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Abstract: The automated assessment of tumors in medical image analysis encounters challenges
due to the resemblance of colon and lung tumors to non-mitotic nuclei and their heteromorphic
characteristics. An accurate assessment of tumor nuclei presence is crucial for determining tumor
aggressiveness and grading. This paper proposes a new method called ColonNet, a heteromorphous
convolutional neural network (CNN) with a feature grafting methodology categorically configured
for analyzing mitotic nuclei in colon and lung histopathology images. The ColonNet model consists of
two stages: first, identifying potential mitotic patches within the histopathological imaging areas, and
second, categorizing these patches into squamous cell carcinomas, adenocarcinomas (lung), benign
(lung), benign (colon), and adenocarcinomas (colon) based on the model’s guidelines. We develop and
employ our deep CNNs, each capturing distinct structural, textural, and morphological properties of
tumor nuclei, to construct the heteromorphous deep CNN. The execution of the proposed ColonNet
model is analyzed by its comparison with state-of-the-art CNNs. The results demonstrate that
our model surpasses others on the test set, achieving an impressive F1 score of 0.96, sensitivity
and specificity of 0.95, and an area under the accuracy curve of 0.95. These outcomes underscore
our hybrid model’s superior performance, excellent generalization, and accuracy, highlighting its
potential as a valuable tool to support pathologists in diagnostic activities.

Keywords: bioinspiration; medical image analysis; tumor assessment; convolutional neural network
(CNN); heteromorphous deep CNN; histopathology images

1. Introduction

Cancer, the second biggest cause of death, represents a major worldwide health issue.
According to estimates, 609,820 Americans will die from cancer in 2023, which works out to
almost 1670 fatalities every day. There may be roughly 153,020 new instances of colorectal
cancer (CRC) in the US in 2023, made up of 106,970 tumors in the colon and 46,050 tumors
in the rectum [1,2]. There are an enormous amount of cells in the human body, and these
cells divide, develop, and multiply. When cells become damaged or reach a certain age,
they typically either die naturally or are replaced by healthy counterparts [3]. However,
if this replacement procedure does not take place, damaged cells start to multiply and
become benign or malignant tumors. While malignant tumors are characterized by their
abnormal, fast development and their propensity to infect surrounding tissues, benign
tumors are slow-growing masses that do not affect the neighboring cells. Numerous areas
of the human body can be affected by cancer cells, but colon and lung disease are among
the most frequent, affecting both sexes equally [4].
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About 238,340 new cases of lung cancer are anticipated to be diagnosed nationwide
in 2023. From this, 117,550 male cases and 120,790 female cases are expected. In terms of
new instances, it is predicted that there may be 127,070 new cases of lung cancer overall
in 2023. There will be 59,910 new cases of cancer diagnosed in women and 67,160 new
cases of cancer diagnosed in men among these [1,4–6]. Numerous behavioral variables,
such as smoking, being overweight, abusing alcohol, or being exposed to UV radiation,
ionizing radiation, or other biological agents, can have an impact on the development of
cancer [6]. The co-occurrence of lung and colon cancers, which accounts for around 17%
of cases [7], is noteworthy. Smoking, which is added to unhealthy eating habits, has been
linked to the emergence of breast and colon cancer, according to research [7]. Early-stage
lung and colon cancer sometimes exhibit negligible or no symptoms, delaying identification
and confirmation until later stages, when treatment results may be adversely affected [8].
Comprehensive tests including computed tomography (CT-Scans), MRI scans, ultrasound
imaging, and tissue samples are required in order to describe lung and colon cancer in its
early stages [9].

Individuals who smoke, are overweight, or have a family history of cancer should
consider having regular checkups with their doctor. It is important to note that screening
procedures can be expensive, making it challenging for people with low incomes to pay
them. According to the World Health Organization (WHO), developing low- and middle-
income nations account for 70% of cancer-related fatalities. It is essential to help these
nations in creating fully functional hospitals with free diagnostic labs for everyone in order
to solve this issue. In addition, there is a large time lag and the possibility of divergent
medical opinions, especially in the early stages of cancer diagnosis. Collaboration across
disciplines within the healthcare industry is necessary to meet these issues. Potential
remedies include the use of artificial intelligence techniques like biomedical imaging for
illness early detection and emergency healthcare forecasting models [10–12].

Our research takes inspiration from nature’s remarkable ability to adapt and opti-
mize biological systems. By leveraging advanced computational techniques, specifically
a heteromorphous convolutional neural network (CNN), our study aims to mimic and
improve upon the natural mechanisms of tumor assessment in colon and lung histopathol-
ogy images. The design and optimization of our proposed approach ColonNet draw upon
the principles of efficient information processing and pattern recognition. Moreover, the
extraction and integration of distinct structural, textural, and morphological properties of
tumor nuclei within our model demonstrate an approach inspired by the biological systems
found in nature.

Deep learning algorithms are used to analyze data from a variety of sources, such as
high-dimensional images, videos, and anatomical representations. These methods make it
possible to identify details and traits that may not be evident to the observer from medical
images. This is especially helpful for identifying early-stage tumors and discriminating
between them. In this work, numerous hybrid systems that include characteristics extracted
using a variety of techniques were built. The objective was to blend deep learning features
with features that were extracted from other techniques. Each form of cancer is intended to
be represented by distinct and strong characteristics that can set it apart from other types
of cancer.

Deep learning (DL) for colon and lung cancer diagnosis has lately received a significant
amount of interest. The use of histopathological images in automated diagnosis has been
the subject of several fruitful investigations. This specific study uses histopathology images
alone to automatically find tumors in the colon and lungs. The goal is to divide this dataset
(images) into five different categories: squamous cell carcinomas, lung adenocarcinomas,
benign lung lesions, benign colon lesions, and colon adenocarcinomas. Through the use of
DL methods and superior outcomes, the prognosis of these cancers is intended to be greatly
improved. Numerous studies have been conducted using different DL models, and the
findings show that the architecture is able to correctly classify various sub-types of colon
and lung cancer. The following are some of the major contributions that this work brings:
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• In order to precisely separate mitotic nuclei from histopathology images of colon
and lung tumor, this work presents a unique hybrid segmentation approach. To
improve the robustness and generalization of the classification system, the proposed
method combines the distinctive qualities of two different CNN models. The ensemble
performs better at reliably recognizing and detecting mitotic nuclei in colon and
lung cancer histopathology images by taking advantage of the advantages of each
individual model.

