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Abstract: The therapeutic efficacy of mesenchymal stromal cells (MSCs) has been shown to rely on
their immunomodulatory and regenerative properties. In order to obtain sufficient numbers of cells
for clinical applications, MSCs have to be expanded ex vivo. Expansion media with xenogeneic-free
(XF) growth-promoting supplements like human platelet lysate (PL) or serum- and xenogeneic-
free (SF/XF) formulations have been established as safe and efficient, and both groups provide
different beneficial qualities. In this study, MSCs were expanded in XF or SF/XF media as well as
in mixtures thereof. MSCs cultured in these media were analyzed for phenotypic and functional
properties. MSC expansion was optimal with SF/XF conditions when PL was present. Metabolic
patterns, consumption of growth factors, and secretome of MSCs differed depending on the type and
concentration of supplement. The lactate per glucose yield increased along with a higher proportion
of PL. Many factors in the supernatant of cultured MSCs showed distinct patterns depending on
the supplement (e.g., FGF-2, TGFβ, and insulin only in PL-expanded MSC, and leptin, sCD40L
PDGF-AA only in SF/XF-expanded MSC). This also resulted in changes in cell characteristics like
migratory potential. These findings support current approaches where growth media may be utilized
for priming MSCs for specific therapeutic applications.

Keywords: mesenchymal stromal cells; mesenchymal stem cells; media; serum-free; xenogeneic-free;
platelet lysate

1. Introduction

Mesenchymal stromal cells (MSC) were first discovered by Friedenstein et al. in
1976 [1] and, since then, the interest in their medical use has increased continuously. MSCs
can be isolated from various human tissues, including bone marrow (BM), adipose tissue,
umbilical cord, and dental pulp, though general cell numbers are very low (e.g., about
0.001–0.01% of BM cells [2]). In 2006, the International Society for Cellular Therapy (ISCT)
defined the minimal criteria for the heterogeneous cell population of MSCs. According to
these criteria, MSCs have to express the surface antigen’s cluster of differentiation (CD)73,
CD90, and CD105, and need to lack expression of common leucocyte and hematopoietic cell
markers (e.g., CD45, CD34, CD14 or CD11b, CD79α, CD19, and major histocompatibility
complex (MHC) II). Furthermore, MSCs have to adhere to plastic under standard culture
conditions and need to show in vitro differentiation potential into cells of adipogenic,
chondrogenic, and osteogenic lineages [3].
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MSCs possess immunomodulatory and regenerative properties, thereby representing
promising candidates for therapeutic use in a variety of diseases. Prominent areas of
applications range from bone regeneration [4–8] or wound healing [9–13] to neurological
disorders [14–18] and diseases based on disturbed immune responses like graft-versus-
host disease (GvHD) [19–25]. Mechanisms of the therapeutic mode of action of MSCs
are still not fully understood. However, due to studies that show trapping of MSCs in
the lung as well as systemic clearance, hypotheses went from direct cell–cell contact-
mediated mechanisms and engraftment of MSCs towards paracrine effects of MSC-derived
factors like cytokines, chemokines, growth factors, or extracellular vesicles [26–29], also
summarized as secretome [30].

In order to obtain sufficient cell numbers for clinical use, MSCs need to be expanded
ex vivo. Sera like fetal bovine serum (FBS) can be used as growth-promoting cell culture
supplements; however, animal-derived (xenogeneic) components are not desired for clinical
applications due to the risk of disease transmission [31], immunization [32] and also
reproducibility issues and ethical concerns [33]. Hence, human-derived xenogeneic-free
(XF) substitutes like platelet lysate (PL) were developed. PL is manufactured from platelet
concentrates and is mainly composed of albumin, immunoglobulins, and fibrinogen, in
addition to various bioactive molecules including growth factors (e.g., insulin-like growth
factor (IGF)-I, fibroblast growth factor (FGF)-2, platelet-derived growth factor (PDGF)-AA,
PDGF-AB/BB, transforming growth factor (TGF)β), cytokines, and chemokines [34–37].
Although PL has been proven to be a safe and efficient cell culture supplement in many
clinical applications [5,7,8,38], batch-to-batch variation may occur due to the pooling of
platelet concentrates of different donors, which may affect MSC characteristics [39,40].
Hence, the request for defined serum- and xenogeneic-free (SF/XF) culture media have
become more and more popular in recent years in order to have standardized culture
conditions [41,42]. Media without serum often include growth factors also present in PL
(e.g., FGF-2, PDGF, TGFβ) [43,44] or may still contain components derived from serum [45],
though with consistency between different media batches. Several SF/XF media have been
developed for MSC expansion, but exact media formulations are under lock and key in most
cases due to their commercialization, and may vary between manufacturers. Accordingly,
the divergent impact on MSC characteristics of different SF/XF media has been shown, and
some of them even failed in efficiently supporting cell growth [46–48]. Varying conditions
during cell cultures can also strongly affect MSC secretome in the conditioned media, and
thus could be used as priming approaches, depending on therapeutic applications [49–52].

During this study, MSCs were expanded in media consisting of different ratios of
αMEM supplemented with XF human PL (XF/PL) and an SF/XF medium. Using this
approach, potential supportive properties of both media were combined and the effects
of varying culture conditions on MSC proliferation and characteristics were investigated.
Analyses revealed alterations in the basic metabolism of cells as shown by differences in
the expression of proteins involved in various metabolic pathways, as well as divergent
consumption of several growth factors. Changes in metabolic fundamentals may affect MSC
functionality as indicated by altered secretion of functionally relevant factors and migratory
potential of cells, and thus may be utilized for priming of MSCs by expansion media.

2. Materials and Methods
2.1. Cell Culture of MSCs
2.1.1. Harvesting of Primary Material

Primary MSCs derived from BM were used for the experiments. Small-volume BM
aspirates (approximately 25 mL to 35 mL from the iliac crest) were obtained from healthy
volunteer donors according to standard operating procedures. Informed consent was
obtained from all donors and the collection of the material was approved by the Ethical
Committee of the University of Ulm (Ulm, Germany). MSCs were isolated by seeding BM
into cell culture vessels as previously described by Rojewski et al. [38]. MSCs of the same
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donors were used for all media in order to exclude the impact of donor variability rather
than the effects of different media.

2.1.2. Cell Expansion in Different Media

The expansion media αMEM supplemented with 8% PL (IKT Ulm, Ulm, Germany)
and 1 i.U. per mL heparin (Ratiopharm GmbH, Ulm, Germany) (αMEM+8%PL; medium 1),
StemMACSTM MSC Expansion Media Kit XF (Miltenyi Biotec B.V. & Co. KG, Bergisch
Gladbach, Germany) (StemMACSTM; medium 13), or mixtures of different ratios of both
media (media 2–12; Table 1) were used for the experiments.

Table 1. Composition of expansion media 1 to 13 for MSC cell cultures. MSCs were expanded in
different ratios (1–13) of the media αMEM supplemented with 8% platelet lysate (αMEM+8%PL)
and StemMACSTM MSC Expansion Media Kit XF (StemMACSTM). Media used for isolation and
expansion of MSCs were highlighted in bold and color (medium 1 in black, medium 4 in blue,
medium 7 in green, medium 10 in red, and medium 13 in violet).

1 2 3 4 5 6 7 8 9 10 11 12 13

aMEM+8%PL
[%] 100 99 97.5 95 90 75 50 25 10 5 2.5 1 0

StemMACSTM

[%]
0 1 2.5 5 10 25 50 75 90 95 97.5 99 100

In the first step, expansion of cells was compared for media 1 to 13. For these experi-
ments, MSCs primarily isolated in medium 1 were used for all other media approaches.
Briefly, MSCs of passage 0 (P0) were thawed and expanded for passage 1 (P1) in T500 triple
flasks in medium 1 in order to reduce stress after thawing. Then, expansion of passage 2 (P2)
and passage 3 (P3) was performed in media 1 to 13 in T175 flasks using a seeding density
of 2.000 cells/cm2. Only MSCs of P3 were used for analyses that included determination
of expansion parameters, viability of cells, and basic flow cytometric characterization. In
addition, these cells were used for scratch wound migration assay.

In the second step, MSCs were isolated from BM in media 1, 4, 7, 10, and 13, as these
media seemed to be most interesting during the first step. These MSCs were seeded at
2.000 cells/cm2 in T175 flasks and expanded for P1 in respective isolation media. Expansion
parameters and viability of cells were determined and basic flow cytometric characterization
was performed. These cells were used for all further experiments except for scratch wound
migration assay.

Harvesting of cells was performed on the same day for all media by using TrypZeanTM

(Lonza Group Ltd., Basel, Switzerland) for detachment of cells. Cell count was determined
by using a Neubauer chamber (Glaswarenfabrik Karl Hecht GmbH & Co. KG, Sondheim
vor der Rhön, Germany), and identification of dead cells was achieved by trypan blue
staining (Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany). The expansion parameters
harvesting density, doubling time, and number of population doublings were calculated.
Viability of cells was determined by the ratio of living cells to total cells (including living
and dead cells). During the cell cultures, samples of conditioned media were taken at
media exchange and harvesting of cells for further analyses. Samples of media were taken
prior to the cell cultures. All samples were centrifuged for 5 min at 14.000× g and room
temperature (RT) for removal of cellular debris or large particles and subsequently frozen
at −80 ◦C.

