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Abstract
Biofilm formation on indwelling medical devices represents an exclusive evasion mechanism for
many pathogenic bacteria to establish chronic infections. Staphylococcus aureus is one of the major
bacterial pathogens that are able to induce both animal and human infections. The continued
emergence of multiple drug-resistant S. aureus, especially methicillin-resistant S. aureus, is proble-
matic due to limited treatment options. Biofilm formation by S. aureus complicates the treatment
of methicillin-resistant S. aureus infections. Therefore, elucidating the mechanisms of biofilm for-
mation in this pathogen is important for the development of alternative therapeutic strategies.
Various environmental and genetic factors contribute to biofilm formation. In this review, we
address the environmental factors and discuss how they affect biofilm formation by S. aureus.
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Significance and formation of biofilms by Staphylococcus aureus

Biofilm formation of pathogenic bacteria in medical devices plays an important role
in the development of chronic infections. The increased use of medical implants in
health care is strongly associated with elevated biofilm-related infections. S. aureus
is one of the most frequent agents causing hospital-acquired catheter-related blood-
stream infections (CRBSI) associated with biofilm formation.1 In 2017, approxi-
mately 120,000 cases of S. aureus bloodstream infections occurred and led to
approximately 20,000-associated deaths in the United States.2
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Multiple drug-resistant bacterial infections present a rapidly growing threat to
public health worldwide. In the United States, hospital-acquired methicillin-resis-
tant S. aureus (HA-MRSA) isolates have been responsible for 40%–80% of all
hospital-acquired S. aureus infections, causing approximately 11,000 deaths in
2011.3 Community-acquired-MRSA (CA-MRSA), a more virulent form, has
spread worldwide, causing severe skin and soft tissue infections.4 S. aureus is also
one of the main pathogens that cause bovine mastitis, incurring an estimated US$2
billion annual loss to the US dairy industry.5 Livestock-associated-MRSA (LA-
MRSA) was identified in food animals6 and in retail meats worldwide.7 The emer-
gence of MRSA and vancomycin-resistant S. aureus (VRSA) increases treatment
complications of CRBSI-associated infections. Public health concern stems from
limited available options for treating MRSA infections. Beta-lactam class antibio-
tics, such as methicillin, have been successfully used in the treatment of S. aureus
infections. However, numerous isolates of this pathogen have acquired resistance
to these drugs soon after their introduction for treatment. Although the Food and
Drug Administration’s (FDA) Guidelines require more restricted and judicious use
of medically important antibiotics in livestock to curtail the emergence of more
resistant strains, this is clearly not sufficient to prevent the evolution of new and
more virulent progeny.

The formation of bacterial biofilm involves multiple steps, including attachment,
proliferation, and detachment during infection (Figure 1). The initial attachment
most likely occurs via binding of bacterial surface proteins or receptors to host
matrix proteins, such as fibrinogen, fibronectin, and vitronectin. During the

Figure 1. Schematic representation of biofilm formation during infection.
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proliferation phase, biofilm-forming cells embed within a protective extracellular
matrix composed of mainly extracellular polysaccharide intercellular adhesion
(PIA), teichoic acids, protein, and DNA. The matrix components form a barrier to
protect bacteria from being killed by antibiotics or clearance by host defense
mechanisms.8 The detachment process of staphylococcal cells from the biofilm
body remains elusive, although some evidence suggests that production of the ali-
phatic delta-toxin complex might be involved in the release of staphylococcal cells
from biofilms.9

In order to adapt to variable habitats, S. aureus has evolved a series of two-
component signal regulators that enable the bacteria to sense its immediate sur-
roundings and to modulate bacterial cellular responses and the expression of viru-
lence genes. In many cases, the response regulators modulate target gene expression
directly as a transcriptional activator and/or repressor. S. aureus is able to protect
itself in response to stressed conditions by switching to alternative lifestyles, such as
in a biofilm.10–13 These conditions are complicated, and some environmental fac-
tors associated with biofilm formation are discussed below.

