin
barrier [15,104,109]. Moreover, resident bacteria, enzymes, and feces from deceased mites
may potentially exacerbate the inflammatory response [104,109]. The abnormal prolifer-
ation of Demodex can interfere with the integrity and repair of the skin barrier through
the AhR signal [110]. Other microorganisms, including Staphylococcus epidermidis, have
also been implicated in the induction of skin inflammation through TLR2 activation [24].
Overall, the pathogenesis of rosacea is multifactorial, involving an imbalance of several
microorganisms, which, in turn, is affected by changes in the skin microenvironment. These
factors collectively contribute to a vicious cycle that disrupts the balance of microbiota and
exacerbates the disease.

Rosacea has been associated with gastrointestinal diseases such as Helicobacter py-
lori infection, inflammatory bowel disease, and small intestinal bacterial overgrowth
(SIBO) [111–115]. Studies using 16S rRNA sequencing have demonstrated alterations
in the microbial richness and composition of the feces of rosacea patients [116,117]. These
results suggest that there may be a potential link between gut microbiota and the de-
velopment of rosacea. Gut dysbiosis can impact the host’s immune system in complex
ways, which can consequently affect the immune response of the skin [118,119]. Although
the evidence is not conclusive and the composition of gut microbiota can differ signifi-
cantly among individuals, some therapies for gastrointestinal diseases and microbiota have
demonstrated effectiveness in ameliorating rosacea symptoms [118,120–122]. Moreover, a
small yet significant difference in the blood microbiomes of rosacea patients compared to
those of controls has been observed [123], though its clinical significance remains under
investigation.

Overall, Demodex mites remain a research focus among the pathogenic microorganisms
of rosacea. However, studies have been impeded by the inability to culture them in vitro.
To overcome this obstacle, some studies have used chitin as a surrogate to evaluate the
pro-inflammatory effects of Demodex mites on target cells. Nevertheless, recent research has
revealed that the varying quantities of Demodex mites have distinct impacts on inflammation
regulation [108], indicating that chitin may not be a sufficiently reliable substitute. With the
continuous advancements in isolation and in vitro culture techniques of Demodex mites, we
have a promising opportunity to further unravel their regulatory roles.

2.5. Metabolic Dysfunction

Rosacea has been associated with a number of metabolic-related disorders, including
hypertension, dyslipidemia, thyroid disorders, obesity, and diabetes [124–129]. These
observations suggest that systemic metabolic alterations may have a role in the patho-
genesis of rosacea (Figure 5). In a study by Li et al., serum metabolic profiling revealed
significant alterations in amino acids, fatty acids, organic acids, and carbohydrates in
rosacea patients. The study also found increased levels of glutamic acid and aspartic
acid, which promote the production of NPs and NO, leading to erythema and capillary
dilation [66]. Another study showed that rosacea patients have distinct levels of bile acids,
including elevated lithocholic acid, which can stimulate the production of inflammatory
cytokines and chemokines via activation of the G protein-coupled bile acid receptor 1 (GP-
BAR1) [130]. Hypercholesterolemia has also been implicated in inflammation, as it leads
to cholesterol accumulation in various immune cells, amplifying TLR signaling. Oxidized
low-density lipoprotein can directly activate macrophages as ligands for TLRs, triggering
pro-inflammatory signal transduction. Cholesterol can also induce NLRP3 inflammasome
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activation, further exacerbating inflammation [131]. Additionally, lower levels of serum
bilirubin and uric acid, which possess antioxidant properties, were observed in rosacea
patients [132]. The link between rosacea and diabetes may be attributed to the high levels
of oxidative stress, which may lead to insulin resistance [133–135]. Previous studies have
suggested an association between higher Demodex folliculorum density or infection rates
and hyperglycemia caused by metabolic syndrome, polycystic ovary syndrome, gestational
diabetes, and type 2 diabetes [136–139], but the underlying mechanism remains unclear.
Skin barrier damage is commonly observed in obese patients, as indicated by reduced skin
hydration [140]. However, studies have reported conflicting evidence regarding changes
in TEWL in these patients [141,142]. Additionally, obese patients often exhibit disrupted
sebaceous gland function due to elevated levels of androgens, insulin, growth hormone,
and insulin-like growth factor [143,144].

Taken together, these findings highlight a complex relationship between rosacea
and metabolic dysfunction, suggesting potential implications for the management and
treatment of rosacea. Several dietary supplements are currently being evaluated as possible
treatments for this condition. Further research is needed to elucidate the underlying
mechanisms and explore potential therapeutic targets.

2.6. Sebaceous Gland Dysfunction

Rosacea lesions typically appear in the central facial region, where sebaceous glands
are abundant. A specific subtype of rosacea, PhR, is associated with thickening of the
skin due to sebaceous gland hyperplasia. These clinical findings suggest that sebaceous
gland dysfunction may play a role in the pathogenesis of rosacea (Figure 5). This notion is
supported by studies using topical isotretinoin, which demonstrated a significant reduction
in sebaceous gland volume and sebum production, as well as improvement in erythema
and papulopustules in patients with rosacea [143,145].

Sebum secretion by sebocytes is a crucial process that maintains skin hydration and
reduces TEWL [146–148]. In rosacea, sebaceous gland dysfunction can arise from TLR-
mediated inflammatory status, changes in the microbiota that colonize pilosebaceous
unit [149,150], or dysregulated neural and endocrine influences [151,152]. These changes
can lead to an altered sebaceous fatty acid profile, with increased levels of myristic acid
and decreased levels of long-chain saturated fatty acids [106], rather than changes in
the total amount of sebaceous fatty acids. These alterations in sebum composition can
result in symptoms and signs of damaged skin barrier [153]. Sebum also serves as a
substrate for the growth of some microorganisms. Perturbations in sebum composition
can alter the composition of the skin microbiota, with potentially deleterious effects on
skin health. Indeed, a retrospective study has shown a positive correlation between the
size and density of sebaceous glands and the proliferation of Demodex mites in rosacea
patients [154]. Furthermore, Demodex mites modulate TLR signaling in sebocytes, inducing
the release of pro-inflammatory cytokines, such as IL-8, when their numbers reach a critical
level [108]. Changes in sebum production may result in the downregulation of thymic
stromal lymphopoietin (TSLP) expression in keratinocytes and sebocytes, thereby activating
dendritic cells and T cell differentiation and promoting the infiltration of inflammatory
cells [155]. Loss of TSLP expression results in RORγt+ innate lymphoid cells loss, leading
to sebaceous gland hyperplasia and altered microbial symbiosis [156].