• In order to accurately represent the morphological, structural, and textural properties
of mitotic cells, two unique CNN models are created based on distinct ideas. Weakly
annotated mitotic cells present a number of obstacles, and asymmetric split transform-
merge and label optimizer (LO) approaches are developed to solve these issues and
reduce false positive and negative errors. A global–local pyramid pattern (GLPP)
is utilized for efficient feature extraction and CNN model integration. Additional
methods, such as bespoken deep residual network blocks and residual training are
used to improve the performance of the models. A custom layer is used to integrate
the retrieved features in the center of the CNN model.

• We compare the proposed heteromorphic CNN model with contemporary CNN
models such as VGG, ResNet, DenseNet, Inception, and Xception. The evaluation’s
goal is to gauge the classification system’s accuracy, and the findings show that the
ColonNet model outperforms the current CNN models in terms of performance.

The rest of this article is structured as follows:
Section 2 offers a summary of the related work. In Section 4, we outline the architecture

of the ColonNet model. Section 3 describes the datasets that were used in this study, encom-
passing dataset details, training procedures, and pre-processing. It also includes a thorough
analysis of the model’s performance. Section 5 presents the results and comparison with
other pre-trained models and discusses their implications. Section 6 explains the contri-
bution to the existing knowledge in the field and potential implications. Lastly, Section 7
discusses the conclusion and potential avenues for future research.

2. Background and Related Work

There are two primary causes that make it difficult to segment nuclei: (i) color changes
in histopathological images and (ii) variances in morphological features. In the literature,
a number of image processing methods have been put out to address nuclei segmenta-
tion from histopathology images. These methods include the watershed method [13], the
multi-level thresholding examined by the watershed algorithm [14], hybrid segmentation
using k-Means clustering and adaptive thresholding [15], the multi-scale and multimarker
approaches [16], and the graph-cuts approach [17]. However, because they all rely on
parameter-based techniques, these image processing-based algorithms are unable to man-
age changes in staining and morphological features.

Machine learning (ML) techniques for nucleus segmentation have drawn more and
more attention in recent years. Multiple hand-crafted features, including color, texture, the
Laplacian of Gaussian response, local binary patterns of the nuclei, the Hough transform,
the Histogram of Oriented Gradients (HOGs), and the marker-controlled watershed ap-
proach, have been used to train machine learning models [18–20]. To analyze and segment
nuclei, these models often use supervised or unsupervised learning approaches.

Traditional methodologies, in particular unsupervised learning approaches, have
difficulties in nucleus segmentation since they rely heavily on feature engineering. These
techniques frequently result in under-segmented nuclear areas when there is noticeable
color and textural diversity [21]. It can be difficult to manually recognize and extract useful
characteristics from images, and it is possible to not have all the necessary data for an
effective categorization.

On the other hand, deep learning (DL) techniques use neural networks to automati-
cally extract features. These systems have the capacity to learn from images and extract
details that may not be immediately noticeable to human viewers. Convolutional neu-
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ral networks (CNNs), U-Net, ResNet, and Masked RCNN are examples of DL models
that have demonstrated notable gains in difficult biological tasks including segmentation
and classification.

For instance, radioactive material was divided into several categories and nuclear
sites were found using a multi-scale deep residual aggregation network [22]. Clustered
nuclei were divided using the Feature Pyramid Network (FPN) [23] and U-Net architecture.
Deep learning models [24] were used to identify nuclei outlines, and segmentation was
conducted using an iterative region expanding technique.

Better performance in many biological activities has been made possible by the ex-
ponential expansion of DL architectures and computer vision techniques in recent years.
Researchers can increase their performance in nucleus segmentation and other difficult
biological image processing tasks by utilizing the characteristics of DL models.

In their research, Adu et al. [25] established a brand-new method for examining lung
and colon cancer histology images termed DHSCapsNet. To improve efficiency, the network
integrates DHSCaps with encoder characteristics. In particular, the convolutional layers
that collect important features are where the encoder features are formed. Additionally,
HSquash is used to glean important data from people with various backgrounds. A CNN
Pre-Trained Diagnostic Network created in the study by Mangal et al. [26] was created
particularly for the categorization of colon and lung cancer. The network analyzed histology
slides using a basic CNN architecture. The network impressively attained high accuracy for
detecting colon and lung cancer. The concept described by Ali and Ali [27] uses a capsule
network with many sources to build a diagnostic architecture for aberrant cell cancer in
the lung and colon. The convolutional layer block (CLB) and separable CLB are the two
unique building components that make up the capsule network. While the separable CLB
is in charge of processing histopathological images, the CLB is in charge of processing
pathological images. This method uses the capsule network architecture to provide a
thorough examination of various input data types. The research of Mehmood et al. [28]
offers a useful framework for the precise finding of lung and colon cancer cells. The four
key levels of the network were modified by the researchers using the AlexNet design.
They achieved a noteworthy accuracy of 89% by fine-tuning the model using the changed
layers and training it on a dataset. This method highlights the possibility of modify-
ing current deep learning architectures for enhancing lung and colon cancer diagnosis.
Toğaçar [29] established the DarkNet-19 model as the foundation for training a lung and
colon cancer-specific dataset. By learning the DarkNet-19 architecture from scratch as
opposed to utilizing pre-trained models, the researchers were able to teach it the specific
features of the cancer dataset. They used the equilibrium method, which assisted in locating
and choosing the most pertinent characteristics for the classification job, to increase the
model’s efficacy. The system distinguished between ineffective traits and effective ones,
giving greater weight to the latter. After that, a support vector machine (SVM) was utilized
to categorize the lung and colon cancer samples using the chosen effective characteris-
tics. The objective of this strategy was to ameliorate the model’s accomplishment and
accuracy by concentrating on its most illuminating and discriminative properties. The
work by Masud et al. [30] introduces a deep learning model for the categorization of five
different types of lung and colon cancers. To amend the quality of the input images and
guarantee the best possible performance of the model, the researchers used optimization
techniques for them. Both 2D Fourier and 2D wavelet features, which are frequently used
methods for analyzing signals and images, were recovered from the images in order to
extract pertinent information. The authors produced a deep learning model that has a
high accuracy by using these characteristics. This demonstrates how well their suggested
method works for correctly identifying and categorizing the various forms of colon and
lung cancer. In their work, Hamida et al. [31] used histological images from the AiCOLO
dataset to categorize areas afflicted by colon cancer using four pre-trained deep learning
architectures. They used SegNet and UNet for pixel segmentation operations, which al-
lowed them to precisely identify the impacted areas. Additionally, they used a pre-trained
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ResNet model, which successfully classified the areas of colon cancer with an excellent
accuracy. This study illustrates the effectiveness of using pre-trained architectures and
deep learning architectures for the precise analysis and categorization of colon cancer
in histological images. In order to detect aberrant cells and assess biomarkers for the
diagnosis of colon cancer, Sarker et al. [32] introduced a deep learning strategy to handle
segmentation issues. The suggested methodology accurately identifies and highlights
aberrant cells using cutting-edge image segmentation techniques. With the help of these
segmentation capabilities, it is possible to not only spot probable problem regions but also
provide annotations that are very helpful to doctors throughout the diagnostic procedure.
This research makes use of deep learning algorithms to create cutting-edge tools that as-
sist medical practitioners in accurately diagnosing colon cancer and measuring pertinent
biomarkers. A pretrained architecture, such as ResNet, for identifying colon tumor was
introduced by Sarwinda et al. [33]. On two datasets that were split into 20% and 40% sub-
sets, the model’s performance was assessed. ResNet50 fared better than ResNet18 among
the studied models, obtaining a sensitivity of 87% and an accuracy of 80%. A technique
was developed by Zhou et al. [34] to categorize whole slide imaging (WSI) images using la-
beled data. By incorporating characteristics from various magnification levels, the network
graded colorectal cancer with an accuracy of 94.6%. A 1D CNN network was developed
by Moitra and Mandal [35] to classify small cell lung tumors. To outperform more con-
ventional machine learning methods, the network combined clinical characteristics with
hybrid features from images.