Effect of environmental conditions on biofilm formation

Several environmental factors have been demonstrated to affect the ability of S.
aureus to form biofilm as follows:

Composition of culture media

A variable phenotype of biofilm formation can be observed in different culture
media.14 It has been reported that the Luria-Bertani broth (LB) medium was the
optimum medium for the biofilm formation compared to tryptic soy broth (TSB)
supplemented with 2% glucose (TSBglu) and brain heart infusion (BHI).15

However, Singh and co-workers showed that BHI broth was more effective for
biofilm formation than TSB.16 Supplementation with glucose, sucrose, and sodium
chloride could significantly increase biofilm formation.16

Arce Miranda and co-workers found that biofilm formation by S. aureus was
improved under an aerobic condition in thioglycolate medium compared to TSB
medium, with lower reactive oxygen species (ROS) and nitric oxide (NO) produc-
tion.17 This indicates that ROS, reactive nitrogen intermediates (RNI) and its
downstream derivatives may affect biofilm development.17 It was suggested that
the formation of biofilm may induce cellular stress, which in turn affects bacterial
growth under different conditions and generates ROS and RNI, and consequently
decreases the extracellular matrix under unfavorable conditions.17

Ions in medium can influence biofilm formation by S. aureus since the staphylo-
coccal cells exhibit a moderate hydrophobic property. The ability of S. aureus to
initially adhere to polystyrene was reported to be associated with the ionic strength
of the culture medium.18 It was found that the depletion of iron in the culture
medium enhanced biofilm formation, while the addition of iron repressed the
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development of biofilm in a Fur-independent mechanism.19 Low iron conditions
induced biofilm formation independently of the overproduction of PNAG polysac-
charide.19 Furthermore, staphylococcal Emp and Eap proteins regulated by Fur,
were found to be important for biofilm formation by S. aureus Newman strain in
low iron conditions.20 Other regulators, including Sae, Agr, and SarA, also play
critical roles in biofilm formation under iron-restricted conditions.20 Although it
has been demonstrated that the expression of the ica operon is required for biofilm
formation in iron-depleted conditions,20 it was shown that the depletion of iron
decreased biofilm formation and PIA production in S. aureus strain 113.21

Moreover, iron chloride (FeCl3.6H2O) was able to enhance the biofilm formation
by S. aureus Xen 31 strain in a dose-dependent manner.22 This suggested the impor-
tance of iron for some S. aureus isolates to develop a biofilm.22 Salicylic acid (SAL)
is a major metabolite of aspirin that is able to bind iron and form a complex. It was
reported that SAL was able to repress the production of CodY and then turn on
the expression of the ica operon, which could profoundly affect polysaccharide
composition in the biofilms of S. aureus.23 Together, these findings indicate that the
impact of iron on biofilm formation is dependent on the genetic background of S.
aureus isolates.

Calcium impacts the biofilm architecture of S. aureus. Altering Ca2+ concentra-
tions affected the thickness and topography of biofilm.24 The role of calcium in
biofilm formation may differ between different S. aureus isolates.25 The Newman
strain of S. aureus had a limited ability to form biofilms when cultured in the pres-
ence of calcium chelators. In contrast, S. aureus strain 10883 could generate robust
biofilms in the presence of calcium chelators.25 It seems that calcium may mediate
biofilm formation through interactions with a surface adhesin clumping factor B
(ClfB). In strain 10833 with a null mutation of clfB, the addition of calcium chela-
tors in the culture medium abolished the phenomenon of elevated biofilm
formations.25

Our laboratory has also observed the strain-dependent effect on biofilm forma-
tion by S. aureus in the same culture medium (Figure 2, unpublished data). Different
S. aureus strains showed variable capacities to form biofilms in the TSB medium
supplemented with 3% NaCl and 0.5% glucose, indicating the role of genetic back-
ground in biofilm formation.