2.1.3. Determination of Glucose Consumption, Lactate Generation and Yield

Glucose and lactate concentrations were determined in media at the beginning of and
accordingly during the expansion of the cells in conditioned media by a CONTOUR®XT
(Ascensia Diabetes Care Deutschland GmbH, Leverkusen, Germany) and Lactate Plus
Meter (Nova Biomedical Corporation, Waltham, MA, USA), respectively. Measured values
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below detection thresholds were assumed to be zero. Glucose consumption and lactate
generation were calculated by the difference in respective concentrations in media and
conditioned media. Both parameters were normalized to one million harvested cells and
a time interval of one day. The yield of lactate from glucose was obtained by division of
lactate generation by glucose consumption as described by Schop et al. [53].

2.2. Characterization of MSCs
2.2.1. Flow Cytometric Characterization of MSCs

Surface antigen expression of MSCs was analyzed by flow cytometry. The following
antibodies were used for the analyses: CD3 (clone SK7; BD Biosciences, Franklin Lakes,
NJ, USA or BioLegend, San Diego, CA, USA), CD9 (clone M-L13; BD Biosciences), CD10
(clone HI10a; BD Biosciences), CD13 (clone WM15; BD Biosciences), CD14 (clone MØP9;
BD Biosciences or clone M5E2 or HCD14; both from BioLegend), CD29 (clone TS2/16;
Thermo Fisher Scientific Inc., Waltham, MA, USA), CD31 or platelet/endothelial cell
adhesion molecule 1 (PECAM-1) (clone WM59; BD Biosciences or BioLegend), CD34 (clone
8G12; BD Biosciences), CD36 (clone AC106; Miltenyi Biotec B.V. & Co. KG), CD44 or
homing cell adhesion molecule (HCAM) (clone G44-26; BD Biosciences), CD45 (clone 2D1
or HI30; both from BD Biosciences), CD49a (clone SR84; BD Biosciences), CD49c (clone
C3 II.1; BD Biosciences), CD49d (clone 9F10; BD Biosciences), CD49e (clone IIA1; BD
Biosciences), CD49f (clone GoH3; BD Biosciences), CD51 (clone NKI-M9; BioLegend), CD61
(clone VI-PL2; BD Biosciences), CD63 (clone H5C6; BD Biosciences), CD73 (clone AD2; BD
Biosciences), CD81 (clone JS-81; BD Biosciences), CD90 (clone 5E10; BD Biosciences), CD105
(clone SN6; Bio-Rad AbD Serotec GmbH, Puchheim, Germany or clone 266; BD Biosciences),
CD140a or platelet-derived growth factor receptor (PDGFR)A (clone 16A1; BioLegend),
CD140b or PDGFRB (clone 28D4; BD Biosciences), CD146 or melanoma cell adhesion
molecule (MCAM) (clone P1H12; BD Biosciences), CD220 or insulin receptor (INSR) (clone
3B6/IR; BD Biosciences), CD221 or IGF-I receptor (IGF1R) (clone 1H7; BioLegend), CD222
or IGF-II receptor (IGF2R) (clone QA19A18; BioLegend), CD271 or nerve growth factor
receptor (NGFR) (clone ME20.4; BioLegend), CD331 or fibroblast growth factor receptor
(FGFR)1 (clone M17A3; Novus Biologicals, LLC, Centennial, CO, USA), CD332 or FGFR2
(clone #98725; R&D Systems, Inc., Minneapolis, MN, USA), CD333 or FGFR3 (clone #136334;
R&D Systems, Inc.), CD362 or Syndecan-2 (clone #305515R; R&D Systems, Inc.), epidermal
growth factor receptor (EGFR) (clone AY13; BioLegend), glucose transporter (GLUT)1
(clone 202915; BD Biosciences), GLUT3 (clone #202017; R&D Systems, Inc.), GLUT4 (clone
#925932; R&D Systems, Inc.), MHC I (clone G46-2.6; BD Biosciences), MHC II (clone Tu39;
BD Biosciences), mesenchymal stromal cell antigen-1 (MSCA1) (clone W8B2; Miltenyi Biotec
B.V. & Co. KG) and stimulated by retinoic acid 6 (STRA6) (clone #496613; R&D Systems,
Inc.). Staining of cells was performed as per manufacturer’s instructions in a standard panel
including identity markers (CD73, CD90, CD105) and purity markers (CD14, CD34, CD45,
MHC II) and in an extended panel including all of the other surface antigens (for staining
details, see Tables S1–S3). Mean fluorescence intensities were measured using a FACScanTM

system with BD CellQuestTM software (version 3.3; BD Biosciences) or a FACSCelestaTM

Cell Analyzer with BD FACSDivaTM software (version 8.0.1.1; BD Biosciences).

2.2.2. Differentiation Assays

MSCs grown in media 1, 4, 7, 10, and 13 were differentiated into cells of adipogenic,
chondrogenic, and osteogenic lineages. The differentiation assay kits Human Mesenchymal
Stem Cell (hMSC) Adipogenic Differentiation Medium BulletKitTM (Lonza Group Ltd.),
StemMACSTM ChondroDiff Media, Human and StemMACSTM OsteoDiff Media, and
Human (both from Miltenyi Biotec B.V. & Co. KG) were used as per manufacturer’s
instructions. In brief, cells were thawed and seeded into SlideFlasks (Thermo Fisher
Scientific Inc.) at densities of 200.000 cells/cm2 for adipogenic and 45.000 cells/cm2 for
chondrogenic and osteogenic differentiation, respectively. Cells grown in αMEM with 20%
FBS (Biological Industries, Kibbutz Beit-Haemek, Israeal) served as a control. The medium
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was exchanged every 2–3 days. When differentiation was completed, cells were stained by
Oil Red O and hematoxylin for adipogenic differentiation (Sigma-Aldrich Chemie GmbH)
and methylene blue for chondrogenic differentiation (Sigma-Aldrich Chemie GmbH).
Activity of alkaline phosphatase was visualized by 5-bromo-4-chloro-3-indolylphosphate
(BCIP)/nitroblue tetrazolium (NBT) substrate for osteogenic differentiation (Sigma-Aldrich
Chemie GmbH). Pictures of stained cells were taken using an inverted phase contrast
microscope (BZ-X710; KEYENCE DEUTSCHLAND GmbH, Neu-Isenburg, Germany) with
BZ-X Viewer software (version 01.03.01.01).

2.2.3. Scratch Wound Migration Assay

The migration potential of MSCs grown in media 1, 4, 7, 10, and 13 was investigated.
Cells were thawed and expanded for one passage in T75 flasks in the respective media.
Then, cells were seeded into IncuCyte® ImageLock 96-well plates (Sartorius AG, Göttingen,
Germany) at densities of 12.000 cells/cm2 in quadruplicates (n = 4). Cells were allowed to
adhere for 24 h before the scratch wound area was created by the IncuCyte® Wound Maker
(Sartorius AG). Migration of cells into the wound area was monitored in the IncuCyte® S3
Live-Cell Analysis system (Sartorius AG). Pictures were taken every 2 h for 4 d and analysis
was performed by IncuCyte® Software (version 2019B Rev2; Sartorius AG). Migration
potential was evaluated by calculating the relative wound density. The software measured
the spatial cell density in the wound area relative to the spatial cell density outside the
wound area at every time point. Thus, stronger proliferation of cells in different media as a
confounding factor for migration can be excluded.

2.3. Proteome Analysis of MSCs and Media

For label-free analysis, 20 µg of protein was reduced with 5 mM dithiothreitol (DTT)
(AppliChem GmbH, Darmstadt, Germany) for 20 min at RT and subsequently alkylated
with iodoacetamide (Sigma-Aldrich Chemie GmbH) for 20 min at 37 ◦C. Trypsin (Thermo
Fisher Scientific Inc.) was added in a 1:50 enzyme–protein ratio and digested overnight
at 37 ◦C. Employing an Orbitrap Elite (Thermo Fisher Scientific Inc.) mass spectrometer
online coupled to an RSLCnano (Thermo Fisher Scientific Inc.), samples were analyzed as
described previously [54].

For tandem mass tag (TMT) labeling, 100 µg of sample was labeled using TMT (Thermo
Fisher Scientific Inc.) according to the manufacturer’s protocol. Following equal mixing,
combined samples were fractionated using strong cation exchange (SCX) chromatography
on a BioRSLC (Thermo Fisher Scientific Inc.). Fourteen fractions were collected and desalted
on OASIS cartridges (Waters GmbH, Eschborn, Germany) according to protocol. After vac-
uum drying, samples were reconstituted and mass spectrometrically analyzed as described
above, with the exception of shortening the elution gradient to 90 min. Fragmentation was
performed using the HCD cell of the Orbitrap mass analyzer as mentioned earlier [55].