The sebaceous gland serves a vital role in maintaining skin immunity by produc-
ing a range of immune-regulating molecules, including lipids, cytokines, chemokines,
and antimicrobial peptides [147,157,158]. Stimuli originating from both inside and out-
side the pilosebaceous unit, which have the ability to activate the TLR2 and TLR4 path-
ways, may trigger a rapid induction of an immune-competent state in sebocytes, result-
ing in the production of numerous cytokines, such as C-X-C motif chemokine ligand
(CXCL)-8, CXCL-10, IL-1β, IL-6, CCL-5, and leptin [150,157,159]. Inflammatory cell in-
filtration around hair follicles, including mast cells, is a notable histological feature of
rosacea and may be attributed to sebocyte chemotaxis [54,157,160–162]. However, the
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specific mechanism responsible for this characteristic perifollicular inflammation and the
particular cells recruited, including those beyond mast cells, remain subjects that require
further investigation.

According to current understanding, acne is widely considered as the skin disease
most closely related to sebaceous gland dysfunction. It is clinically reasonable to see acne
and rosacea occurring simultaneously, given the significant overlap in inflammatory factors.
Although isotretinoin shows promise for treating both conditions by regulating sebaceous
glands, the complexity of rosacea extends beyond this aspect. Therefore, it is important to
consider a holistic approach to treating rosacea and to address the underlying causes of
this condition beyond just sebaceous gland dysfunction.

2.7. Miscellaneous

Genetic Predisposition: Genetic predisposition is thought to play a role in the devel-
opment of rosacea, as indicated by its family inheritance, twin concordance, and varying
prevalence among different ethnic groups [163–165]. The current research has identified
several genetic factors that may be associated with the development of rosacea. These
factors include polymorphisms in genes, such as glutathione S-transferase (GST) [166],
human leukocyte antigen (HLA) class II [167], tachykinin 3 receptor (TACR3) [168], vita-
min D receptor (VDR) [169,170], and VEGF [171]. Additionally, a gain-of-function variant
in the STAT1 gene has also been found to be implicated [172–174]. Recently, a notable
study conducted whole-genome sequencing and whole-exome sequencing on samples
from individuals within Chinese rosacea families. In this investigation, variant genes
linked to neural function, including LRRC4, SH3PXD2A, and SLC26A8, were identified.
Furthermore, follow-up experiments utilizing animal and cell models corroborated that
mutations in LRRC4, among others, can facilitate neurogenic inflammation in rosacea
by triggering the peripheral nerve-mediated secretion of NPs [175]. This research repre-
sents a significant advancement in understanding the genetic underpinnings of rosacea
and its association with neural mechanisms, thereby offering valuable insights into the
condition’s pathogenesis.

Cellular Stress Response: Oxidative stress dysfunction is linked to various inflam-
matory skin diseases [176,177]. Patients with rosacea exhibit elevated levels of oxidized
disulfides in their serum, indicating an imbalance in oxidative stress [135,178]. Multiple
mechanisms have been implicated in the development of rosacea through oxidative stress,
including the production of ROS by neutrophils, lipid and protein peroxidation, and the
promotion of an inflammatory state [178]. In individuals with rosacea, TNFα induction
leads to the upregulation of Nav1.8, a sodium ion channel in epidermal keratinocytes.
Nav1.8 binds to superoxide dismutase 2, inhibiting its antioxidant function and causing
ROS accumulation, triggering pro-inflammatory signaling [179]. Additionally, endoplas-
mic reticulum (ER) stress plays a role in rosacea pathogenesis by stimulating cathelicidin
production and increasing TLR2 expression [83,180]. However, it can also activate TLR2
signaling in neurons, leading to neurogenic inflammation [181].

Environmental Triggers: Numerous environmental factors have been identified as
triggers or exacerbating agents of rosacea, with various underlying mechanisms involved.
The activation of TRP ion channels and ER stress are among the pathways implicated
in this condition, as previously described. UV radiation induces various skin responses,
including ROS production [15], pro-inflammatory cytokine release (IL-33, IL-1β) [182,183],
MMP upregulation [32], and angiogenesis stimulation (VEGF, FGF, IL-8 upregulation,
thrombospondin-1 downregulation) [184]. Finally, it directly causes vasodilation through a
thermal effect.

Alcohol, spicy food, cinnamaldehyde-containing foods, hot drinks, and histamine-rich
foods are also known triggers or exacerbating factors of rosacea [185]. Alcohol causes
vasodilation, inflammation, and oxidative stress, and long-term intake can lead to vasoreg-
ulation loss and gut microbiome dysbiosis [186–188]. Analogous to foods rich in histamine,
the metabolism products of ethanol can cause the release of histamine and exacerbate
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symptoms [187,188]. Emotional stress activates the hypothalamic–pituitary–adrenal (HPA)
axis, leading to cortisol release and activation of the inflammatory pathway, which impairs
skin barrier function [189]. This can lead to further psychological burden on patients.

3. Treatments

In this chapter, we provide an overview of therapeutic strategies targeting various
pathogenic mechanisms underlying rosacea (Table 1). While well-established treatment
methods are briefly reviewed, our main focus is on emerging therapies. It should be noted
that although a certain drug is classified under a certain mechanism, it may also work
through other mechanisms.