An AI-based pre-screening tool that can distinguish between normal and malignant
colon samples was developed by [36] with the goal of assisting pathologists throughout
the diagnosing procedure. With just slide-level labels needed, the program uses weakly
supervised deep learning to extract histological patterns from complete slide images. It
demonstrated great accuracy in cross-validation and external validation, and it may be
useful for clinical settings to help with colorectal biopsy pre-screening. The understanding
of the model’s forecasting and the connection between neoplastic histology and genetic
heterogeneity was improved through genetic analysis and route investigation.

The necessity to distinguish between benign and malignant colorectal adenomas,
which are precursors to colorectal cancer, is addressed in this study. The suggested method,
known as MIST, makes use of a multiple instance learning network based on the Swin
Transformer and is capable of correctly classifying whole slide images (WSIs) of colorec-
tal adenomas using just slide-level labels. The model demonstrated a high accuracy in
external validation and was trained and validated on a dataset of 666 WSIs from patients
with colorectal adenoma. The results of the interpretability study are congruent with
the local pathologists’ areas of interest. MIST offers a viable and practical approach to
colorectal cancer screening, supporting physicians’ judgment and perhaps lowering CRC
patient mortality [37].

The domain shift issue that arises in machine learning models when training and
testing data have distinct distributions and varying color intensities, addressed by [38]. The
authors suggest a methodology to address this problem that combines stain normalization
methods with a collection of precise, scalable, and reliable convolutional neural networks
(CNNs) termed ConvNexts. The improvement brought about by combining five widely
used stain normalization approaches is empirically investigated in the study. On three
datasets including more than 10,000 images of colon histopathology, the suggested method’s
classification performance is assessed.

This study focuses on Invasive Ductal Carcinoma Breast Cancer (IDC-BC), a common
and often asymptomatic cancer type with high mortality rates. The research explores the
potential of pre-trained convolutional neural networks (CNNs), including EfficientNetV2L,
ResNet152V2, and DenseNet201, either individually or as an ensemble, for IDC-BC grade
classification using the DataBiox dataset. Data augmentation is used to address data
scarcity and imbalances. The proposed ensemble model outperforms existing state-of-the-
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art techniques, achieving a 94% classification accuracy and significant area under the ROC
curves for grades 1, 2, and 3 (96%, 94%, and 96%, respectively) in the Databiox dataset [39].

The goal of this work was to create a computer-aided diagnostic (CAD) methodology
that could automatically categorize lung tissue histopathology images. The CAD system
was created and validated using two datasets: a private dataset and a public dataset. The
public dataset comprised 15,000 images categorized into three groups, whereas the secret
dataset contained 94 images divided into five categories. Machine learning was used to
classify the images, along with traditional texture analysis (TA) and homology-based image
processing (HI), two different methods of extracting image features. In all datasets, the
CAD methodology with HI performed higher-up than the one with TA, proving the use of
HI for precise lung tissue categorization [40]

Bhattacharya et al. [41] employs computer vision algorithms to identify cancer, es-
pecially lung and colon carcinomas. The paper offers a system that combines two deep
learning models (ResNet-18 and EfficientNet-b4-widese) with AdBet-WOA, a hybrid meta-
heuristic optimization technique. Deep features are retrieved when the deep learning
networks are learned on the LC25000 dataset. The suggested technique uses a support
vector machine (SVM) classifier to accurately classify lung cancer, colon cancer, and a
combination of the two. The data demonstrate nearly flawless precision for colon, lung
cancer, and combination categorization. The suggested method performs better in terms of
feature reduction and classification performance than existing optimization techniques.

Diao et al. [42] presents a unique method for the accurate categorization of histopathol-
ogy images termed deep multi-magnification similarity learning (DSML). The method fo-
cuses on the largely unexplored fusing of cone-shaped histopathological images at various
magnifications. The difficulty of comprehending cross-magnification information transmis-
sion is solved by DSML, which also makes it simple to visualize feature representations. A
similarity cross-entropy loss function is used to determine how similar bits of information
are at different magnifications. Experiments were conducted using clinical nasopharyngeal
carcinoma and public breast cancer datasets to demonstrate how well the DSML performed
in terms of categorization when compared to other comparable methodologies. The report
also discusses the reason behind the efficacy of multi-magnification approaches.