Database searches were performed using MaxQuant software (version 1.6.3.4;
https://www.maxquant.org/; accessed on 18 July 2023) [56]. For peptide identification
and quantitation, MS/MS spectra were correlated with the UniProt human reference pro-
teome set (https://www.uniprot.org/; accessed on 18 July 2023), employing the built-in An-
dromeda search engine [57]. The respective TMT modifications and carbamidomethylated
cysteine were considered as fixed modifications along with oxidation (M), and acetylated
protein N-termini as a variable modification. False discovery rates were set on both the
peptide and protein level to 0.01. Subsequent data analysis was performed employing MS
Excel and GraphPad PRISM software (version 9.5.0; GraphPad Software Inc., Boston, MA,
USA). For outlier analysis on TMT datasets, significance B was calculated using Perseus
(https://maxquant.org/perseus/; accessed on 18 July 2023). For label-free analysis, a cutoff
ratio was employed, and for visualization of proteins exclusive to either medium, fold
change was set to log2 = 5.

Pathway and process enrichment analysis was performed on proteins highly expressed
by cells of media 1 and 13 separately using Metascape software (version v3.5.20230501) [58].

https://www.maxquant.org/
https://www.uniprot.org/
https://maxquant.org/perseus/
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To this end, the following parameters were used: p-value < 0.01, a minimum count of 3,
and an enrichment factor >1.5. For interaction network visualization, Cytoscape software
(version 3.7.1) [59] was employed using interaction data retrieved on the set of regulated
proteins via https://www.string-db.org/ (accessed on 18 July 2023) [60].

2.4. Characterization of Media and Conditioned Media
2.4.1. Magnetic-Bead-Based Multiplex Analyses

Different factors were analyzed in samples of media and conditioned media (time
point of harvest) for cells grown in media 1, 4, 10, 7, and 13 by using a magnetic-bead-
based multiplex analysis technology (Merck KGaA, Darmstadt, Germany). The following
analytes were included: angiopoietin-2, Dickkopf-related protein 1 (DKK1), epidermal
growth factor (EGF), endoglin, FGF-2, FGF-23, follistatin, fractalkine, growth-regulated
oncogene α (GROα) or (C-X-C motif) ligand (CXCL)1, heparin-binding EGF-like growth
factor (HB-EGF), hepatocyte growth factor (HGF), IGF-I, IGF-II, interleukin (IL)-6, IL-8,
insulin, leptin, monocyte chemoattractant protein (MCP)-1 or (C-C motif) ligand (CCL)2,
MCP-3 or CCL7, macrophage colony-stimulating factor (M-CSF), monokine induced by
interferon γ (IFNγ) (MIG) or CXCL9, matrix metalloproteinase (MMP)-1, MMP-2, MMP-7,
MMP-9, MMP-10, osteocalcin (OC), osteoprotegerin (OPG), osteopontin (OPN), PDGF-AA,
PDGF-AB/BB, placental growth factor (PlGF), parathyroid hormone (PTH), regulated and
normal T-cell-expressed and secreted (RANTES) or CCL5, soluble CD40 ligand (sCD40L),
sclerostin (SOST), TGFβ, tumor necrosis factor (TNF)β, thrombospondin-1 (TSP-1), vascu-
lar endothelial growth factor (VEGF)-A and VEGF-C. Briefly, samples were thawed and the
analyses were run in duplicates (n = 2) in 96-well plates as per the manufacturer’s instruc-
tions (changes were obtained for the analysis of IGF-I and IGF-II, where a lower dilution
was used for the neutralization step, and regarding the matrix solution of all assays, where
assay buffer was used). Samples were diluted with sample diluent for analysis of TGFβ
(1:3) or αMEM without supplements for analysis of insulin (1:100; only for approaches of
media 4, 7, 10, 13), RANTES (1:50), and TSP-1 (1:20). Only wells with bead counts ≥35 were
included in the analyses (except for analytes VEGF-C, MMP-7 and MIG). Concentrations
below detection limits were assumed to be zero. Consumption and production of factors
were calculated by the difference in respective concentrations in media and conditioned
media. Both parameters were normalized to one million harvested cells and a time interval
of one day. With regard to calculations for consumption and production, two scenarios
have to be generally noted. First, it cannot be excluded that concentrations of factors
decreased in conditioned media for reasons other than consumption by cells. Second, cells
may have consumed but also produced factors in similar amounts, thereby resulting in no
consumption as per our definition. Analytes that were measured but excluded from any
analysis due to concentrations below 10 pg/mL included adrenocorticotropic hormone
(ACTH), bone morphogenetic protein 9 (BMP-9), endothelin-1, FGF-1, IFNγ, IL-1α, IL-1β,
IL-1 receptor antagonist (IL-1RA), IL-2, IL-10, IFNγ induced protein 10 (IP-10) or CXCL10,
macrophage inflammatory protein (MIP)-1β or CCL4, TGFα, TNFα, and VEGF-D.

2.4.2. TNF-Inducible Gene 6 (TSG-6) Enzyme-Linked Immune Sorbent Assay (ELISA)

TSG-6 was analyzed in samples of media and conditioned media (time point of harvest)
for cells grown in media 1, 4, 10, 7, and 13 by ELISA. Recombinant human TSG-6 (R&D
Systems, Inc.) was used as standard. The assay was run in duplicate (n = 2) in 96-well
plates as follows. Plates were coated with anti-TSG-6 antibody (clone A38.1.20; Santa Cruz
Biotechnology, Inc., Dallas, TX, USA) at 10 µg/mL (in phosphate-buffered saline (PBS))
overnight at 4 ◦C. All following steps were performed at RT. Wells were washed four times
with wash buffer (Quantikine ELISA Wash Buffer 1 1:25 in distilled water (aqua dest); R&D
Systems, Inc.) with 1 min soak time in between. Blocking of wells was performed by the
addition of blocking buffer (Reagent Diluent Concentrate 2 (R&D Systems, Inc.) 1:10 in
aqua dest with 0.05% Tween®20 (Sigma-Aldrich Chemie GmbH)) and incubation for 1 h.
Wells were washed as described above. A 1:2 dilution series of the standard stock solution

https://www.string-db.org/
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was performed with blocking buffer resulting in standards ranging from 4.800 pg/mL to
75 pg/mL. Blocking buffer was used as 0 pg/mL standard (background). Standards and
thawed samples were incubated on the plate for 2 h with agitation. Wells were washed as
described above. A biotinylated anti-TSG-6 antibody (polyclonal; R&D Systems, Inc.) was
added at 0.5 µg/mL (in blocking buffer) and incubated for 2 h with agitation for detection
of TSG-6. Wells were washed as described above. Streptavidin coupled to horseradish
peroxidase (HRP) (Streptavidin-HRP 1:200 in blocking buffer; R&D Systems, Inc.) was
added and incubated for 20 min in the dark. Wells were washed as described above. HRP
substrate (R&D Systems, Inc.) was added and incubated for 30 min in the dark prior to the
addition of stop solution (Stop Solution 2N Sulfuric Acid; R&D Systems, Inc.). Absorption
was measured at 450 nm and 570 nm (reference wavelength) using the microplate reader
POLARstar Omega (BMG LABTECH GmbH, Ortenberg, Germany) with Reader Control
(version 5.70 R2) and MARS Data Analysis software (version 4.00 R2), respectively.

2.5. Statistics

Statistical analysis was performed with GraphPad PRISM software (version 9.3.1;
Graphpad Software Inc.). At least three independent experiments with MSCs of three
different donors (N ≥ 3) were carried out (except for analysis of MIG (all media) and IGF-II
(media 10), which were excluded from further statistical analysis as well as proteomic
analyses). Data are presented as mean ± standard deviation (SD). Data were tested for
normal distribution using a Shapiro–Wilk normality test. Significant differences between
groups were investigated as follows. All groups were tested against the control group
medium 1. Paired test methods were used for all analyses except for flow cytometry. In the
case of normal distribution, one-way analysis of variance (ANOVA) was chosen for data sets
with no missing values, and mixed-effects analysis was used for data with missing values.
Geisser-Greenhouse correction was applied for both. If there was no normal distribution,
a Friedman test was used for data sets with no missing values, and a Kruskal–Wallis test
was applied for data sets with missing values. Due to many missing values, unpaired test
methods were used for flow cytometric analyses. Homogeneous variance was tested by a
Brown–Forsythe test. One-way ANOVA was used for normally distributed data sets and in
case of inhomogeneous variance, Welch correction was applied. If there was no normal
distribution, a Kruskal–Wallis test was used. For all analyses, Holm–Šídák’s, Dunnet’s,
Dunnet’s T3, or Dunn’s methods were applied for correction of multiple testing.

3. Results

3.1. Proliferation of Cells Can Be Increased by Media Containing at Least 50% StemMACSTM

MSCs, primarily isolated in αMEM+8%PL, were expanded in 13 different media for P3.
Media were composed of various ratios of the XF/PL medium αMEM+8%PL (medium 1)
and SF/XF StemMACSTM (medium 13) as illustrated in Table 1. Proliferation of cells was
compared by analysis of different expansion parameters (harvesting density, doubling
time, number of population doublings). In addition, the viability of cells and expression of
identity and purity markers were investigated (Figure 1).