3.1. Anti-Inflammatory Strategies

Azelaic acid gel (15%) is a classic and clinically established medication that has gained
US Food and Drug Administration (FDA) approval for mild-to-moderate rosacea treat-
ment by suppressing KLK5 and cathelicidin expression, activating PPARγ, and reduc-
ing pro-inflammatory factors [190,191]. Another inhibitor of trypsin-like serine protease,
ε-aminocaproic acid, has recently demonstrated a beneficial impact on the severity of
rosacea in a small, randomized pilot trial [192].

Tetracycline antibiotics are widely used to treat rosacea due to their anti-inflammatory
effects. However, unlike acute infections, rosacea treatment lasts for weeks to months, and
therefore, sub-antibiotic doses (40 mg) of doxycycline, which have been approved by the
FDA, are often preferred to avoid bacterial resistance or dysbiosis. Sub-antibiotic doses of
doxycycline effectively reduce erythema and inflammation by inhibiting chemotaxis, ROS
production, and MMPs [2,7]. Safer topical formulations (such as minocycline foam) and a
new generation of tetracyclines, sarecycline, are gaining attention as potential treatments
for rosacea [193–196].

Oral isotretinoin is a recommended option for granulomatous rosacea, early soft
phymatous changes, and refractory erythema and papulopustules, albeit with a need for
caution due to its potential teratogenic effects [2,5,7,197]. The efficacy of isotretinoin is
thought to be linked to its ability to regulate innate immunity by negatively modulating
the expression of TLR2 in keratinocytes [198]. Moreover, isotretinoin is known to reduce
sebum production and sebaceous gland size, thus improving disrupted sebaceous gland
function [143,145,199].

In accordance with Swiss guidelines, pimecrolimus 1%, a calcineurin inhibitor, is
a recommended treatment for erythema and papulopustular lesions [2]. Pimecrolimus
1% inhibits T cell and mast cell activation [200], but caution is needed due to potential
rosacea-like eruptions, which may be due to its immunosuppressive effect resulting in the
overgrowth of microorganisms such as Demodex folliculorum [2,201]. Similarly, tacrolimus
also exhibits this double-edged sword effect [201].

Hydroxychloroquine, an anti-malaria drug with anti-inflammatory properties, is
used to treat systemic autoimmune diseases. In rosacea, it reduces skin inflammation by
inhibiting mast cell activation caused by LL37 and calcium influx [37]. A randomized trial
compared hydroxychloroquine to doxycycline and found similar efficacy and safety [202].
Artemisinin, another anti-malarial drug, and its bioactive derivative, artesunate, suppress
the expression of inflammatory biomarkers induced by LL37 via the inhibition of various
transcription factors, including NF-κB, mTOR, and STAT [203–205]. A randomized pilot
study including 130 subjects found that artemether, a lipid-based derivative of artemisinin,
showed higher effectiveness and lower papule and pustule scores than metronidazole
emulsion after 4 weeks of treatment, although there was no significant difference in the
erythema score [206].

Tranexamic acid is a plasmin inhibitor used for treating bleeding conditions. In derma-
tology, it is used off-label for melasma and shows potential for rosacea treatment. Studies
have found that tranexamic acid reduces the mast cell count in the skin [207]. It also sup-
presses inflammatory biomarkers and angiogenesis [208]. Kim et al. reported that soaking
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with tranexamic acid solution once or twice a week improved erythema and discomfort
symptoms in six rosacea patients [209], and in an open-label trial with a small sample
size, local application of tranexamic acid solution was found to improve symptoms in
patients with ETR [210]. Daadaa et al. reviewed six ETR patients who received intrader-
mal microinjections of tranexamic acid, and the Investigator Global Assessment (IGA) of
Rosacea Severity Score decreased by an average of 2.4 ± 0.5 [211]. Moreover, tranexamic
acid can promote skin barrier repair by inhibiting serine protease and a physical interaction
between the urokinase-type plasminogen activator and the stratum corneum [212,213]. A
randomized, vehicle-controlled, split-face study involving 30 patients showed that local
tranexamic acid treatment significantly decreased the TEWL and skin surface pH value of
rosacea patients, enhanced hydration of the stratum corneum, and reduced the number of
inflammatory lesions [214].

ACU-D1, a novel 26S proteasome inhibitor, has been found to exhibit anti-inflammatory
effects by inhibiting the activation of NF-κB. In a double-blind, randomized, placebo-
controlled study involving 40 patients with moderate to severe rosacea, ACU-D1 was
shown to be effective in reducing inflammatory lesions in 92% of patients, with 27% experi-
encing a 2 plus grade IGA reduction of clear to nearly clear [215].

IL-17 is produced primarily by Th17 cells and promotes inflammation in multiple
ways. IL-17 blockade has been successfully used in treating psoriasis and psoriatic arthritis,
and may also be effective in treating rosacea [216]. However, the cost of treatment can be
high. In an open-label, rater-blinded, investigator-initiated study, secukinumab treatment
(300 mg weekly for 5 weeks followed by monthly dosing for 2 months) significantly reduced
the number of papules and the global severity score in 17 patients [217]. Nonetheless, the
risk of infections should be taken into account. Further high-quality randomized controlled
studies are needed to draw definitive conclusions.

3.2. Vascular-Targeted Strategies

Brimonidine tartrate gel acts as a potent vasoconstrictor by binding to α2-adrenergic
receptors on the smooth muscle surrounding the facial skin blood vessels [218]. Due to its
quick onset of action and safety profile, it is widely used to treat transient and persistent
facial erythema rather than papules and pustules [2,5–7,197]. In a 12-month open-label
observational study, topical brimonidine was found to be both safe and effective for main-
tenance therapy in patients with rosacea [219]. Another topical α1 agonist, oxymetazoline,
has also been approved for the treatment of persistent erythema in the United States [5,197].