Osmotic pressure

Changing osmotic pressure in the culture medium has been reported to affect the
ability of S. aureus to form biofilms. This phenomenon is associated with changes
in the expression of genes contributing to the modulation of biofilm formation,
including icaA, sarA, rbf, and sigma B.26–28 The addition of NaCl enhanced aggre-
gation, biofilm stability, and strength in a dose-dependent manner,12,29–31 with an
increased expression of the ica operon at 4% and 6% NaCl.32 It was found that
the addition of 7% NaCl could increase biofilm formation by a foodborne S. aur-
eus strain harboring icaA, and could also induce the biofilm development in an
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icaA negative strain.33 It was suggested that NaCl-enhanced biofilm formation is
more prevalent among methicillin-sensitive S. aureus (MSSA) isolates than MRSA
isolates.34 It was also reported that the addition of 4% NaCl in the BHI medium
didn’t affect the capacity of biofilm formation for some ica-positive MRSA.35

NaCl could decrease biofilm formation for some S. aureus at 37�C, but not at
25�C.18,36 It was postulated that NaCl may repress the biofilm formation for some
S. aureus isolates directly or indirectly by inducing overproduction of the Sigma B
factor.37 These findings indicate that a more complicated regulatory network is
involved in the response to osmolality stress during biofilm formation. Contrary to
these findings, Singh and co-workers reported no significant effect of NaCl on bio-
film formation by S. aureus isolated from clinical sources.16 However, when the
NaCl was combined with glucose, and sucrose, a significant increase of biofilm for-
mation was noted.16

The presence of glucose in the culture medium was found to promote biofilm
formation in a dose-dependent manner.18,38,39 When combined with NaCl in the
TSB medium, glucose was able to enhance biofilm formation.12 The reason why
the combination of glucose and sodium chloride can increase biofilm formation

Figure 2. Impact of different S. aureus isolates on biofilm formation in 96-well culture plate (Ji’s
lab, unpublished data). S. aureus was incubated in TSB overnight at 37�C with shaking, then
diluted at 1:200 in TSB supplemented with 3% NaCl and 0.5% glucose. The diluted bacterial
cultures were transferred into the wells of human plasma-coated plate and incubated 24 h
without shaking. The bacterial cultures were carefully removed, and each well was gently
washed three times with PBS. The biofilm was fixed with ethanol and air dry, then stained with
crystal violet solution, and washed three times with PBS. WCUH29: HA-MRSA, CFsa36: a
clinical S. aureus isolate from a patient with cystic fibrosis, ST398: a LA-MRSA from a swine, 923:
a CA-MRSA, JE2: a CA-MRSA. NC: no bacterial cell (negative control).
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has been hypothesized to be that glucose might be phosphorylated by glucokinase
to form glucose-6-phosphate, which subsequently enters the anabolic phase and
favors biofilm formation.40

Biofilm culture plates

Pretreatment of wells in culture plates or flow chamber with human plasma was
found to affect the biofilm formation by some S. aureus isolates.41,42 The presence
of human plasma in the BHI improved the reproducibility and capacity of S. aureus
to form biofilms in both flow chambers under controlled shear flow and in static
well plates.43 The biofilms of most tested S. aureus isolates exhibited a thicker bio-
mass in the presence of plasma and glucose in the culture medium.44 A fibrous-like
structure and fibrin could be observed in the biofilm matrix formed by S. aureus in
the presence of plasma.44–46 S. aureus produces coagulase that converts plasma
fibrinogen into an insoluble fibrin clot, which in turn may promote the capacity of
S. aureus to adhere to various surfaces.47,48 Adhesion is the first step in biofilm for-
mation. Relevant factors, including extracellular matrix proteins that bind to bac-
terial adhesins can thus affect the ability of S. aureus to attach to the surface in the
presence of plasma during culture (Figure 1).49 It was found that the coagulase was
required for biofilm formation of S. aureus during skin infection.46 Therefore, it
was postulated that the bacterial driven deposition of fibrin may play a key role in
biofilm formation during bacterial growth with plasma.44