Proliferation of cells was increased for those grown in an SF/XF medium (medium 13)
in comparison to cells expanded in an XF/PL medium (medium 1), as shown by higher
harvesting density, the number of population doublings, and a reduced doubling time
(Figure 1A–C). Proliferation could be further enhanced by the culture of cells in mixtures
of both media containing at least 50% StemMACSTM (media 8–12). Significantly higher
harvesting densities and numbers of population doublings, as well as significantly reduced
doubling times, were observed for cells grown in media 7 and 9 (Figure 1A–C). The
viability of cells showed no significant differences between the different media (Figure 1D).
Significantly lower expression of CD73 was obtained for cells grown in media 2 and 13
in addition to a significantly reduced expression of CD105 for cells grown in medium 8.
In contrast, no significant changes were obtained for the expression of CD90 and purity
markers CD14, CD34, CD45, and MHC II (Figure 1E,F).
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Figure 1. Expansion parameters and basic characterization of MSCs grown in media 1 to 13. MSCs,
primarily isolated in medium αMEM+8%PL, were expanded in media 1 to 13 (for composition see
Table 1; colors as indicated in scheme) for P3. The expansion parameters harvesting density (A),
doubling time (B), and number of population doublings (C) were determined in addition to the
viability of cells (D). The expression of identity markers (CD73, CD90, and CD105) (E) and purity
markers (CD14, CD34, CD45, and MHC II) (F) was analyzed by flow cytometry. Data are presented as
mean ± SD and N ≥ 3 independent experiments were performed. Statistically significant differences
are depicted as follows: *: p < 0.05; **: p < 0.01; ***: p < 0.001.

After the analysis of the expansion of MSCs in several ratios of αMEM+8%PL and
StemMACSTM, the following experiments were performed with the pure media (media
1+13) and the media mixtures 4, 7, and 10.

The proliferation of cells in P1 was compared for cells already isolated in the respective
media during P0. Expansion parameters, viability of cells, and expression of identity and
purity markers are illustrated in Figure 2.

Cells isolated and expanded in media containing any ratio of StemMACSTM (media
4+7+10+13) showed increased proliferation as compared to cells grown in αMEM+8%PL
(medium 1). Harvesting density and number of population doublings were significantly
higher for cells cultured in media 7 and 10, and doubling time was significantly reduced for
cells grown in media 7, 10, and 13 (Figure 2A–C). Media mixtures containing at least 50%
StemMACSTM as well as PL (media 7+10) further enhanced cell proliferation as compared
to growth in StemMACSTM alone (medium 13). No significant differences between cells
were obtained for viability (Figure 2D) or the expression of identity and purity markers
(Figure 2E,F).

Regardless of whether the MSCs were already cultured in media with the respective
supplement from P0 (Figure 2) or were only placed in the respective media in P3 (Figure 1),
we observed the same effects of the supplements on the expansion parameters, viability,
and expression of surface antigens.
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Figure 2. Expansion parameters and basic characterization of MSCs grown in media 1, 4, 7, 10,
and 13. MSCs were isolated and subsequently expanded in media 1 (100% αMEM+8%PL; black),
4 (95% αMEM+8%PL + 5% StemMACSTM; blue), 7 (50% αMEM+8%PL + 50% StemMACSTM; green),
10 (5% αMEM+8%PL + 95% StemMACSTM; red) and 13 (100% StemMACSTM; violet) for P1. The
expansion parameters harvesting density (A), doubling time (B), and number of population doublings
(C) were determined in addition to the viability of cells (D). The expression of identity markers (CD73,
CD90, and CD105) (E) and purity markers (CD14, CD34, CD45, and MHC II) (F) was analyzed by flow
cytometry. Data are presented as mean ± SD and N ≥ 4 independent experiments were performed.
Statistically significant differences are depicted as follows: *: p < 0.05; **: p < 0.01; ***: p < 0.001.

3.2. Proteomic Analyses Indicate Differences for Growth Media and Respective Cells

Due to differential proliferative capacities for cells grown in αMEM+8%PL (medium 1)
and StemMACSTM (medium 13), proteomic analyses were performed for one batch of
growth media as well as respective cells from one representative MSC donor in order to
have an indication about altered cellular processes (Figures 3 and S1, Tables S4 and S5).

Proteomic analyses indicated differential expression of proteins for cells grown in
media 1 and 13 (Figure 3A and Table S4) in addition to a variable quantity of several
proteins in respective media, where some were exclusively present in only one of the media
(Figure 3B and Table S5). Differentially expressed proteins by cells grown in media 1 and
13 formed a complex proteomic network, and clusters were present for cells cultured in
each media (Figure 3C). This clustering of proteins could be supported by pathway and
process enrichment analyses, which suggested involvement in different biological processes
(Figures 3D and S1), cellular components, and molecular functions (Figure S1) for those
cells. The resulting gene ontology (GO) terms indicated, amongst others, differences in
particular proteins or respective genes involved in wound healing, coagulation, hemostasis,
and binding of PDGF for MSCs grown in XF/PL conditions or metabolic processes of, e.g.,
growth factors, fatty acids, and hormones for MSCs grown in SF/XF media (Figure S1).
The observed indications were used as the basis for further experiments, where alterations
in cell characteristics as a result of different growth media should be confirmed by various
additional analyses.
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Figure 3. Proteomic analyses of media and MSCs. MSCs, isolated and expanded in αMEM+8%PL
(medium 1; black) or StemMACSTM (medium 13; violet), and respective media were used for
proteomic analyses. Log2 ratio of proteins identified in media 1 and 13 (A) or expressed by cells
grown in media 1 and 13 (B) are illustrated. Proteins with similar quantity or expression are shown
as gray dots, proteins with high quantity in medium 1 (A) or highly expressed in cells grown in
medium 1 (B) are shown as black dots and those with high quantity in medium 13 (A) or high
expression in cells grown in medium 13 (B) are shown as violet dots, respectively. (C) Differentially
expressed proteins shown in (B) were queried for known interactions on StringDb [60] and visualized.
(D) Expressed proteins seem to play a role in various biological processes based on gene ontology
(GO) enrichment analysis.
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3.3. Cells Show Different Basic Metabolism Depending on Growth Media

Based on differences for growth media αMEM+8%PL (medium 1) and StemMACSTM

(medium 13), as well as respective cells indicated by proteomic analyses, metabolic basics
were further analyzed for cells grown in media 1, 4, 7, 10, and 13 (Figure 4).

Figure 4. Consumption and production of metabolic factors by MSCs. MSCs were grown in
media 1 (100% αMEM+8%PL; black), 4 (95% αMEM+8%PL + 5% StemMACSTM; blue), 7 (50%
αMEM+8%PL + 50% StemMACSTM; green), 10 (5% αMEM+8%PL + 95% StemMACSTM; red) and
13 (100% StemMACSTM; violet). (A) Glucose and lactate concentrations were determined in media
at the beginning of the cell cultures (d0) and in conditioned media at the time point of media ex-
change (d2–3) and harvesting of cells (d4–6). Glucose consumption and lactate production of one
million cells per day (B) and the yield of lactate per glucose (C) were analyzed for the time between
media exchange and harvesting of cells. (D) Concentrations of the factors OPG, follistatin, MCP-3,
MMP-10, MCP-1, GROα, HGF, HB-EGF, angiopoietin-2, M-CSF, MIG, VEGF-A, fractalkine, endoglin,
EGF, SOST, sCD40L, TSG-6, MMP-7, OC, leptin, DKK1, FGF-2, OPN, VEGF-C, IGF-I, PDGF-AA,
MMP-9, MMP-1, MMP-2, RANTES, PDGF-AB/BB, TGFβ, IGF-II, TSP-1, and insulin were analyzed
in media. (E) Consumption and production of growth factors EGF, PDGF-AA, VEGF-C, FGF-2,
IGF-I, TGFβ, PDGF-AB/BB and IGF-II, as well as hormones leptin and insulin, was calculated
between media exchange and harvesting of cells and normalized to 1 × 106 MSC/24 h. Data are
presented as mean ± SD and N ≥ 3 independent experiments were performed (except for analysis
of MIG (all media) and IGF-II (medium 10)). Statistically significant differences are depicted as
follows: *: p < 0.05.