Due to the similarities in the early stages of lung and colon cancer tumors, the re-
searchers intended to produce encouraging findings in the detection of both diseases. The
key goal for researchers in this area continues to be promising accuracy. The goal of this
work was to represent each class with individual properties by extracting characteristics
from deep learning architectures and merging them. In order to obtain promising results, it
also mixed handmade features with characteristics from deep learning architectures.

3. Data and Materials

This section describes the datasets that were used in this study. The repository is
composed of colon and lung cancer histopathological medical samples.

3.1. Dataset

The LC25000 dataset, which consists of histological images of lung and colon cancer,
was used in this study. It was downloaded from the publicly accessible Kaggle website.
A dataset of 25,000 images segregated into two forms of colon tumor and three classes
of lung tumor was assembled by Andrew Borkowski and colleagues at James Hospital
Tampa, Florida. A balanced dataset is produced by evenly distributing 5000 images across
each kind. The kinds are ACAL (adenocarcinoma of lung), BTL (benign tissue of lung),
and SCCL (squamous cell carcinoma of lung) for lung cancer. For colon cancer, the types
are ACAC (adenocarcinoma of colon) and BTC (benign tissue of colon). While lung
adenocarcinoma and squamous cell carcinoma are the most common types of lung cancer,
colon adenocarcinoma accounts for the majority of instances of colon cancer. The dataset
also contains samples of benign tissue. The five classes’ samples from the LC25000 dataset
are shown in Figure 1.
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Figure 1. A defined number of histological image samples are included in the LC25000 dataset.

3.2. Stain Normalization

To standardize color and intensity differences in histopathology images of colon and
lung cancer, a procedure called stain normalization is utilized. To improve visibility, dyes
are used to stain these images; however, different staining methods may lead to variable
color and intensity levels. These variances are adjusted by stain normalization, which
creates a uniform and similar images. The method increases the accuracy of machine
learning models and assures dependable and consistent interpretation of the images by
minimizing the influence of staining discrepancies.

L, A, B = F(R, G, B)

NB = NBF(A, B)

SM = SVD(NB)

OD = FOD(L, A, B)

SC = SM×OD

Rn, Gn, Bn = F
′
(L, A, B)

Rn = R×
(

SN[0]
SNr[0]

)
Gn = G×

(
SN[1]
SNr[1]

)
Bn = B×

(
SN[2]
SNr[2]

)

(1)

Stain normalization depicted in Equation (1) is used while histopathology images
come from several laboratories using different acquisition techniques, which causes in-
consistencies and abnormalities in color saturation. Before using the complete dataset
for deep learning models, normalization is necessary to ensure consistency and eliminate
noise. Figure 2 shows the results of the stain normalization procedure. Prior to applying the
Macenko technique, the RGB to LAB color space conversion of the input image is necessary.
The L (lightness), A (green-red axis), and B (blue-yellow axis) channels are separated from
the image during this conversion. In the Macenko approach, a set of non-background
pixels in the A and B channels are used to generate the stain matrix. A threshold or other
segmentation methods are often used to generate these non-background pixels. Singular
value decomposition (SVD) is utilized to calculate the stain matrix on the chosen pixels in
order to estimate the stain vectors. The Macenko technique depicted in Figure 2 determines
the stain concentrations for each pixel in the image after obtaining the stain matrix. The
pixel values must be changed from the LAB color space to the OD (optical density) space to
do this. Stain normalization is achieved using the predicted stain concentrations in the last
step. The stain concentrations are used to modify the color values of each pixel to match
a chosen standard or reference image after the source sample is regenerate from the LAB
color space back to the RGB color space.
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Figure 2. In this research, the Macenko method is utilized for stain normalization. Non-background
samples are utilized to calculate the stain vector using singular value decomposition (SVD).

Due to its efficiency and adaptability to different staining variances, the Macenko tech-
nique for stain normalization in histopathological images offers special benefits. Stain vari-
ation between various tissue samples is a problem that is frequently present in histopatho-
logical images due to variations in staining techniques, laboratory settings, and tissue
preparation. The Macenko method is a widely used stain normalization approach that
solves this issue.

A dataset with sparse colon and lung cancer annotations is segmented using pre-
trained Mask R-CNN models, which are renowned for their deep segmentation skills. We
seek to learn about and comprehend the shape of the colon and lung cancer tissues in the
dataset by utilizing these models. The datasets that are accessible contain few annotations,
and pathologists must spend time and be prone to mistakes manually annotating them.

We implemented a label optimizer based on ResNet and Mask-RCNN architecture to
address the issue of manual annotations in the datasets.The entire process of improving
images with weak labels is illustrated in [43]. To create tumor cell bounding boxes, a
region proposal network (RPN) was given the appropriate characteristics that ResNet
had extracted from the updated dataset. To create a mask, coordinates, and classification
information for the tumor cells, these extracted features and bounding boxes were then
sent through another RPN made up of a feature pyramid network and fully connected
layers. The collected information was then used to produce masks for false positives or
annotate the weakly labeled tumor cells in our proposed label optimizer (LO), as illustrated
in [43]. To enhance the weakly labeled dataset’s quality, we used MASK-RCNN. We
were able to hone the poorly tagged images and obtain successful outcomes as depicted
in Figure 3 by utilizing the key elements of MASK-RCNN, including area extraction,
CNN feature computation using feature pyramid network (FPN), and pixel-level region
classification. Our suggested CNN-based model for automated feature extraction as well
as the global–local pyramid pattern (GLBP) for manual feature extraction were both then
fed the optimized findings. We sought to reduce any limits or drawbacks of the CNN
technique by merging these manual elements with the suggested CNN model.

We have examined the spatial patterns of pixel intensities within a local neighborhood
in medical photographs using a cutting-edge method known as global–local pyramid
pattern (GLPP) [43]. An image processing method called the global–local pyramid pattern
(GLPP) is used to identify important characteristics in several medical image modalities. In
order to examine the intensity values of pixels and their surrounding neighbors, it rotates
both clockwise and anticlockwise. The steps in the GLPP process are as follows:

1. Local Neighborhood and p Value: Each pixel has a local neighborhood defined around
it, and the “p” value denotes how many of the neighboring pixels were taken into
account during the analysis. After each iteration, we change the value of P to extract
features from local to global regions.