It has been shown that S. aureus RN4220 was able to form biofilm on a hydro-
philic, negatively charged polystyrene surface when cultured in both TSB and BHI
media.31 When changing the culture surface to untreated, more hydrophobic poly-
styrene material, the same organism was unable to form biofilms under the same
culture conditions.31 S. aureus had a higher capacity to develop biofilms on hydro-
philic surfaces, such as glass and stainless steel, compared to hydrophobic surfaces,
such as polypropylene and polystyrene.38 It was suggested that the hydrophobicity
profoundly affected bacterial attachment or detachment to the surface during bio-
film formation.38,50 Contrarily, it was reported that S. aureus ATCC 12600, a slime
producing strain, was able to develop a lower density of biofilms on hydrophilic
surfaces compared to hydrophobic surfaces.51

The smoothness of material surfaces influences biofilm development. S. aureus
was able to generate early-stage biofilm colonies after 7 days and form mature bio-
films after 14 days on a smooth poly(dimethyl siloxane) elastomer (PDMSe) sur-
face.52 However, the organism could not develop early biofilm colonies until day
21 on the topographical surface (Sharklet AF surface), which is an engineered sur-
face microtopography based on the skin of sharks.52 It was found that more S. aur-
eus isolates were able to form biofilm on the polystyrene surface than on stainless
steel and rubber surfaces, whereas none of the tested strains were able to generate
biofilms on silicone.53 Interestingly, under the condition of a sub-lethal dose of
vancomycin, VRSA could form a thicker biofilm layer on hydrophobic silicon and
nylon surfaces, which contained unsaturated, saturated, and cyclic fatty acids, as
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compared to hydrophilic glass surfaces that only contained straight-chain saturated
fatty acids.54 It is possible that the exposure to vancomycin may influence cell wall
structures, which consequently affects the ability of VRSA to interact with extra-
cellular fatty acids on different hydrophobic surfaces.

Aerobic conditions

It was observed that MRSA strains generated weaker biofilms during aerobic
growth compared to those grown in CO2-rich conditions.55 Oxygen regulated cid
expression spatially and temporally.56 Cid, in coordination with lrg, mediated bac-
terial cell death in biofilm development of S. aureus.56 A hypoxic condition could
elevate cell lysis and biofilm formation by increasing expression of autolysin, AtlA,
and by inhibiting teichoic acid production.56 Autolysin-induced lysis enabled bac-
terial cells to release DNA, a critical component of the biofilm matrix, to promote
biofilm formation.56 It was found that the srrAB two-component system regulated
bacterial cell lysis and biofilm formation in response to the accumulation of
reduced menaquinone.57 A sub-atmospheric condition not only inhibited bacterial
growth, biofilm development, and wood biofilm, it also decreased the production
of virulence factors and biofilm components, such as a-hemolysin, PIA, and extra-
cellular adhesins and DNA.58,59

The role of NO in the biofilm formation of S. aureus relies on its levels. A high
concentration of NO inhibited biofilm development, whereas a lower or sub-
physiological concentration of NO stimulated biofilm formation.60 In a thioglyco-
late medium, microaerobic conditions of growth led to less biofilm formation than
in aerobic growth.17 The sustained exposure of NO-releasing nanoparticles alle-
viated biofilm thicknesses and decreased bacterial viability both in vitro and in vivo
in a rat central venous catheter model of infection.61

Acidity and alkalinity of the culture medium

The formation of biofilms requires appropriate levels of acidity in a bacterial cul-
ture medium. Neither a highly acidic (pH 3) nor a strong alkaline (pH 12) condition
could benefit biofilm development of S. aureus.39 Weak acidic pH conditions pro-
moted biofilm formation compared to a basic pH. However, S. aureus produced
more stable biofilms at the physiological related pH environments.17 This sup-
ported the finding that the addition of extra glucose in the medium could enhance
the biofilm formation of MRSA.62