Glucose concentrations decreased and lactate concentrations increased in conditioned
media over culture time for cultures of all media (Figure 4A). Glucose was consumed
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by the cells, whereas lactate was produced as shown in Figure 4B. Glucose consump-
tion and accordingly lactate production were lowest for cells grown in medium 1, and
a significantly lower glucose consumption was obtained compared to cells cultured in
medium 13 (Figure 4B). The yield of lactate per glucose decreased with increasing con-
tent of StemMACSTM in culture media and was significantly reduced for cells cultured
in medium 13 (Figure 4C). The factors OPG, follistatin, MCP-3, MMP-10, MCP-1, GROα,
HGF, HB-EGF, angiopoietin-2, M-CSF, MIG, VEGF-A, fractalkine, endoglin, EGF, SOST,
sCD40L, TSG-6, MMP-7, OC, leptin, DKK1, FGF-2, OPN, VEGF-C, IGF-I, PDGFA-AA,
MMP-9, MMP-1, MMP-2, RANTES, PDGF-AB/BB, TGFβ, IGF-II, TSP-1, and insulin were
identified at different concentrations in media. Only FGF-2 and insulin were present at the
highest concentrations in medium 13, whereas all of the other factors showed the highest
concentrations in medium 1 (Figure 4D and Figure S2). In the next step, we measured the
change in growth factors and hormones during the culture of MSCs in different media. The
factors leptin, PDGF-AA, VEGF-C, IGF-I, and IGF-II were consumed most by cells grown
in medium 1, and the factors EGF and PDGF-AB/BB showed equally highest consumption
by cells cultured in media 1 and 4. Except for IGF-I, which showed the lowest consumption
by cells cultured in media 7 and 10, consumption of all other aforementioned factors (leptin,
EGF, PDGF-AB/BB, and IGF-II) was lowest for cells cultured in medium 13. Consump-
tion of PDGF-AB/BB was significantly reduced for cultures in medium 13 compared to
medium 1. In contrast, FGF-2 and insulin showed the highest consumption for cells grown
in medium 13 and lowest for cells grown in medium 1, resulting in a significant difference
for FGF-2. TGFβ was consumed most by cells cultured in medium 4, whereas MSCs grown
in medium 1 produced TGFβ, resulting in a significant difference between medium 1 and
medium 4 (Figure 4E). Other growth factors (FGF-23, HB-EGF, HGF, PlGF, and VEGF-A)
were not consumed by cells cultured in any media. However, it has to be generally noted
that it cannot be excluded that the concentration of factors decreased in conditioned media
for reasons other than consumption by cells.

3.4. Expression of Surface Antigens Shows Alterations between Cells Grown in Different Media

Cells grown in media 1, 4, 7, 10, and 13 were further characterized by the analysis
of the expression of various surface antigens. The selection of the markers was informed
by the results of the proteomic analysis. These included metabolism-related markers, cell
adhesion-related markers, tetraspanins involved in the regulation of vesicles, and some
additional markers summarized in Figure 5.

A low expression of glucose transporters GLUT1, GLUT3, and GLUT4, as well as
FGF receptors FGFR1, FGFR2, and FGFR3, was observed for cells grown in all media
(Figure 5A). PDGFRA showed a low to moderate expression that increased for cells grown
in media with a higher percentage of SF/XF media (StemMACSTM). Similarly, expression
of PDGFRB also raised with increasing content of SX/XF media and was significantly
increased for cells grown in media 7, 10, and 13 (Figure 5A). Receptors for insulin and IGF-I
were only marginally expressed by cells of all media, whereas increased expression was
observed for IGF2R, and expression levels for both IGF receptors were highest for cells
cultured in medium 10 (Figure 5A). Low to moderate expression was obtained for STRA6
and NGFR irrespective of growth media. EGFR expression of cells differed between growth
media but also between single MSC donors within one group. The highest expression levels
and lowest variation between MSC donors were observed for cells grown in medium 7
(Figure 5A). The integrins CD29, CD49c, CD49e, and CD51 showed high expression of about
100% positive cells for all media. CD49a and CD49f were only expressed at low to moderate
levels, where CD49f expression decreased with increasing content of StemMACSTM in
media. Expression of CD49d and CD61 was moderate to high, and especially cells grown in
media 7 showed high expression of CD49d (Figure 5B). Regarding cell adhesion molecules,
expression of CD31 was low to moderate, and high expression levels of CD44 were obtained
for cells of all media, though a significant difference was observed between cells grown
in media 1 and 10. CD146 expression was also high for cells of all media, but showed a
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slight reduction for cells cultured in media 10 and 13 (Figure 5B). The tetraspanins CD9,
CD63, and CD81 were expressed at high levels for cells grown in all media. Only CD9
showed a significantly lower expression for cells in medium 10 (Figure 5C). With regard to
some additionally analyzed surface antigens, a low expression below 5% positive cells was
obtained for CD3 and CD36 for cells of all media. CD362 expression increased with the
percentage of StemMACSTM in media and was significantly increased for cells grown in
media 10 and 13 (Figure 5D). CD10 was expressed at high levels for cells of all media except
for a slightly reduced expression for those of medium 1, and high expression was observed
for all cells regarding CD13 and MHC I. MSCA1 expression varied between cells grown in
different media, but also between MSC donors of the same media. The lowest expression
was obtained for cells grown in medium 4 and the highest expression was obtained for
those grown in medium 7 (Figure 5D).
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Figure 5. Surface antigen expression by MSCs grown in media 1, 4, 7, 10, and 13. MSCs grown
in media 1 (100% αMEM+8%PL; black), 4 (95% αMEM+8%PL + 5% StemMACSTM; blue), 7 (50%
αMEM+8%PL + 50% StemMACSTM; green), 10 (5% αMEM+8%PL + 95% StemMACSTM; red), and 13
(100% StemMACSTM; violet) were analyzed for the expression of different surface antigens. These
included metabolism-related markers GLUT1, GLUT3, GLUT4, FGFR1, FGFR2, FGFR3, PDGFRA,
PDGFRB, INSR, IGF1R, IGF2R, STRA6, NGFR, and EGFR (A), cell adhesion-related markers CD29,
CD49a, CD49c, CD49d, CD49e, CD49f, CD51, CD61, CD31, CD44, and CD146 (B), tetraspanins CD9,
CD63, and CD81 (C), as well as the additional markers CD3, CD36, CD362, CD10, CD13, MHC
I, and MSCA1 (D). Data are presented as mean ± SD and N ≥ 3 independent experiments were
performed. Statistically significant differences are depicted as follows: *: p < 0.05; **: p < 0.01;
***: p < 0.001.
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3.5. The Secretome of Cells Varies after Expansion in Different Growth Media

The secretome of cells grown in media 1, 4, 7, 10, and 13 was investigated for several
functionally relevant factors.

Only cells grown in medium 1 showed secretion of factors FGF-2, insulin, and TGFβ,
and secretion of FGF-2 and TGFβ was significantly reduced for cells cultured in media
13 and 4, respectively (Figure 6). HB-EGF was only secreted by cells grown in medium
4, and the highest secretion levels for those cells were also obtained for factors MCP-3,
DKK,1 and OPG. The latter factors were also secreted at reduced levels by cells grown in
the other media, though OPG secretion was especially low for cells grown in media 10 and
13, and DKK1 secretion was significantly reduced for cells grown in medium 10 (Figure 6).
Secretion of follistatin was achieved for cells of all media, but secretion was significantly
increased for those grown in medium 7 compared to medium 1 (Figure 6). RANTES and
angiopoietin-2 secretion could not be identified for cells of any other media than 10; yet,
secretion levels were also low for those cells (Figure 6). Secretion of leptin, sCD40L, and
PDGF-AA was only achieved for cells cultured in medium 13 (Figure 6). OC and IL-6
were secreted most by cells grown in media 4 and 7. Endoglin and MCP-1 secretion was
increased for cells grown in all media mixtures (media 4+7+10), with significantly higher
MCP-1 secretion for cells grown in medium 4 (Figure 6). HGF secretion was elevated for
cells cultured in medium 7 and even significantly for those grown in medium 10 (Figure 6).
OPN, GROα, TSG-6, and IL-8 secretion was increased for cells grown in media 7, 10, and
13. Cells cultured in medium 1 showed almost no secretion of these factors at all, leading
to a significantly lower secretion of OPN compared to cells grown in medium 7 and of
IL-8 compared to those grown in media 7 and 10 (Figure 6). Only cells grown in media
with high percentages of StemMACSTM (media 10+13) secreted fractalkine and VEGF-C
(Figure 6). General trends of higher secretion with a high content of SF/XF media were
observed for factors PlGF, leptin, sCD40L, and TSG-6, whereas trends of lower secretion
were obtained for factors FGF-23, FGF-2, insulin, VEGF-A, and TSP-1 (Figure 6). Secretion
of factors PTH, TNFβ, M-CSF, and SOST was comparable between cells grown in different
media (Figure 6).
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and 13 (100% StemMACSTM; violet). The secretion of factors angiopoietin-2, PTH, PlGF, fractalkine,
leptin, TNFβ, HB-EGF, FGF-23, FGF-2, sCD40L, endoglin, PDGF-AA, insulin, follistatin, OC, OPN,
RANTES, MCP-3, M-CSF, VEGF-C, GROα, TSG-6, SOST, VEGF-A, IL-8, IL-6, HGF, TGFβ, DKK1,
MCP-1, OPG and TSP-1 was analyzed for the period between media exchange and harvesting of cells
and normalized to 1 × 106 MSC/24 h. *: p < 0.05.