Timolol, a non-selective β-adrenergic receptor blocker, has vasoconstrictive and anti-
angiogenic effects. It inhibits inflammatory mediators, like MMPs and IL-6, and downregu-
lates VEGF to hinder angiogenesis [220,221]. When used topically, timolol also promotes
keratinocyte migration and skin barrier repair [222]. To investigate the potential therapeu-
tic effects of timolol on rosacea, a pilot clinical trial involving eight patients found that
long-term (12 weeks) topical application of timolol 0.5% gel-forming solution significantly
improved erythema, although rebound occurred after discontinuation [223]. In another
study, 16 patients with mild to moderate ETR were enrolled in a randomized, single-blind,
placebo-controlled split-face study, where the side of the face treated with timolol maleate
0.5% eye drops applied with wet compresses every night for 28 days showed significant
improvements in the Clinician Erythema Assessment (CEA) and a patient self-assessment
(PSA). Although one case of local adverse reaction occurred, it resolved on its own [224].
However, a single-arm clinical study involving 58 patients with ETR and PPR found that
although topical timolol 0.5% improved clinical parameters of rosacea, it did not reach sta-
tistical significance. The mean percentage of improvement in telangiectasia and erythema
was higher (50% and 41.38%, respectively), while the improvement in papules and pustules
was only 7.41% [220].



Biomedicines 2023, 11, 2153 14 of 33

3.3. Targeting Neurological and Psychological Factors

Recent interest in botulinum toxin type A as a potential treatment for rosacea has
grown due to its ability to inhibit vasodilating acetylcholine and regulate neuropep-
tides [225,226], reduce the mast cell count, suppress mast cell degranulation, and decrease
the expression of certain MMPs in skin fibroblasts [227,228]. Despite some uncertainty
about its mechanism of action, a number of studies have suggested that botulinum toxin
may also be capable of reducing sebum production and increasing skin hydration [228,229].
A 2021 systematic review analyzed nine studies with a total of 130 participants, reporting
satisfactory efficacy and safety, but limited by small sample sizes, imperfect study designs,
and short follow-up times [230]. Another randomized, controlled, split-face study involv-
ing 22 patients found that those who received botulinum toxin combined with broadband
light on one side of the cheek showed significant reductions in the global flushing symptom
score, VISIA red value, erythema index, TEWL, and sebum secretion, as well as an increase
in skin hydration compared to the control group receiving broadband light plus saline and
baseline. At 6 months after treatment, only sebum secretion levels returned to baseline,
while the other indicators remained stable compared to 3 months after treatment [231].
Two small-sample single-arm studies also reported significant improvements in erythema
and flushing, although symptom rebound occurred at 6 months, albeit not to the baseline
level [232,233]. Mild and self-resolving adverse reactions were observed in all studies.
Overall, while the use of botulinum toxin as a treatment for rosacea shows promise, further
research with larger sample sizes and longer follow-up periods is needed to confirm its
efficacy and safety.

Paroxetine is a selective 5-HT reuptake inhibitor commonly used as a psychotropic
drug for treating depression [234]. However, recent studies have indicated that it may
have a regulatory effect on autonomic nervous system-mediated vascular dilation and con-
striction [235]. In this multicenter, randomized, double-blind, placebo-controlled clinical
trial, 112 patients with refractory erythema of rosacea were recruited and randomized to
receive either placebo or 25 mg/day of paroxetine for 12 weeks. Among the 97 patients who
completed the study, the group receiving paroxetine exhibited noteworthy amelioration in
rosacea manifestations, such as erythema, flushing, and burning sensation; however, no
significant improvement was observed in inflammatory lesions. The safety profile of parox-
etine was consistent with previous studies, with dizziness, lethargy, nausea, dyspepsia,
and muscle tremors being the most commonly reported adverse events [236]. Given that
rosacea can cause significant psychological distress to patients, paroxetine may represent a
promising treatment option for those experiencing concurrent symptoms, such as anxiety,
depression, and insomnia.

A recent double-blind, randomized, placebo-controlled, cross-over trial has pro-
vided evidence that PACAP38 can cause prolonged facial flushing and swelling in pa-
tients with rosacea. Furthermore, the study demonstrated that sumatriptan can alleviate
these features [237]. Sumatriptan is a 5-HT1B/1D receptor agonist and is widely used
to treat migraines by inhibiting the degranulation of mast cells and reducing PACAP
levels [237,238]. However, whether sumatriptan can be used for the clinical treatment of
rosacea requires further investigation. The authors of the study also reported a case of a
patient with severe and painful flushing who was successfully treated with oral sumatrip-
tan (50 mg). The patient experienced a significant reduction in burning sensation, swelling,
redness, and pain after 30–60 min of administration, and the effects persisted for several
days [238].

Previous studies and case reports on the oral administration of other β-adrenergic
receptor blockers, such as propranolol and carvedilol, have also shown good efficacy against
ETR, particularly when associated with anxiety [239,240]. Nonselective β-blockers have
been shown to reduce sympathetic activity and alleviate symptoms of anxiety in healthy
individuals [241–243]. Carvedilol, which has both α1 receptor blocking and non-selective
β receptor blocking effects, can slow the heart rate by acting on cardiac β1-adrenergic
receptors, thereby reducing patient tension and anxiety [244,245]. Additionally, it exerts
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anti-inflammatory effects by inhibiting NLRP3 inflammasome and the expression of TLR2
in macrophages [50,246]. However, their systemic side effects, such as hypotension and
bradycardia, should be taken into consideration.