2. Binary Code Assignment: The assignment of a binary code to each pixel is performed
by comparing its intensity value to the values of the pixels around it. A value of 1 is
assigned if the intensity of an adjacent pixel is greater than or equal to the intensity of
the center pixel; otherwise, a value of 0 is provided.

3. Decimal Number Translation: By repeating this process counterclockwise, the binary
codes collected from the nearby pixels are converted into decimal numbers.
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4. GLPP image Generation: Using the higher decimal value obtained in the previous
phase, the GLPP image is generated.

(a) Original Images

(b) Outcomes of LO

Figure 3. The label optimizer algorithm was employed to accurately label mitotic cells that may
have been overlooked by the MASK-RCNN method. By comparing the results obtained from MASK-
RCNN and the label optimizer, we observed the effectiveness of our proposed algorithm in improving
the labeling of these specific cellular structures.

The central value, the size of the local neighborhood (neighbor), and the number of
surrounding pixels (P) all have a significant impact on the properties that the GLPP extracts.
To receive relevant information, these parameters must be given when using the GLPP on
medical images. The results of the GLPP are shown in Figure 4, which perhaps illustrates
how the method catches key structures and patterns in the medical image data.

(a) Original Images

(b) Outcomes of GLPP

Figure 4. The heatmap analyzes the image and identifies specific regions where features are extracted
for further analysis. It visually represents the extracted features from various of colon and lung
tumor cells.

The global–local pyramid pattern can be mathematically represented using
Equation (2).

Gi = fg(I, θ
(i)
g ) + fl(I, θ

(i)
l ) (2)
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where Gi is the feature map at the i-th scale, fg is the global convolution operation, fl is the

local convolution operation, I is the source image, and θ
(i)
g and θ

(i)
l are the sets of learnable

parameters for the global and local convolutions, respectively.
Pretrained models for categorization problems have become increasingly popular

and use deep learning architectures like VGG, ResNet, DenseNet, Inception, and Xception.
These designs have layers of encoding and decoding that make it easier to extract and
reconstruct features. Convolutional, max pooling, and ReLU layers are often included in
the encoding phase, whereas transposed convolutional layers and max pooling are used in
the decoding phase for feature up-sampling. In this article, we suggest a ResNet-inspired
deep residual CNN model for classifying colon and lung cancer. This model, referred to
as ColonNet, is depicted in Figure 5. The architectural details of ColonNet are explained
in Section 4 of this study.

x-ray-net

colonet

3×3 × 64Input Separable 3×3 3×3 × 128 Separable 3×3 3×3 × 256 Separable FC Deep Feature

3×3 × 64 Separable 3×3 3×3 × 128 Separable 3×3 3×3 × 256 Separable FC Deep Feature

+ GLPP Feature
Classifier

Figure 5. Feature extraction from different histopathological images of colon and lung for classification.

4. Proposed Methodology

In our proposed ColonNet, we leverage the widely adopted depth-wise separable
convolutions, which have proven to be efficient in various neural network architectures.
The primary objective of integrating this layer into our examination is to identify local
features within low magnification images. This layer divides the conventional convolution
into two distinct layers. Firstly, it applies a lightweight convolutional kernel individually
to each input channel, and secondly, it employs a 1 × 1 convolution for point-wise oper-
ations, generating new features. By utilizing this approach, we significantly bring down
computation time in comparison to traditional layers.

Consider an image with dimensions (X × Y × C), where C represents the number
of channels. In the case of depth-wise convolution, the kernel has a size of k × k. The
number of source channels is denoted as C, while the number of outcome channels is
Ct. The outcome feature map (F) resulting from traditional convolution can be seen
in Equation (3), and a visual representation is provided in Figure 6. The total number of
learnable parameters is determined by k × k × X × Y. On the other hand, the depth-wise
convolution is illustrated in Equation (4), and the total number of learnable parameters can
be computed as k × k × X + X × Y.

The symbol F represents the output feature map, and it is computed by summing over
the range of ii from 0 to NN as follows:

F =
N

∑
i=0

(Xi · K j
i + b) (3)

F = (Xi · Ki + b) (4)

The combination of ResNet and depth-wise separable convolution has confirmed
encouraging findings in colon and lung cancer datasets, particularly in the LC25000 dataset.
In order to further enhance the performance of the convolutional neural network (CNN),
we employed a technique called feature grafting (FG). The primary objective of feature
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grafting in CNN is to acquire relevant features that may not have been effectively extracted
through simple convolution alone.

Convolution

SConvolution

+

input

mish

mish

Figure 6. Customized skip connection-enabled deep residual network layer.

To achieve feature grafting, we utilized the global–local pyramid pattern (GLPP) to
retrieve the appropriate features. This methodology retrieves features in a pyramidal
format, ranging from low- to global-level features. The extraction process follows a circular
updating approach, iterating through each point and obtaining the maximum features from
those values. These features are then concatenated in both clockwise and counterclockwise
directions, resulting in a single vector that encapsulates the combined information.

The traditional CNN methodologies are predominantly utilized in CNN training.
However, to incorporate manual features within the convolution layer and enhance the
classification efficacy of colon and lung cancer, we commence a new thought called the
custom layer convolution. This approach involves the automated extraction of features
combined with the grafting of handcrafted features.

(χ ∗ κ)ij =
f1−1

∑
u=0

f2−1

∑
v=0

κu,v ·
(
(χi+u,j+v) + (FT

GLPP)
)
+ b (5)

In Equation (5), we depict the ingestion of handcrafted features FT
GLPP into the au-

tomated features. By applying backpropagation using the chain rule, we subtract the
handcrafted feature prior to computing the ∂ derivative. The chain rule is used to compute
gradients on individual weights. Equation (6) shows the removal of handmade characteris-
tics, which are then combined into a single vector (FT

GLPP).