3.6. Differentiation Potential of Cells Depends on Growth Media

The differentiation potential is a known functional property of MSCs and was therefore
investigated for cells expanded in media 1, 4, 7, 10, and 13 (Figure 7).
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Figure 7. Differentiation and migration potential of MSCs grown in media 1, 4, 7, 10, and 13. MSCs
were expanded in media 1 (100% αMEM+8%PL; black), 4 (95% αMEM+8%PL + 5% StemMACSTM;
blue), 7 (50% αMEM+8%PL + 50% StemMACSTM; green), 10 (5% αMEM+8%PL + 95% StemMACSTM;
red) and 13 (100% StemMACSTM; violet) and analyzed for their differentiation potential and migratory
capacity. (A) MSCs were differentiated into cells of adipogenic, chondrogenic, and osteogenic lineages
by culture in specific differentiation media (diff). Control cells were expanded in αMEM+20%FCS
(ctrl). Cells of adipogenic differentiation were stained by Oil Red O and hematoxylin. Methylene blue
staining was performed to detect chondrogenic differentiation. Activity of alkaline phosphatase was
visualized by 5-bromo-4-chloro-3-indolylphosphate (BCIP)/nitroblue tetrazolium (NBT) substrate to
detect osteogenic differentiation. Pictures of cells were taken by an inverted phase contrast microscope
with 4 times (chondrogenic) and 10 times (adipogenic and osteogenic) magnification, respectively.
Black scale bars indicate 100 µm. (B) Migratory potential of cells was investigated by a scratch wound
assay. For this, cells were grown in media 1, 4, 7, 10, and 13 in a 96-well plate until confluence of cell
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cultures was reached. A scratch wound area was created into the cell layer and migration of cells was
analyzed for 96 h. Relative cell density was identified by IncuCyte® S3 Live-Cell Analysis system.
The area under the curve (AUC) was determined for observed analyses curves of wound density over
time. (C) The secretion of MMP-1, MMP-2, MMP-7, and MMP-10 was analyzed for cells grown in
media 1, 4, 7, 10, and 13. Data are presented as mean ± SD and N = 2 (A) or N ≥ 3 (B,C) independent
experiments were performed. Statistically significant differences are depicted as follows: *: p < 0.05.
Representative images were chosen for differentiation assays.

Cells grown in media 1, 4, 7, 10, and 13 could be differentiated into cells of adipogenic,
chondrogenic, and osteogenic lineages. The adipogenic differentiation seemed to be de-
creasing with an increasing percentage of StemMACSTM in media, while chondrogenic and
osteogenic differentiation appeared to be only less distinct for cells grown in medium 13
(Figure 7A). However, differentiation potential was only evaluated on a visual basis.

3.7. SF/XF Culture Conditions Reduce Migratory Potential of MSCs

Besides differentiation potential, migratory capacity is an important functional feature
of MSCs. Migration of cells and secretion of different MMPs was analyzed for cells grown
in media 1, 4, 7, 10, and 13 (Figure 7B,C). The highest migratory capacity was observed
for cells grown in medium 4, as shown by a significantly higher AUC followed by cells
cultured in media 1 and 7. Cells grown in media 10 and 13 were not capable of reaching
100% cell density in the wound area (Figure 7B). The highest secretion of MMPs was
observed regarding MMP-1 and MMP-2 that were secreted by cells of all media. Reduced
secretion of MMP-1 was obtained for cells of media with high content of StemMACSTM

(media 7+10+13), while secretion of MMP-2 was enhanced for cells grown in medium 4.
Secretion of MMP-7 did not only vary between cells of different media but also between
MSC donors, and was only secreted by cells grown in media 4, 10, and 13. MMP-10 was
only secreted at very low levels for cells of all media (Figure 7C).

4. Discussion

Therapeutic application of MSCs implies their ex vivo expansion in appropriate expan-
sion media which can strongly affect MSC characteristics [61]. For this, human-derived PL
has been established as a safe and XF-growth-promoting supplement in cell culture [34–36].
However, it contains a plethora of components, and knowledge regarding which of these
many components is essential for its biological activity is limited. This is a major drawback
in its use for GMP-grade expansion, which aims for the most defined culture conditions
possible. As an alternative, many defined SF/XF expansion media were developed in
recent years, though some of them resulted in inefficient cell growth [46–48]. The use of a
standardized, chemically defined medium by itself is not necessarily an advantage. It is
also necessary to understand the effects of these media on the phenotype and function of
the MSCs expanded in them. In order to investigate the impact of growth media on MSCs,
we did not only culture the cells in either XF/PL (αMEM+8%PL; medium 1) or SF/XF
(StemMACSTM; medium 13) media, but also in mixtures of both, which may overcome the
aforementioned disadvantages of each group. The potential of each media in priming for
specific therapeutic applications was evaluated by analysis of several cell characteristics.

Expansion of MSCs that have been previously isolated following our standard protocol
in αMEM+8%PL was compared for 13 different media in order to obtain primary infor-
mation on mixtures that are suitable for MSC expansion. Based on these results, further
analyses were reduced to media 1, 4, 7, 10, and 13, i.e., the pure form of each medium, a
50:50 mix, and two mixtures with a small proportion (5%) of the other medium. MSCs
used for these analyses were already isolated from BM and subsequently expanded in
respective media. Proliferation was generally increased for cells grown in 100% SF/XF
media (StemMACSTM; medium 13) as compared to those expanded in 100% XF/PL media
(αMEM+8%PL; medium 1) and proliferation could be even significantly enhanced by a
mixture of both media in specific ratios (media 7+9+10). Thus, a combination of SF/XF me-
dia with components contained only in PL seems to bring about the best ex vivo expansion
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of MSCs. Given this increased promotion of cell growth by a mixture of media, two main
hypotheses came up. On the one hand, either medium could potentially include important
factors completely lacking in the other media or only being present in insufficient amounts.
On the other hand, there might be also factors impeding cell growth whose concentrations
could be reduced by a mixture with the other media.

A general trend of decreasing expression of CD73 and CD105 by cells grown with
a higher content of StemMACSTM was observed during the first experiments using cells
initially isolated in αMEM+8%PL and afterward expanded in media 1 to 13. A reduction
in CD73 and CD105 expression was also described by Lensch et al. for cells grown in
StemMACSTM, though expression levels could be restored by expansion time [62]. Similarly,
no impact on the expression of identity and purity markers was observed when cells were
exclusively cultured in media 1, 4, 7, 10, and 13 (that is, isolation and expansion of cells
in either medium), assuming a stress reaction of cells after a change in media during the
first experiments.

We assumed that differences in metabolism were responsible for the altered prolif-
eration of cells and for divergent cell characteristics observed throughout the study. In
order to investigate these hypotheses, proteomic analyses of basic media αMEM+8%PL
and StemMACSTM, as well as respective cells grown in these media, were performed as
a first step. The results indicated substantial differences between these prototypic media.
Also, MSCs grown in these media showed differential expression of proteins that were
involved in several cellular processes. MSC growth in PL is rather associated with a profile
linked to the regulation of wound healing and coagulation. In contrast, a culture of MSCs
in the SF/XF medium StemMACSTM seems to be associated with a change in metabolic
aspects (biosynthesis of small molecules and metabolism of aldehyde, amide, unsaturated
fatty acid, carboxylic acid). Furthermore, differences between cells of media 1 and 13 were
also apparent for the binding of PDGF.

We analyzed the consumption and/or production of glucose and lactate and several
other factors during MSC cultures. Investigation of glucose and lactate metabolism revealed
significant differences between cells grown in media 1 and 13. The higher the percentage of
αMEM+8%PL, the higher the yield of lactate per glucose, indicating a higher proportion of
inefficient energy production by glycolysis as discussed by Schop et al. [53].