3.4. Antimicrobial Strategies

Metronidazole has received FDA approval in various topical formulations owing
to its anti-demodex and anti-inflammatory effects. Its mechanism of acaricidal action is
yet to be fully understood despite its ability to reduce the density of Demodex mites in
hair follicles. It is believed that the drug’s active metabolites formed in vivo are respon-
sible for its therapeutic action rather than a direct effect on the mites [72,247]. In terms
of its anti-inflammatory properties, the mechanism of action of metronidazole involves
a reduction in neutrophil-derived ROS production, as well as acting as a scavenger of
these reactive species [248,249]. Moreover, metronidazole has been shown to impair the
induction of IL-17 both directly and indirectly via the suppression of IL-6 and CXCL-8 [72].
Additionally, 1% ivermectin cream has been approved by regulatory agencies in the US
and Europe for treating both PPR and OR [5–7,197]. Its efficacy is superior to topical
metronidazole, and it is more tolerable than azelaic acid [248,250]. Its primary mode of
action is attributed to its ability to eliminate Demodex mites. Ivermectin cream can also exert
anti-inflammatory effects by stimulating the production of anti-inflammatory cytokines,
such as IL-10, and inhibiting pro-inflammatory cytokines, like IL-1b and TNF-α [248,251].
Although well-tolerated, the sudden death of Demodex mites may trigger a transient exacer-
bation of symptoms, which can be alleviated by short-term corticosteroid use. Oral iver-
mectin has also demonstrated efficacy in some cases of rosacea [2], complementing topical
treatment options. Other effective topical agents, such as sodium sulfacetamide and benzoyl
peroxide, are also widely utilized [2,5].

Omiganan is a synthetic antimicrobial peptide with rapidly bactericidal and fungicidal
properties [252], rendering it a promising therapeutic agent for the treatment of various
skin infections. A Phase III clinical trial was conducted to evaluate the efficacy and safety
of omiganan gel in patients with severe PPR. In this randomized, double-blind, vehicle-
controlled, parallel-group, multicenter study, patients who received omiganan gel exhibited
a significant decrease in the mean inflammatory lesion counts and lower IGA scores,
indicating significant improvement in the severity of their PPR. Importantly, omiganan gel
was well-tolerated, and no serious adverse events were reported [253].

Rifaximin, an orally administered antibiotic with gut-specific activity and no systemic
absorption, is registered for the treatment of traveler’s diarrhea and other conditions. As
mentioned earlier, evidence suggests a link between rosacea and gastrointestinal disorders.
Clinical trials have also indicated that about half of all rosacea patients have SIBO. Treatment
with rifaximin has shown variable degrees of improvement in rosacea characteristics
in SIBO patients, with different studies reporting improvement rates of 95.7%, 64.5%,
and 82% [113,254,255]. Another prospective study involving 180 participants yielded
different results, with a significantly higher rate of Helicobacter pylori infection among
rosacea patients (48.9% vs. 26.7%) compared to non-rosacea patients, while the prevalence
of SIBO was comparable between the two groups (10% vs. 7.8%). However, treatment with
clarithromycin-containing sequential therapy to eradicate H. pylori and with rifaximin
to treat SIBO led to significant improvement in skin lesions in rosacea patients, with
improvement rates of 97.2% and 85.7%, respectively [114]. In some cases, rifaximin has also
been reported to be effective in treating PPR or in improving rosacea during the treatment
of gastrointestinal disorders [238,256].

3.5. Physical Therapy

Intense pulsed light (IPL), neodymium: yttrium–aluminum–garnet laser (Nd:YAG),
pulsed dye laser (PDL), and potassium titanyl phosphate laser (KTP) are currently widely
used and have shown effectiveness in the treatment of telangiectasia and erythema as-
sociated with rosacea. These treatment modalities primarily target sebaceous glands,



Biomedicines 2023, 11, 2153 16 of 33

hemoglobin, and pigmentation. In addition, ablative laser resurfacing techniques, includ-
ing the use of CO2 or Er:YAG modalities, and surgical procedures, including electrosurgery,
may be employed for the management of phymatous features of rosacea [2,5,7,197,248].
However, as different wavelengths of light target distinct objectives and produce diverse
effects, there is potential for synergistic benefits when combining multiple laser therapies. A
recent single-arm trial involving 68 patients confirmed the efficacy of the sequential use of
a 532/1064 nm Nd:YAG laser followed by IPL in effectively managing facial telangiectasias
and erythrosis [257]. Additionally, a split-face trial conducted in China observed that the
sequential use of Nd:YAG laser after IPL treatment for facial telangiectasia exhibited higher
clinical efficacy compared to separate therapies [258]. These findings highlight the potential
advantages of tailored laser combinations for optimizing treatment outcomes in patients
with rosacea.

Photodynamic therapy (PDT) is an effective approach in dermatology, utilizing spe-
cific wavelengths of light to activate photosensitizers and generate singlet oxygen and
other ROS. While PDT is well-established for treating conditions like acne and Bowen’s
disease, its potential for managing rosacea is currently being investigated [259]. Proposed
mechanisms of action in rosacea include immune modulation, the regulation of piloseba-
ceous units, and targeting Demodex mites through porphyrin activation [260]. PDT also
exhibits broad-spectrum antimicrobial effects [261,262]. Although the exact mechanisms
underlying PDT’s therapeutic effects in rosacea require further investigation, a systematic
review of nine studies indicates satisfactory treatment outcomes despite variations in the
photosensitizers, light sources, and parameters used. Adverse reactions, although generally
tolerable and temporary, were reported in some studies [263]. PDT may have superior
efficacy in managing PPR compared to ETR [263–265]. In our latest study, we discovered
that PDT exhibited similar efficacy as that of first-line oral antibiotics in the treatment of
PPR, and it demonstrated stronger but non-significantly different acaricidal activity than
oral antibiotics. However, the most prominent post-treatment response was erythema [266].
This observed occurrence may be explained by the heightened sensitivity of blood vessels to
the thermal and radical effects induced by PDT, along with the immune response triggered
by Demodex residues [251,267]. However, PDT-induced erythema can self-resolve within
1–2 weeks and is more controllable, with significant improvement achieved through the use
of red light and IPL. Future refinements of parameters hold promise for better outcomes.
Recent randomized controlled trials with larger sample sizes have reported improved
treatment efficacy and milder adverse reactions when PDT is combined with other modal-
ities, such as 1550 nm fractional therapy laser or Danzhi Xiaoyao Powder [268,269]. In a
single-arm trial involving 10 patients with ETR or PPR, PDT in combination with IPL also
demonstrated favorable treatment outcomes and high patient satisfaction [270]. However,
further research is needed to understand the treatment mechanisms, optimize the protocols,
and determine long-term safety and efficacy. Comparing the recurrence rates between
PDT and first-line drugs is particularly important, considering PDT’s potential in reducing
recurrence rates in other disorders involving pilosebaceous units [271].

