Skip to main content
. 2023 Aug 5;123(16):9982–10078. doi: 10.1021/acs.chemrev.3c00139

Table 9. Electrical, Mechanical, and Optical Properties of Transparent Wearable Energy Storages.

material energy density, power density voltage, current charging performance transparency mechanical stability ref
Supercapacitor
CNT networks (working electrode), PET (substrate), Ag/AgCl (counter electrode), H2SO4 (electrolyte) areal capacitance, 10–4 F cm–2; stored energy, 10–4 J     13–97%   (798)
bilayer graphene/redox-active layer/bilayer graphene sandwich structure (electrode), (PVA)-H2SO4 gel (electrolyte) areal capacitance: 101 μF cm–2   1000 cyclic test 75% bending cycles 1000 times (radius 5 mm) (799)
Ag/Au/polypyrrole core–shell nanowire networks (electrode), PVA/H3PO4 gel (electrolyte) areal capacitance: 580, 320 μF cm–2 at current density 5.8, 35 μA cm–2   CV shape maintain at 1 V s–1 rate 86% (Ag.Ag core–shell NW networks), 73% and 64% (supercapacitors with 2 and 3 coating cycles) bending cycles >800 times (retained 93% capacitance), stretching cycles 10000 times (30% strain) (697)
Ti3C2Tx films (electrode), PVA/H2SO4 gel (electrolyte) areal capacitance, 1.6 mF cm–2; energy density, 0.05 μWh cm–2 (at power density 2.4 μW cm–2)   no capacitance decay over 20000 cycles 72%   (800)
NiO/MnO2 (positive electrode), Fe2O3 (negative electrode), PVA/KOH gel (electrolyte), PET/ITO (substrate) areal capacitance, 48.1 mF cm–2; energy density, 9.62 μWh cm–2 (at power density 28.9 μW cm–2) voltage window: 1.2 V capacitance retains 90% after 10000 cycles 59% maintaining CV shape under bending angle from 0 to 150° (801)
AgNW/PET/graphene (current collector, electrode), PVA/H3PO4 gel (electrolyte) areal capacitance: 0.3 mF cm–2   capacitance retains 98% after 10000 cycles 65% slight increase of areal capacitance under bending radius from 10 to 30 mm (802)
Ni micromesh/NiCoP (positive electrode), nickel micromesh/nitrogen-doped porous carbon (negative electrode), PVA/KOH gel (electrolyte) specific capacity, 11.1 μAh cm–2; energy density, 8.0 μWh cm–2; power density, 980 μW cm–2 voltage window: 0–1.4 V capacitance retains 97.6% after 50000 cycles 80.2% (electrode only), 57.1% (the full device with packaging), 67.5% (full device without packaging) stable under bending radius from 2 to 12 mm (803)
Mxene quantum dots/laser rGO (electrode), PVA/H2SO4 gel (electrolyte), PET (substrate) areal capacitance, 10.42, 15.2, 23.1, 39.8, and 64.6 mF cm–2; energy density, 2.04 × 10–3 mWh cm–2; power density, 129.4 μW cm2 voltage window: 1.2 V capacitance retains 97.6% after 12000 cycles >90% stable under a bending angle from 0 to 180° (804)
Battery
LiMn2O4 nanorods (cathode), Li4Ti5O12 nanopowder (anode), PVDF-HFP with LiClO4 in EC/DEC (electrolyte gel), gold (current collector) areal capacity: 20, 10, 5 Wh L–1 discharge voltage 2.4 V, current density <10 μA cm–2 at 2 mV s–1 discharge capacity: 100 mAh g–1 (remains over 80 mAh g–1 after 15 cycles) 57% (full cell with packaging) bending cycles: 100 (radius 2 cm) (805)
Ti/Pt (bottom current collector), LiCoO2 (positive electrode), LiPON (electrolyte), Si (negative electrode), Ti (top current collector)   4.2–3 V discharge capacity: 0.15–0.6 mAh, average capacity loss of 0.08% after 100 cycles 17–60%   (806)
Zn/Ni/Ag nanofiber (anode), porous PANi/THE (cathode), PVA/ZnCl2 gel (electrolyte) areal capacity 174.82 mAh m–2(at 0.013 A cm–2), areal energy density, 113.6 mWh m–2 (at 168.8 mW m–2); volumetric energy density, 378.8 Wh m–3 (at power density 562.7 W m–3) discharge voltage: 0.3–1.6 V coloration stability, optical contrast loss of 11% under 500 cycles 80% bending cycles: 10000 (radius 2 mm) (807)
AuNWs (bote current collector), PAM hydrogel (electrolyte), Zn (anode), α-MnO2 (cathode) capacity, 176.5 mAh g–1; energy density, 261 mWh g–1 1–1.8 V Coulombic efficiency: 91.2% after 120 cycles and 50% strain 72.6% (without strain), 64.7% (with 50% strain) stretching cycles: 120 (50% strain) (808)