Analysis of growth factors, cytokines, chemokines, hormones, and other factors in
media showed higher concentrations for αMEM+8%PL-based media except for FGF-2
and insulin, the latter being totally absent in αMEM+8%PL. TGFβ, FGF-2, and PDGF-
BB were identified as essential components for MSC proliferation [35,63], and TGFβ and
PDGF-BB were only available at low concentrations during SF/XF conditions. The highest
consumption of TGFß was observed for cells grown in medium 4, whereas those in medium
1 showed no consumption at all, but even secretion. TGFβ can not only appear in its active
form but also in an inactive form where it is bound to latency-associated peptides. Since
only cells grown in medium 1 showed no TGFβ consumption at all, it may be the case
that TGFβ could not be used by these cells due to its presence only in an inactivated form,
thereby leading to lower proliferation. TGFβ has been shown to be activated by several
different mechanisms including shifts in pH or temperature, reactive oxygen species, TSP-1,
deglycosylation, proteases, or other factors like retinoic acid, sex hormones, vitamin D,
and MMPs [64,65]. Factors included in the media StemMACSTM may have resulted in
the activation of TGFβ in media 4, 7, 10, and 13, thus serving active TGFβ for metabolic
usage. However, since TGFβ activators TSP-1, as well as MMP-9 and MMP-2, could be
identified especially in medium αMEM+8%PL; also, reasons other than inactivation may
have accounted for altered TGFβ metabolism. Interestingly, Hahn et al. found increased
glycolytic activity of adipose-tissue-derived MSCs after TGFβ exposure [66]. This supports
the aforementioned assumption of increased energy production by glycolysis for cells
grown in media with high content of αMEM+8%PL, which had a significantly higher TGFβ
concentration in media. FGF-2 consumption was significantly higher for cells grown in
medium 13, but no differences were observed in expression levels of FGF receptors. Since
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ligand-induced endocytosis is a known negative feedback regulation for several growth
factor and hormone receptors [67], downregulation of FGFRs would be more likely than a
general lack of FGFR expression. Consumption of PDGF-AA and PDGF-AB/BB was higher
for cells cultured in αMEM+8%PL-based media, whereas expression of both isotypes of
PDGFRs, PDGFRA and PDGFRB, decreased for cells with rising content of αMEM+8%PL
in media. This may be again explained by ligand-induced endocytosis of receptors [67],
indicating a lower metabolic usage of PDGF by cells grown in StemMACSTM-based media.
This hypothesis could be further supported by differences in the binding of PDGF identified
during proteomic analyses of cells. Insulin showed important growth-promotion of MSCs
in SF media in a study performed by Li et al. [68], while IGF-I and IGF-II have been shown
to support osteogenic differentiation of MSCs [69,70]. The IGF system is a well-regulated
system including ligands IGF-I, IGF-II, and insulin, receptors IGF1R, IGF2R, and INSR,
as well as several IGF-binding proteins. Within this system, crosstalk between ligands
and receptors occurs in a way that all ligands can bind to IGF1R and INSR [71], while
IGF2R is only bound by IGF-II [72]. In contrast to IGF1R and INSR, which mediate cell
growth and survival [71,73], IGF2R accounts for lysosomal degradation of IGF-II, thereby
regulating its availability for binding to the other receptors [74]. Expression of IGFR1 and
INSR was generally low across cells of all media, assumedly accounted for by receptor-
mediated endocytosis. Higher expression was observed for IGF2R, especially for cells
grown in media 7 and 10, though expression levels were still low. Decreased IGF2R
expression was associated with increased cell proliferation due to enhanced availability
of IGF-II [75]. However, during this study, higher proliferation was observed for cells
expressing higher IGF2R levels, thus assuming a rather minor role of IGF2R in the regulation
of cell proliferation. All in all, given the divergent consumption of several factors and
expression of receptors important for cell growth, a combination of both media might
have been supportive for MSC proliferation by including factors of both media. This
supports the notion that it is not just one or few factors that are solely responsible for MSC
proliferation, but a complex interaction with redundancy and possibly synergism between
factors exists [34,35].

Aside from receptors for growth factors, the expression of other functionally relevant
surface antigens was also analyzed. The diminished therapeutic effect of MSCs is linked
to the pulmonary first-pass effect, which traps MSCs in the lung, thereby preventing
them from reaching their target sites [76]. Increased homing of MSCs towards bone and
reduced trapping of cells in the lung were associated with CD49d expression in a study
performed by Kumar et al. [77]. Hence, increased CD49d expression might be of advantage,
which was especially observed for cells grown in medium 7. CD49f was described as a
stemness marker of MSCs [78] and its expression was linked to higher adipogenic and
osteogenic differentiation potential [78,79]. A trend of reduced adipogenic differentiation
along with reduced CD49f expression seemed to be also apparent for cells grown with
increasing content of StemMACSTM, while a diminished osteogenic differentiation could
not be clearly ascertained during this study. However, with regard to the differentiation
potential of cells, it has to be generally noted that evaluation was only conducted on a
visual base. CD146 has been shown to impact MSC potency by affecting amongst others
their immunomodulatory potential [80–83]. A slightly reduced expression of CD146 was
observed for cells grown in StemMACSTM-based media 10 and 13, though expression levels
were still high. Likewise, a minor reduction in CD9 expression was obtained for cells grown
in medium 10, which was associated with decreased pro-angiogenic potential in a study by
Kim et al. [84]. Differences in expression of surface antigens were, aside from PDGFRB, most
pronounced for CD362, where expression increased for cells grown with increasing content
of StemMACSTM. CD362 (syndecan-2), expressed by a specific MSC subpopulation, was
found to be a suitable marker for MSC isolation, thereby resulting in a more homogenous
MSC population [85]. These cells have not only been shown to be equally effective as
heterogeneous MSC populations in the treatment of pneumonia [85,86] but CD362 was
even identified as a major regulator of therapeutic action regarding treatment of sepsis [87].
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CD10 was identified as an upregulated marker during osteogenic differentiation of MSCs
as compared to undifferentiated cells [88]. Since expression of CD10 was increased for
cells grown in media containing StemMACSTM, factors included in this media may have
resulted in CD10 upregulation. MSCA1 has been proven to be identical with tissue non-
specific alkaline phosphatase (ALP) [89]. In a study performed with MSCs from periosteal
tissue, MSCA1-positive populations have been linked to higher osteogenic differentiation
potential due to increased expression of osteogenic markers ALP and RUNX2 [90]. MSCA1
expression levels during this study were especially high for cells cultured in medium 7 and
accordingly low for those of medium 4, though expression was generally highly dependent
on MSC donors and showed strong variation among different donors.

MSC secretome includes several factors that are known to affect various cellular
programs associated with MSC potency. While some factors differed gradually between
the growth conditions, others showed a clear pattern associated with the respective growth
condition. Leptin, PDGF-AA and sCD40L were found only in SF/XF cultures. In contrast,
FGF-2, TGFβ and insulin were only secreted by PL-expanded MSCs. For some factors, e.g.,
OPG, OC, OPN, or IL-6, which are relevant for bone formation, the highest concentrations
in the supernatant of MSCs were reached in cultures combining both supplements. Given
that these factors are important mediators, the altered secretome might be associated
with different functionality. The potential implications of a change in various factors are
discussed below.

With regard to immunomodulatory actions of MSCs, TGFβ affects not only the migra-
tion of macrophages/monocytes in a concentration-dependent manner [91,92] but also di-
rected macrophage polarization towards an anti-inflammatory M2-like phenotype [93]. Fur-
thermore, atopic dermatitis could be mitigated by TGFβ-dependent suppression of TNFα
secretion from mast cells [94]. TSG-6-dependent modulation of macrophages was described
by several groups, leading to protection of renal tubular cells [95], accelerated wound
healing and reduced fibrosis [96] as well as alleviated burn-induced inflammation [97]
and zymosan-induced peritonitis [98]. Macrophage polarization was also shown to be
affected by the chemokine MCP-1. Polarization of anti-inflammatory IL-10+ macrophages
has been shown in a colitis model [99], and neuroprotective effects in spinal cord injury,
as well as improved wound healing, were associated with MCP-1-dependent recruit-
ment of macrophages and their polarization towards a reparative phenotype [100,101].
Anti-inflammatory effects were additionally linked to MSC-secreted HGF in the treat-
ment of radiation-induced injuries, psoriasis and bronchiolitis obliterans [102–105]. MSC-
conditioned media containing high levels of IL-6 resulted in improved wound healing [106]
which was associated with the conversion of macrophages from pro-inflammatory M1 to
the anti-inflammatory M2 phenotype by Liu et al. [107]. Furthermore, IL-6 was linked to
the suppression of T cell proliferation [108] and prevention of neutrophil apoptosis [109],
but also to autoimmune diseases in the case of disturbed IL-6 balance [110]. Modulation of
neutrophil migration was reported for MSC-derived IL-6, IL-8, GM-CSF and macrophage-
inhibitory factor [111]. GROα, secreted by MSCs, was identified as a key factor in pre-
venting GvHD, namely by enrichment of myeloid-derived suppressor cells (MDSC) [112].
sCD40L was described with regard to immunosuppression in cancer patients where ele-
vated sCD40L levels were associated with increased numbers of MDSCs [113]. During this
study, the secretion of immunomodulatory factors varied significantly between cells grown
in different media. While cells of all media may affect the polarization of macrophages by
different factors (e.g., TGFβ for cells grown in medium 1, MCP-1 and IL-6 for cells grown
in medium 4, TSG-6 for cells grown in media 7, 10, and 13), modulation of neutrophils may
be especially increased for cells cultured in medium 7, secreting high levels of IL-6 and IL-8.
Especially cells grown with high percentages of StemMACSTM showed enhanced GROα as
well as sCD40L secretion and thus may have increased potential in the treatment of GvHD.
Markedly increased levels of secreted HGF were obtained for cells cultured in media 7
and 10, indicating beneficial effects in different inflammatory diseases. Notably, most of
the aforementioned studies used gene modification for HGF overexpression, which may
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be also achieved by expansion in distinct growth media, as shown by the results of this
study. Suga et al. delineated the upregulation of HGF secretion by FGF-2 [114]. FGF-2 was
also identified in media during this study and increased with the content of StemMACSTM.
Hence, FGF-2 in media may have influenced HGF secretion, though also other factors must
have played a role since no upregulation of HGF was observed for cells grown in 100%
StemMACSTM—the media containing the highest concentrations of FGF-2.