The citrate exhibited two distinct functions on bacterial growth and biofilm for-
mation.62–64 The first was that addition of a low concentration of sodium citrate
increased biofilm formation in an ica independent manner.62,63 Citrate was able to
stimulate the expression of FnbA and FnbB, two major fibronectin-binding pro-
teins important for biofilm formation of CA-MRSA.62,63 Several other intermedi-
ates of tricarboxylic acid cycle promoted biofilm formation under low sodium
citrate conditions.64 The graRS two-component system is required for citrate-
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induced cell-to-cell interactions.64 The second finding was that a high citrate condi-
tion was bactericidal to the organism.64

Physical culture conditions

Alteration of shaking magnitude and fluctuation levels may influence the biomass,
density, and thickness of biofilms when cultured. It has been reported that increas-
ing of sheer magnitude and fluctuation levels promoted the biofilm tolerance to
vancomycin and ciprofloxacin.65

Physiologically relevant and low-fluid-shear environments may benefit an
attachment-independent biofilm development. Castro and co-workers found that
bacterial cells also exhibited a slow growth rate, produced fewer virulence factors,
and initiated alternative metabolic pathways during down-regulating RNA chaper-
one Hfq.66 Static culture conditions enabled SCCmec IV MRSA strains to generate
more biomass than those SCCmec I/III MRSA isolates, and the biomass of
SCCmec II MRSA biofilms was remarkably less than that of SCCmec I/III MRSA
biofilms.67 However, the opposite phenomena were observed under dynamic condi-
tions for these MRSA isolates.67 It was suggested that the flow conditions could be
beneficial for bacterial growth and the formation of the biofilm matrix.68 It is pos-
sible that the dynamic culture environments such as shear forces facilitate bacterial
cell-surface and cell–cell interactions and the utilization of nutrients, and then pro-
mote biofilm formation.

Antibiotics-induced stress

Exposure to sub-lethal levels of b-lactam antibiotics was found to cause bacterial
aggregation and biofilm formation by some S. aureus strains through autolysin-
induced bacterial lysis and release of DNA to form a fundamental matrix.69 The
presence of a sub-inhibitory concentration of oxacillin was also reported to induce
the icaA-dependent PIA, promoting the biofilm formation of most MRSA iso-
lates.54 Moreover, low levels of clindamycin induced a stress response at a tran-
scriptional level through sigma B and up-regulated major biofilm-associated genes,
such as atlA, lrgA, agrA, psm, fnbA, and fnbB, and consequently enhanced the
capacity of S. aureus to develop biofilms.70 VRSA and vancomycin-intermediate
resistant S. aureus (VIRS) biofilm formation was remarkably elevated after expo-
sure to vancomycin.71,72 After exposure to sub-inhibitory vancomycin, VRSA was
capable of developing biofilms on nylon and silicon indwellings.54 Vancomycin-
enhanced biofilm formation was attributed to the cidA-mediated autolysis and
release of extracellular DNA, and PIA production.71 Chang and co-workers have
reported that vancomycin enhanced VRSA biofilm formation via up-regulation of
atlA and sarA genes.73 In contrast to VRSA and VIRS biofilms, vancomycin
impeded autolysis of vancomycin-sensitive S. aureus (VSSA) during biofilm
formation.74
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Other factors

Alcohol is another factor that could support biofilm formation by S. aureus.75,76

S. aureus cells within alcohol-induced-biofilms were found to maintain viability,
but at reduced rates.77 Alcohol-enhanced biofilm formation probably resulted from
its induction of icaA and icaD expression.76 However, the combination of alcohol
and ethylenediaminetetraacetic acid was able to alleviate biofilm production with
unknown mechanisms.39 Some other factors that affect bacterial biofilm formation
include culture temperature and duration.17,78

Conclusion

S. aureus is an important pathogen that causes a variety of infections. The forma-
tion of biofilms on indwelling medical devices enables S. aureus to evade host
immune responses and establish chronic infections. The ability to develop biofilms
varies among different S. aureus isolates. Multiple environmental factors, including
nutrients, antibacterial agents, pH, shearing force, temperature, and so on are able
to induce stress responses and can profoundly affect the life cycle stages of biofilm
formation, including initial attachment, maturation, and detachment.
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