∂λ

∂ωl
u′ ,v′

=
H− f1

∑
i=0

ω− f2

∑
j=0

∂λ

∂υl
i,j − (FT

GLPP)

∂υl
i,j − (FT

GLPP)

∂ωl
u′ ,v′

=
H− f1

∑
i=0

ω− f2

∑
j=0

δl
i,j

∂υl
i,j − (FT

GLPP)

∂ωl
u′ ,v′

(6)
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4.1. Feature Engineering

Feature engineering or grafting is a concept in convolutional neural networks (CNNs)
that aims to incorporate manual or handcrafted features into the network for improved per-
formance. In CNNs, lambda layers provide a flexible framework to introduce customized
computations within the network architecture. Feature engineering takes advantage of this
flexibility by using a lambda layer to merge the manually crafted features such as GLPP
with the automated features obtained from the network such as ColonNet. Initially, we
generate feature maps that capture relevant patterns and information from the input data
via ColonNet. These features represent the network’s learned representations. Next, the
lambda or custom layer is introduced to graft the GLPP features into the network. This
layer acts as a bridge between the automated features and the manually crafted features.
We combine the two sets of features using a concatenation approach. By incorporating
the GLPP features into ColonNet through feature engineering, the CNN gains the ability
to leverage both the learned representations from automated feature extraction and the
domain-specific knowledge encoded in the manual features. During forward propagation
as depicted in Equation (5), the lambda layer performs the defined custom operation,
merging the automated and manual features into a fused representation. During backprop-
agation, as depicted in Equation (6), the gradients flow through the lambda layer, allowing
the network to learn the optimal weights and parameters for the grafting operation. The
gradients are computed based on the loss function and propagated through the network for
further parameter updates. Using feature engineering, we enhance the network’s capacity
to capture and exploit important information, potentially leading to improved performance
on the categorization of colon and lung cancer.

4.2. Classification of Fused Features

We utilize the combined feature representation to train traditional machine learning
classifiers such as support vector machines (SVMs), decision tree, and k-nearest neighbor
(KNN). We apply the chosen classifier to the engineered features and allow it to acquire the
relationship between the combined features and the corresponding class labels.

The engineered features obtained from a combination of automated and manual
feature extraction methods are utilized for colon and lung cancer detection and classification.
The engineered features are fed as source to three various traditional machine learning
classifiers: support vector machines (SVMs), k-nearest neighbors (KNNs), and decision
tree classifiers. The purpose of employing these classifiers is to leverage their classification
capabilities and determine the class labels for the cells based on the fused features. Each
classifier has its own approach to making predictions, with SVM using hyperplanes to
separate different classes, KNN relying on the proximity of neighboring data points, and
decision tree classifiers utilizing hierarchical decision rules.

To evaluate the effectiveness of the engineering manual and auto feature approach,
the LC25000 public dataset is used, and data augmentation methodologies are applied to
intensify the diversity and quantity of the training data. The proposed approach is then
compared with baseline methods as well as state-of-the-art models to assess its performance
relative to existing approaches.

5. Results and Discussions

In this study, the proposed approach (ColonNet) and pretrained models such as VGG,
ResNet, DenseNet, Inception, and Xception are applied to histopathological images from
the LC25000 dataset to diagnose lung and colon cancer and discriminate between them
at early stages. The LC25000 dataset comprises 25,000 histopathological images obtained
through biopsy from patients with affected tissues. The dataset is categorized into five
types, including malignant and benign tumors of lung and colon cancer. The distribution
of histopathological images is as follows: 5000 images of ACAC, 5000 images of BTC,
5000 images of ACAL, 5000 images of BTL, and 5000 images of SCCL. It is important to
note that the dataset consists of three classes of malignant lesions and two classes of benign
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lesions. Additionally, all classes in the dataset are balanced, meaning they contain an equal
number of histopathological images.

The results are obtained using convolutional neural networks (CNNs) when combin-
ing fusion features from our proposed approach and manual features, as well as fusion
features from pretrained models and manual features. Two methodologies were devel-
oped for feature merging. Initially, the method consisted of gathering pretrained model
features, lowering their dimensionality, and integrating them with GLPP features. The
second procedure, like the first, included extracting ColonNet features, reducing their
size, and integrating them with GLPP features. The ColonNet model is trained using
the fusion task features, and during the validation process, the weights are adjusted to
optimize performance. The performance of the trained ColonNet model is then evaluated
on test datasets. The objective is to attain promising findings for the early recognition and
discrimination of lung and colon tumors.

A key indicator of how well the model’s predictions are made overall is accuracy. Out
of all the occurrences in the dataset, it determines the proportion of instances that were
correctly categorized. These metrics, namely precision, recall, and F1-score, are frequently
employed in classification tasks. Focusing on the accuracy of positive predictions, precision
evaluates the proportion of accurate positive forecasts among all positive predictions.
Focusing on the model’s capacity to accurately identify positive cases, recall (also known
as sensitivity) measures the percentage of true positive predictions out of all real positive
instances. The model’s performance on both positive and negative classes is balanced by the
F1-score, which is the harmonic mean of precision and recall. The model’s performance in
classification tasks is assessed using AUC-ROC. The confusion matrix presents the model’s
predictions in tabular form, emphasizing the proportion of true positive, true negative,
false positive, and false negative occurrences.

The accuracy graph compares the performance of five different pretrained CNN
models such as VGG, ResNet, DenseNet, Inception, Xception, and our proposed approach
(ColonNet). Each model is evaluated on a specific task, and the accuracy metric measures
the percentage of correctly classified instances. VGG constantly exhibits a high level of
accuracy over the whole dataset, demonstrating how successful it is in classifying data.
Out of the five models, it has the highest accuracy, averaging about 89.07. The VGG model
successfully extracts the important information from the histology images and distinguishes
between distinct classes to classify colon and lung tumors with excellent accuracy. ResNet
works admirably as well, with a high accuracy that is comparable to VGG. The robustness
of its categorization is demonstrated by the fact that it maintains a constant degree of
accuracy over the whole dataset. ResNet displays great accuracy in classifying colon and
lung cancer by successfully identifying complex patterns and characteristics in the histology
images. With the help of its deep layers, it can learn complicated representations, which
enhances classification performance. ResNet and DenseNet both perform admirably, with
excellent accuracy that is consistent across the dataset. Although significantly less accurate
than ResNet and VGG, it nevertheless has solid classification skills. Due to its extensive
interconnectedness, which enhances information flow via the network, DenseNet works
well. In comparison to VGG, ResNet, and DenseNet, Inception achieves a comparatively
lower accuracy. However, it shows a significant improvement in accuracy compared to the
baseline. The graph indicates a consistent increase in accuracy as the dataset progresses.
The Inception model exhibits great performance in the categorization of colon and lung
cancer by successfully collecting both local and global characteristics from the histological
images. Xception performs slightly better than Inception but lags behind VGG, ResNet, and
DenseNet in terms of accuracy. The graph shows a gradual increase in accuracy over the
dataset, indicating the model’s ability to learn and improve its classification performance.