Several other non-invasive therapies have shown promise in treating rosacea, includ-
ing laser therapy, radiofrequency therapy, and ultrasound. The 577 nm pro-yellow laser,
which is preferentially absorbed by hemoglobin, has exhibited notable efficacy in treating
ETR and reducing the density of Demodex mites, with a low incidence of pigmentation and
scarring [272–276]. Radiofrequency therapy has also shown positive effects in reducing
burning sensations in patients with ETR [277–280]. Additionally, short-wave radiofre-
quency and fractional microneedling radiofrequency have exhibited potential in managing
ETR symptoms [278,281,282]. Ultrasound, particularly microfocused ultrasound with vi-
sualization, has shown efficacy in improving telangiectasia and erythema associated with
rosacea by inhibiting MMPs and restoring skin barrier function [283–286]. While several
clinical trials have verified these methods, larger randomized controlled trials are necessary
to assess their efficacy and safety.
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3.6. Miscellaneous

Non-occlusive sunscreen, mild facial cleansers, and skincare products may repair the
skin barrier, but evidence is inadequate [2,287–289]. Dietary supplementation with N-3
polyunsaturated fatty acids has shown anti-inflammatory effects and is a promising strategy
for treating rosacea [290]. Stress management techniques, such as meditation, may reduce
cortisol levels and alter the course of skin diseases like rosacea fulminans [291]. Several
traditional herbal medicines, including turmeric, celastrol, diammonium glycyrrhizinate,
licochalcone A, and extracts of tormentil, simarouba amara, and supramolecular salicylic
acid, have broad-spectrum anti-inflammatory mechanisms in treating rosacea [292–297].
The emergence of these herbal medicines may offer a safer alternative or complement con-
ventional pharmacotherapies to achieve optimal therapeutic outcomes [292,294]. However,
further research is needed to explore their mechanisms in depth.

Small-molecule inhibitors are at the forefront of pharmacological biomedical thera-
peutics. Recently, Ogasawara et al. identified two MRGPRX2 antagonists that have the
potential to prevent IgE-independent allergic reactions by specifically blocking the activa-
tion of human mast cells mediated by MRGPRX2 [298]. While their efficacy for treating
rosacea remains to be investigated, these novel inhibitors hold promise for the development
of new drugs for rosacea treatment. Alternatively, RNA medicines offer an opportunity to
manage rosacea conditions at the transcriptional level with greater specificity and design
flexibility than small molecules. However, the delivery of RNA medicines to the cytoplasm
of target cells non-invasively in rosacea patients is a significant challenge. To address this,
Colombo et al. developed a small RNA interference (siRNA) that targets TLR2 and applied
emulsified siRNA to the inner and outer surface of mice ears in the presence of active excipi-
ents, such as glycerol/urea. This resulted in a significant decrease in TLR2 levels, indicating
the potential for siRNA to manage rosacea at the transcriptional level [299]. These findings
suggest that such drugs may represent the future direction of rosacea management.

Table 1. Therapeutic strategies targeting diverse pathogenic mechanisms. An asterisk (*) denotes
well-established therapies, typically approved by the FDA or recommended by multiple national
guidelines or expert consensus.

Target Management
Options Pharmacological Effects Current Clinical Trials

Immune
Dysregulation

Azelaic acid *

Suppresses expression of KLK5 and
cathelicidin, activates PPARγ to exhibit
anti-inflammatory properties, and curbs

expression of IL-1, IL-6, and TNF-α

FDA-approved

ε-aminocaproic
acid Inhibits KLK5

Shows beneficial impact on the severity
of rosacea in a small, randomized pilot

trial [192]

Doxycycline
(sub-antibiotic

doses) *

Inhibits chemotaxis and ROS production in
neutrophils, suppresses several MMPs and

subsequent antimicrobial peptide production,
targets abnormal amino acid metabolism and

sebaceous gland cells

FDA-approved

Isotretinoin *
Modulates TLR2 expression negatively in

keratinocytes, reduces sebum production and
sebaceous gland size

Supported by guidelines or expert
consensus [2,5,7,197]

Pimecrolimus * Inhibits T cell and mast cell activation by
blocking calcineurin action

Supported by guidelines or expert
consensus [2]

Tacrolimus Inhibits calcineurin
Clinical trials conducted with varying
numbers of participants (1 to 200) in a
systematic review of 28 articles [201]
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Table 1. Cont.

Target Management
Options Pharmacological Effects Current Clinical Trials

Hydroxychloroquine Attenuates LL37-induced mast cell activation partly
by inhibiting calcium influx

Small-sample, multicenter randomized
controlled trial comparing

hydroxychloroquine to standard
doxycycline treatment showed similar

efficacy and safety [202]

Artemether
Suppresses expression of inflammatory biomarkers

induced by LL37 via inhibition of transcription
factors NF-κB, mTOR, and STAT

Randomized pilot study including 130
subjects evaluated efficacy of artemether

emulsion [206]

Tranexamic acid

Suppresses expression of KLK5, Camp, and TLR2,
suppresses expression of cytokines and chemokines,

inhibits angiogenesis induced by LL37, inhibits
serine protease and physical interaction between

urokinase-type plasminogen activator and the
stratum corneum

Small-sample clinical trials and case studies
have shown effectiveness of tranexamic acid,

administered via different
routes [209–211,214]

ACU-D1 Inhibits activation of NF-κB
Shows efficacy in double-blind, randomized,

placebo-controlled study involving
40 patients [215]

Secukinumab Blocks IL-17 Small open-label study conducted [217]

Vascular
Dysregulation

Brimonidine tartrate * α2-adrenergic receptor agonist, promotes contraction
of vascular smooth muscle cells FDA-approved

Oxymetazoline * α1-adrenergic receptor agonist, promotes contraction
of vascular smooth muscle cells FDA-approved

Timolol

Nonselective β-adrenergic receptor blocker, induces
vasoconstriction, inhibits inflammatory mediators
such as MMPs and IL-6, inhibits angiogenesis by
downregulating VEGF, promotes migration and
re-epithelialization of keratinocytes, affects the

secretion of lamellar bodies mediating repair of the
skin barrier

Pilot trial found long-term topical use
improved erythema, but rebound occurred

after discontinuation; small trial showed
significant improvement in erythema with
nightly use for 28 days; larger trial found

improvement in clinical parameters, but did
not reach statistical significance [223,224]

Neurological and
Psychological

Factors

Botulinum toxin

Inhibits release of vasodilating acetylcholine,
regulates NPs such as SP, CGRP, and VIP, reduces

mast cell count and degranulation, decreases
expression of certain MMPs, reduces sebum

production, and increases skin hydration

Limited clinical trials with small sample
sizes, imperfect study designs, and short
follow-up times suggest potential efficacy
and safety for rosacea treatment [230–233]

Paroxetine Inhibits the reuptake of 5-HT Demonstrated efficacy in a multicenter
randomized controlled trial [236]

Sumatriptan 5-HT1B/1D receptor agonist, inhibits degranulation
of mast cells, reduces PACAP levels

Alleviates features of rosacea in
double-blind, randomized,

placebo-controlled, cross-over trial and
successful treatment of severe and painful
flushing in a single case report [237,238]

Propranolol β-adrenergic receptor blocker, reduces sympathetic
activity and alleviates anxiety symptoms

Beneficial impact in some small-sample
studies and case reports [239,240]

Carvedilol

Has both α1 receptor blocking and non-selective β
receptor blocking effects, slows heart rate by acting
on cardiac β1-adrenergic receptors to reduce patient

tension and anxiety, and exerts anti-inflammatory
effects by inhibiting NLRP3 inflammasome and the

expression of TLR2 in macrophages

A large-scale randomized controlled trial
showed that oral carvedilol exhibited better
efficacy than topical brimonidine [244,245]

Microbial
Dysbiosis

Metronidazole *
Exerts acaricidal effects via its active metabolites,
reduces ROS production and scavenges reactive

species, impairs IL-17 induction
FDA-approved

Ivermectin *

Eliminates Demodex mites, reduces neutrophil
response, stimulates production of

anti-inflammatory cytokines such as IL-10, inhibits
pro-inflammatory cytokines like IL-1b and TNF-α

FDA-approved

Omiganan Rapidly kills bacteria and fungi
Phase III clinical trial showed effectiveness

and safety in severe papulopustular
rosacea [253]
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Table 1. Cont.

Target Management
Options Pharmacological Effects Current Clinical Trials

Rifaximin Treats SIBO by inhibiting bacterial RNA synthesis

Several clinical trials and case reports have
shown that rifaximin effectively improves

rosacea characteristics in SIBO
patients [113,114,238,254–256]

Physical Therapy

IPL, Nd:YAG, PDL,
and KTP *

Primarily targets sebaceous glands, hemoglobin, and
pigmentation

Supported by guidelines or expert
consensus [2,5,7,197,248]

Ablative laser
resurfacing *

Targets water, causes vaporization and ablation
effects

Supported by guidelines or expert
consensus [2,5,7,197,248]

Photodynamic
therapy

Activates photosensitizers with light to generate
ROS, modulates immunity and pilosebaceous units,

targets Demodex mites, and exhibits
antimicrobial effects

Systematic review of nine Level 4 studies
suggests PDT may be a safe and effective

treatment option; findings from ongoing and
smaller-scale trials indicate that PDT may

offer efficacy comparable to that of first-line
therapies in addressing PPR; results from

larger randomized controlled trials
combining PDT with other modalities
indicate improved efficacy and milder

adverse reactions [263–265,268–270]

Pro-yellow laser
Emits laser with a wavelength of 577 nm,

demonstrating preferential absorption
by hemoglobin

Demonstrated efficacy in select case reports
and small sample trials; a retrospective

study identified reduction of mite
density [272–276]

Radiofrequency

Generates thermal energy, has positive effects on the
nervous system, cardiovascular system, immune

system, and reduces burning sensations by
decreasing TRPV1 expression

Randomized, controlled, split-face study
showed radiofrequency and PDL equally
effective in treating ETR; radiofrequency

treatment showed greater improvement in
PPR [280]

Short-wave
radiofrequency

Enhances local blood oxygen supply, repairs skin
barriers, and reduces chronic inflammation

Prospective, single-arm, open-label pilot
study reported rapid and sustained

improvement in mild to moderate ETR
patients [278]

Fractional
microneedling
radiofrequency

Delivers thermal energy through targeted
microneedles, reduces dermal inflammation, mast

cell count, and the expression of TLR2, LL37, VEGF,
NF-κB, IL-8, and TRPVs

Prospective, randomized, split-face clinical
trial showed modest but statistically

significant improvement in rosacea [281]

Ultrasound Restores skin barrier function by inhibiting MMPs

Both retrospective and prospective studies
have reported significant improvements in

patient self-assessment and clinical
measures [283–286]

4. Conclusions

In this comprehensive review, we present a thorough summary of the current knowl-
edge and recent advancements regarding the pathogenesis and treatment of rosacea. Our
exploration begins by providing detailed insights into the two most well-established aspects:
(1) immune dysregulation and (2) neurovascular dysregulation. Subsequently, we con-
ducted an in-depth analysis of (3) neuroimmune dysregulation, (4) skin barrier dysfunction,
(5) local and systemic microbial dysbiosis, (6) metabolic dysfunction, and (7) sebaceous
gland dysfunction. Furthermore, we have highlighted the significant contributions of
(8) genetic predisposition, (9) oxidative stress, and (10) environmental triggers to the
complex landscape of rosacea pathogenesis.