Our proposed model ColonNet outperforms the five pretrained CNN models (VGG,
ResNet, DenseNet, Inception, and Xception) in terms of accuracy. It is specifically designed
and trained for the task of colon and lung cancer classification. It incorporates unique
architectural elements and training techniques that contribute to its superior performance.
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One key aspect of ColonNet is its ability to effectively capture and utilize both local and
global features present in colon and lung histological images. It employs specialized convo-
lutional layers, such as depth-wise separable convolutions, which enhance the extraction
of relevant features from the images. Depth-wise Separable Convolutions, a widely used
method renowned for its effectiveness in a variety of neural network configurations, are a
key component of ColonNet. In contrast to typical layers, this layer divides the usual convo-
lution process into two different stages, speeding up computing. This method’s application
in the context of cancer diagnosis is innovative, enabling ColonNet to rapidly find local
characteristics in images with low magnification.This enables ColonNet to capture intricate
patterns and subtle details that are crucial for accurate cancer classification. Additionally,
ColonNet incorporates feature grafting, a novel concept that combines automated feature
extraction with handcrafted features. This integration allows the model to benefit from both
the learned representations from the pretrained layers and the domain-specific knowledge
encoded in the handcrafted features. This fusion of features enhances the discriminative
power of the model and improves its accuracy in distinguishing between different classes
of colon cancer.

Table 1 depicts the performance outcomes of various pretrained models that have
been used for the classification of the LC25000 dataset. These systems are compared with
the achievement of the projected system in the current study. The findings indicate that
the proposed system surpasses all the systems used in previous studies. This suggests that
the proposed system has achieved higher accuracy, precision, recall, or other performance
metrics compared to the existing systems. The superior execution of the proposed system
highlights its effectiveness and demonstrates its potential for improving the categorization
accuracy of the LC25000 dataset. It indicates that the proposed system has successfully
addressed some of the limitations or shortcomings of the previous systems, leading to
improved classification results.

Table 1. Training accuracy, F1-score, specificity, precision, and sensitivity on colon and lung
histopathological images using our proposed approach and different pretrained CNN models such
as VGG, ResNet, Inception, Xception, and DenseNet.

Model Sensitivity Specificity Precision Accuracy F1-Score

ResNet 87.15 86.12 86.37 86.12 87.46
VGG 85.15 86.17 86.06 89.07 84.21
Inception 85.04 81.65 82.11 83.38 84.23
Xception 81.37 82.16 83.51 84.57 82.12
DenseNet 82.05 82.63 83.13 84.37 83.67
ColonNet 87.34 85.64 84.31 86.36 84.36
ColonNet + GLPP 95.67 94.97 96.11 96.31 94.86

The utilization of the GLPP pad with minimum sub-vector and boundary values
yields promising outcomes and exhibits enhanced performance regarding F1 score, pre-
cision, and recall. Precision and sensitivity play a critical role, particularly in datasets
with imbalanced classes. By effectively identifying positive predicted mitotic cells while
minimizing false positives, the GLPP pad significantly improves precision and sensitivity.
This achievement carries significant implications for patient prognosis, treatment, and
assessment, as the precise identification of mitotic cells is crucial for accurate diagnosis
and informed decision-making. Based on the precision-based study, the proposed model
ColonNet demonstrates a precision of 96.11, effectively distinguishing genuine positive
cases belonging to the tumor class. It outperforms the top performing base model by 11%
and the state-of-the-art CNN by 15%. The comparison in Table 1 shows that ColonNet
significantly reduces the misclassification of lesion cells compared to the base classifiers
and state-of-the-art CNNs. Figure 7 provides an illustration of challenging benign samples
that are misclassified by the basic classifiers but accurately classified by ColonNet. The
precision and ROC curves for ColonNet and existing CNNs on the dataset are depicted
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in Figures 7. In contrast, the precision curve focuses on the minority class, showcasing
the model’s precision and detection rate. In order to address this issue, a precise and
sophisticated categorization system is necessary to exclude them. With this in mind, we
have meticulously developed a CNN-based model that can effectively capture the different
patterns of mitosis across different stages, taking into account the heterogeneity of the
data. We included principles like area homogeneity and in-variance, asymmetric split
transform merge, dilated convolution, attention mechanisms, and residual learning in our
CNN design. Through Figure 8 and Table 1, we have demonstrated that our proposed
model achieves significant diversification and performance improvements.

Using the five different pretrained models (VGG, ResNet, DenseNet, Inception, and
Xception) and our proposed approach (ColonNet), these machine learning classifiers
(SVM, KNN, and decision tree) can leverage the extracted features for accurate catego-
rization of colon and lung cancer. The pretrained models and ColonNet provide a strong
foundation by extracting relevant features from the histological images, and the machine
learning classifiers utilize these features to make predictions. The combination of modern
feature extraction methods with well-established machine learning algorithms improves
the accuracy and reliability of colon and lung cancer categorization. Figure 8 displays
the performance of several machine learning classifiers in the categorization of colon and
lung cancer, including SVM, KNN, and decision tree. The line graph depicts the accuracy,
specificity, precision, recall, and F1-score for each classifier. The findings illustrate the
classifiers’ variable efficacy in reliably recognizing and discriminating between different
cancer kinds. The findings shed light on these classifiers’ potential for colon and lung
cancer classification tasks.

The distribution of training and validation errors for the colon and lung cancer
datasets is shown by the error histogram. The histogram is split into numerous bins, each
of which represents a different range of error values. The error values are represented
on the x-axis of the histogram, while the count of occurrences inside each bin is repre-
sented on the y-axis. The histogram in the instance of the colon and lung cancer dataset
displays the distribution of errors for different classifiers. It assists us in understanding
the variability in classifier performance and identifying any potential flaws or areas for
development. We can examine the efficacy of the classifiers in properly predicting the
cancer classifications and establish the overall performance of the classification models by
analyzing the histogram.

By displaying the distribution of predicted class labels vs genuine class labels, the
confusion matrix gives useful insights into the performance of the five pretrained CNN
models (VGG, ResNet, DenseNet, Inception, and Xception).