We have highlighted the presence of multiple positive feedback loops within immune
dysregulation, leading to persistent inflammation. In addition, we have underscored the
complex interconnections between the major pathogenic mechanisms underlying rosacea,
creating a vicious cycle that promotes the development of rosacea. For example, changes in
skin microbiota and resulting inflammation can lead to subsequent alterations in sebaceous
gland function and skin barrier disruption, further modifying microbiota composition. As
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such, we emphasize the crucial role of sebaceous gland dysfunction in these interactions.
Additionally, we draw attention to the noteworthy interplay between the nervous and
immune systems, particularly in the context of refractory and recurrent rosacea, which can
present with neurological symptoms and even psychiatric disorders such as depression
and anxiety. These issues not only significantly affect the quality of life of patients but also
have the potential to exacerbate the disease. To address these challenges, we require animal
models that accurately simulate the regulatory role of the nervous system in rosacea. Thus,
this direction is a key area of focus for future research. Furthermore, studies on metabolism,
genetics, psychological, and other factors indicate that rosacea should not be considered
solely as a facial disorder. Given the multifaceted pathogenic mechanisms involved in
rosacea, investigating these emerging areas may offer novel therapeutic avenues for the
condition. Our future goal is to pinpoint the key molecules or mechanisms that drive
inflammation in rosacea, akin to the role of IL-17 in psoriasis, and to develop therapeutic
agents based on these findings.

Recent advances in our understanding of the pathogenesis of rosacea have led to the
emergence of various new therapies. In this paper, we have dedicated comprehensive
chapters to elaborate on the current understanding and recent advancements in therapeutic
strategies that specifically address (1) immune dysregulation, (2) neurovascular dysregula-
tion, (3) neurological and psychological factors, and (4) microbial dysbiosis. Additionally,
we have meticulously explored the latest developments in (5) physical treatment methods,
encompassing photodynamic therapy and other innovative approaches. Moreover, we
have delved into (6) miscellaneous therapeutic avenues, including the promising utilization
of traditional herbal medicines, small-molecule inhibitors, and RNA medicines. These
promising therapies have enriched the range of available treatment options, providing new
avenues for managing the complex pathophysiology of rosacea. Nonetheless, the efficacy of
many of these novel therapies necessitates further validation through rigorous clinical trials.
Some physical therapies have also emerged as potential avenues for future development.
These therapies target specific symptoms with minimal systemic adverse effects, making
them suitable for combination with other therapeutic modalities or post-pharmacological
intervention. Tailored combinations of physical therapies present advantages in optimiz-
ing treatment regimens for rosacea patients and may contribute to improved aesthetic
outcomes. Given that rosacea may extend beyond the skin, personalized therapies that
target the comorbidities associated with rosacea, such as β-adrenergic receptor antagonists
for patients with anxiety and rifaximin for those with SIBO, could be another promising
direction for the future of rosacea treatment. By addressing the individual needs of patients
with specific comorbidities, these therapies have the potential to provide more effective and
tailored treatment options. With the emergence of monoclonal antibodies, small-molecule
drugs, and RNA medicines, we now have more precise drugs that target the disease devel-
opment process. Therefore, exploring the core molecules involved in the pathogenesis of
rosacea may lead to the development of revolutionary drugs that address the root cause
of the disease. This paradigm may serve as the primary avenue for advancing future
treatment strategies for rosacea.
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Abbreviations

ETR erythematotelangiectatic rosacea
PPR papulopustular rosacea
PhR phymatous rosacea
OR ocular rosacea
TLRs Toll-like receptors
KCs keratinocytes
PAMPs pathogen-associated molecular patterns
DAMPs damage-associated molecular patterns
MCs mast cells
NF-κB nuclear factor-kappa B
TNF tumor necrosis factor
IL interleukin
AhR arylhydrocarbon receptor
CCL chemokine (C-C motif) ligand
KLK5 kallikrein 5
JAK janus kinase
STAT signal transducer and activator of transcription
mTORC1 mammalian target of rapamycin complex 1
MMP9 matrix metalloproteinase 9
NLRP3 NOD-like receptor family pyrin domain containing 3
PRRs pattern recognition receptors
NPs neuropeptides
MRGPRX2 Mas-related G protein-coupled receptor member X2
VEGF vascular endothelial growth factor
NO nitric oxide
ROS reactive oxygen species
ADAMDEC1 ADAM-like Decysin-1
GBP5 guanylate-binding protein 5
NEAT1 nuclear paraspeckle assembly transcript 1
FPR1 formyl peptide receptor 1
EGFR epidermal growth factor receptors
FGF fibroblast growth factor
UV ultraviolet
TRP transient receptor potential
PACAP pituitary adenylate cyclase-activating polypeptide
SP substance P
VIP vasoactive intestinal peptide
CGRP calcitonin gene-related peptide
5-HT serotonin
PAR2 protease-activated receptor 2
TEWL transepidermal water loss
CLDNs claudins
SIBO small intestinal bacterial overgrowth
CXCL C-X-C motif chemokine ligand
GPBAR1 G protein-coupled bile acid receptor 1
TSLP thymic stromal lymphopoietin
GST glutathione S-transferase
HLA human leukocyte antigen
TACR3 tachykinin 3 receptor
VDR vitamin D receptor
ER endoplasmic reticulum
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S1P sphingosine-1-phosphate
HPA hypothalamic-pituitary-adrenal
FDA Food and Drug Administration
IGA Investigator Global Assessment
CEA Clinician Erythema Assessment
PSA patient self-assessment
IPL intense pulsed light
Nd:YAG neodymium: yttrium–aluminum–garnet laser
PDL pulsed dye laser
KTP potassium titanyl phosphate laser
PDT photodynamic therapy
siRNA small RNA interference
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