The confusion matrix shown in Figure 9 offers a thorough summary of the model’s
performance across all classes, revealing both its strengths and shortcomings. It enables us
to measure the model’s overall accuracy as well as its performance on particular classes.
We can assess which model has superior overall classification performance and find any
changes or trends in misclassifications across various classes by comparing the confusion
matrices of the different pretrained CNN models (VGG, ResNet, DenseNet, Inception,
and Xception).

The confusion matrix for pretrained models depicts the distribution of expected vs. true
class labels. Each member in the matrix indicates the number or percentage of cases
that were categorized as belonging to a certain true class label while being classed as
belonging to a specific anticipated class label. We can tell how well VGG did in appro-
priately categorizing examples across different classes by inspecting the values in the
matrix. We can determine which classes were correctly predicted and which had greater
misclassification rates.
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(a) VGG (b) ResNet

(c) DenseNet (d) Inception

(e) Xception (f) ColonNet

Figure 7. Accuracy graph of five classes (colon adenocarcinoma, colon benign tissue, lung adeno-
carcinoma, lung benign tissue, lung squamous cell carcinoma) using different pretrained mod-
els (VGG, ResNet, DenseNet, Inception, Xception) and our proposed approach for colon and
lung classification.
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The ROC curves for the five pretrained CNN models provide insights into their
performance in multi-class classification tasks. The ROC curve is a graphical representation
of the true positive rate (sensitivity) against the false positive rate (1-specificity) at various
classification thresholds. It illustrates the trade-off between sensitivity and specificity for
different decision thresholds of the model’s predicted scores. The VGG model shows a
moderate performance with an AUC score of 0.87. It achieves a balance between sensitivity
and specificity across different thresholds. The pretrained model DenseNet exhibits slightly
lower performance compared to VGG, as indicated by its AUC score of 0.82. It demonstrates
discrimination between positive and negative samples. The ResNet performs even better
with an AUC score of 0.81 compared to DenseNet. Its ROC curve indicates a true positive
rate for most false positive rates, suggesting good overall performance.

(a) Performance Comparison (b) Error Hisogram

Figure 8. Performance comparison of different machine learning classifiers for colon and lung
cancer classification.

Inception shows acceptable performance among the pretrained models, with an AUC
score of 0.84. Xception performs similarly to Inception and ResNet, with a comparable
AUC score of 0.83. Our proposed approach ColonNet achieves the best performance
among the pretrained CNN models, as reflected by its highest AUC score of 0.94. Its ROC
curve is closest to the top-left corner, indicating excellent discrimination and superior
classification accuracy. The curves depicted in Figure 10 illustrate the classifier’s effective-
ness at different thresholds. However, in the case of an imbalanced dataset with varying
costs of misclassification, the ROC curve may yield unreliable results.
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(a) VGG (b) ResNet

(c) DenseNet (d) Inception

(e) Xception (f) ColonNet

Figure 9. Confusion matrix of different pretrained models (VGG, ResNet, DenseNet, Inception, and
Xception) and our proposed approach for colon and lung classification.



Biomimetics 2023, 8, 370 19 of 22

Figure 10. Receiver operating characteristic (ROC) curves for pretrained CNN models such as VGG,
ResNet, DenseNet, Inception, Xception and our proposed approach (ColonNet).

6. Summary

This study shows that the proposed ColonNet model outperforms existing pre-trained
CNN models in terms of performance when combined with depth-wise separable con-
volutions and GLPP feature grafting. This development implies that combining these
methodologies can produce a more precise and reliable categorization of cancer, particu-
larly in difficult and complex cases. The manual feature extraction procedure effectively
locates local features in low magnification images by utilizing depth-wise separable con-
volutions. This makes it feasible for real-time applications and huge datasets by enabling
faster calculation and lowering the computational strain. The model’s capacity to correctly
detect positive cases (malignant instances) and negative cases (non-cancerous instances)
is demonstrated by the findings, which show high sensitivity and specificity. This capac-
ity is essential for lowering false negatives and positives and increasing the accuracy of
cancer detection. GLPP and feature grafting are utilized, which helps to extract important
characteristics that may not be adequately captured by straightforward convolution alone.
The methodology improves the model’s capacity to gather crucial data for precise cate-
gorization by combining domain-specific knowledge contained in manual features with
learned representations via automated feature extraction. This study’s conclusions have a
big impact on how doctors diagnose cancer in clinical situations. With its high accuracy and
reliable performance, the proposed methodology has the potential to be included into CAD
systems, aiding pathologists in making more accurate and effective diagnostic judgments.
The technique’s efficacy in categorizing histopathological images of the colon and lungs
shows that it has the potential for wider uses in cancer diagnosis. This method can be
applied to tasks involving medical imaging and various cancer kinds, further advancing
AI-driven medical diagnosis. The timely and appropriate use of therapy interventions can
have a major impact on patient outcomes when malignant tumors are accurately detected
in a timely manner. The improved performance of the suggested methodology offers
prospective advantages in early cancer detection, resulting in more efficient therapies and
possibly lowering mortality rates.
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7. Conclusions

Lung and colon cancer are prevalent and life-threatening diseases, but early detection
significantly improves the chances of survival. This study aims to enhance early detection
of lung and colon cancer through the development of two strategies, each comprising two
systems. The first strategy involves diagnosing the LC25000 dataset using convolutional
neural networks (CNNs) with features extracted from pretrained models, specifically
VGG, ResNet, DenseNet, Inception, and Xception. By leveraging the complementary
strengths of these models, the system aims to enhance diagnostic accuracy. The second
strategy employs our custom model to diagnose the LC25000 dataset using fusion features
derived from the ColonNet model and manual features. This fusion approach aims to
capture a more comprehensive representation of the dataset, leveraging both automated
and manual feature extraction techniques. The suggested systems perform well in the
initial identification of LC25000 dataset images. Specifically, when utilizing the fusion
features of ColonNet and handcrafted features, the CNN achieves a sensitivity of 95.67%,
precision of 96.11%, accuracy of 96.31%, specificity of 94.97%, and an area under the curve
(AUC) of 94.71%. These results underscore the effectiveness of the proposed strategies in
improving the accuracy and reliability of early cancer diagnosis using the LC25000 dataset.
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