Proper bone regeneration requires a balanced homeostasis between bone formation
and bone resorption. This process is mainly regulated by the activity of two cell types:
osteoblasts, responsible for bone formation, and bone-resorbing osteoclasts. Interaction
between these cells occurs amongst others by receptor activator of nuclear factor κ B
(RANK), expressed by osteoclast precursors and osteoclasts, and RANK ligand (RANKL),
expressed by osteoblasts. Binding of RANKL by its receptor RANK leads to the maturation
of osteoclasts and activation of bone resorption [115]. OPG, secreted by osteoblasts [116],
can prevent osteoclast activation by acting as a decoy receptor for RANKL, thereby in-
hibiting catabolic events [117]. OPG secretion by MSCs was reported by Park et al. [118]
and others and showed promising results in the treatment of disorders relying on dis-
turbed bone metabolism like osteosarcoma [119], but also in inflammatory diseases like
rheumatoid [120] or psoriatic arthritis [121], respectively. Disturbed bone formation has
been associated with global inhibition of IL-6 during different phases of fracture heal-
ing in a study by Prystaz et al. [122]. The factor PDGF-AA promotes osteogenesis by
inducing osteoblast differentiation of precursors like MSCs [123], a process that has been
shown to be enhanced in MSCs overexpressing leptin [124,125]. Moreover, OC, OPN,
RANTES and also MMP-1 were found to be important during osteogenic differentiation
of MSCs [126–129], and Nakamura et al. proposed OC as a predictive marker for this
process [130]. In contrast to the aforementioned factors, DKK1 prevents generation of
osteoblasts by inhibiting Wnt signaling and thus impedes maturation of osteoblasts from
precursors like MSCs [131]. Although TGFβ-mediated induction of MSC migration to bone
resorptive sites has been identified as a major regulator during bone remodeling [132,133],
differentiation of osteoblasts was inhibited by this factor [134]. During this study, secre-
tion of factors like leptin, PDGF-AA and RANTES was generally low and only obtained
for cells grown in media with high percentages of StemMACSTM, whereas expression of
MMP-1 decreased for those cells. High levels of OC, IL-6, and OPG were observed for
cells grown in media 4 and 7. While expression of CD10 and MSCA1, both associated
with osteogenic differentiation of MSCs [88,90], was highest for cells grown in medium
7, those of medium 4 showed reduced expression levels and additionally a significantly
higher secretion of DKK1, a factor impeding with osteogenic differentiation. These results
generally propose high support of osteogenic differentiation by MSCs grown in media
containing both αMEM+8%PL and StemMACSTM, which, however, need to contain equal
parts of each media. Interestingly, OPN secretion was generally low for cells grown in
media with high percentages of αMEM+8%PL (media 1+4), which seemed to have higher
in vitro adipogenic differentiation capacity. In accordance with these results, Chen et al.
described increased adipogenic differentiation by genetic ablation of OPN [128].

Angiogenesis is a major part of regenerative processes and is responsible for the sup-
ply of oxygen and nutrients to newly formed tissue. Support of angiogenesis has been
linked to many MSC-derived factors. FGF-2 was associated with improved angiogenesis by
supporting the proliferation and tube formation of endothelial cells [135,136] and enhanced
expression of pro-angiogenic factors by MSCs [137]. However, the expression of VEGF by
endothelial cells was also found to be induced by FGF-2 [138]. VEGF promoted differen-
tiation of endothelial cells from progenitors [139], and increased expression levels were
associated with therapeutic efficacy in a myocardial infarction model [140]. Interestingly, a
combined application of FGF-2 and VEGF increased tube formation of endothelial cells as
compared to both factors alone [135], and a combination of MSC-derived VEGF, MCP-1,
and IL-6 was identified as a driving mediator of angiogenesis in a hindlimb ischemia
model [141]. Although HGF had no major effect on angiogenesis in the latter study per-
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formed by Kwon et al. [141], several studies described HGF-dependent amelioration of an-
giogenesis and blood vessel restoration [142–146]. Furthermore, pro-angiogenic properties
have been shown for follistatin [147], leptin [148], and HB-EGF [149]. In contrast to all pro-
angiogenic factors mentioned so far, TSP-1 possesses anti-angiogenic properties [150]. MSC
treatment has also shown promising results in many neurodegenerative disorders where
neuroprotection and neurological regeneration are of major relevance. MSC-derived FGF-2
supported neurogenesis by inducing proliferation of neural progenitor cells [136], and HGF
showed neuroprotection and improved neuronal recovery [142,151–153]. Furthermore,
TSP-1 was associated with neuroprotection and promotion of neurite outgrowth [154,155]
which was also described for MSC-derived fractalkine [156]. During this study, high secre-
tion of pro-angiogenic factors like follistatin, IL-6, HGF, and MCP-1 was observed for cells
grown in media mixtures of αMEM+8%PL and StemMACSTM, while secretion of VEGF-A
seemed to be only reduced for cells lacking any αMEM+8%PL (medium 13). Notably,
only cells grown in medium 1 secreted FGF-2 at all, though secretion levels were generally
low—a phenomenon also observed by Aizman et al., who described low secretion but
high intracellular depots of FGF-2 [136]. In contrast, a trend of decreasing secretion with
increasing content of StemMACSTM in media was obtained for TSP-1. Therefore, support
of angiogenesis may be improved for cells grown in media 10, showing high secretion of
follistatin, VEGF-A, HGF and MCP-1 and reduced secretion of anti-angiogenic factor TSP-1.
With regard to neurological regeneration, cells cultured in medium 7, secreting high levels
of HGF and TSP-1, may be of advantage.

Wound healing not only demands re-vascularization of tissue but also its re-
epithelialization. Amongst other cell types, keratinocytes contribute to this process by
proliferation and migration [157], and HB-EGF has been shown to improve keratinocyte
migration [158]. However, regenerative mechanisms during wound healing can be dis-
turbed, thereby leading to fibrosis, a process that is characterized by excessive scar for-
mation. HGF and TSG-6 have been shown to prevent fibrosis [96,105,114,142,159–162],
whereas TGFβ was identified as a key factor in mediating scar formation, thereby lead-
ing to several pathogenic disease patterns [163]. Since secretion of TGFβ was only ob-
served for cells grown in αMEM+8%PL (medium 1) and only 5% of media StemMACSTM

(medium 4) completely abolished this secretion, factors derived from StemMACSTM must
have switched TGFβ metabolism, as already discussed above. This may direct MSCs to-
wards an anti-fibrotic phenotype, which can be further substantiated by the high secretion
of anti-fibrotic factors TSG-6 and HGF by these cells.

Secretion of insulin was only observed for cells grown in medium 1 and differentiation
of MSCs towards insulin-producing cells has been shown by expansion under specific
growth conditions, bearing potential for treatment of diabetes [164,165]. However, all in all,
it has to be noted that although the secretion of several factors could be shown during this
study, technical artifacts of the assay cannot be excluded.

The migratory capacity of MSCs allows for homing toward sites of injury, which is
a crucial feature during many therapeutic applications. MMPs are major regulators of
cell migration that do not only act by turnover of extracellular matrix (ECM) proteins but
also by affecting growth factors, cytokines, chemokines, and surface proteins [65,166–170].
Expression of MMP-1 and MMP-2 has been shown to be essential for the migration of
MSCs [129,171–174]. MCP-3 and HB-EGF were identified as chemotactic factors [175,176],
and secretion of MCP-1 by MSCs was described with regard to their enhanced migration [177].
Moreover, TGFβ has been shown to induce MSC migration [133], and this factor was
associated with the induction of MCP-1 expression in different cell types [178–180]. The
migration of cells grown in medium 4 was significantly increased during this study. High
expression of MMP-1 and MMP-2 was observed for these cells in addition to high secre-
tion levels of MCP-3 and HB-EGF, which may have augmented migration in an autocrine
manner by acting as chemoattractants. In line with the aforementioned studies connecting
TGFβ with MCP-1, cells grown in medium 4 consumed significantly more TGFβ which
may have induced MCP-1 expression, thus enhancing MSC migration. Notably, the migra-
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tory potential of cells grown with high percentages of StemMACSTM (media 10+13) was
considerably impaired as these cells were not able to fully close the gap during scratch
wound migration assay. Becker et al. linked the decreased migratory potential of MSCs
to the high confluence of the cell cultures at the time point of harvesting [173]. During
this study, high harvesting densities were observed for cells grown in media 7, 10, and
13. In addition, increasing the content of StemMACSTM in media led to strong adhesion
properties of respective cells, not only towards the surface of the culture vessel but also
between adjacent cells, resulting in big cell clumps. Hence, cells grown in media 10 and 13
may have been impaired in their migration by their adhesion properties.

The results of this study indicated an effect of growth media on the functional charac-
teristics of MSCs such as their differentiation potential or migratory capacity. Furthermore,
differential secretion of several factors associated with regenerative and immunomodu-
latory properties could be identified depending on culture conditions, thus potentially
leading to divergent functionality. However, the actual potency of MSCs needs to be fur-
ther elucidated in specific disease conditions where distinct factors and cell characteristics
might be of particular relevance. However, small extracellular vesicles (sEVs) secreted
by MSCs have shown equal therapeutic efficacy as MSCs [181,182] while bearing several
advantages as compared to their parental cells (e.g., their potential to cross biological
barriers) [183]. Since the effective isolation of sEVs from MSCs have been recently shown
by our group [184], the characteristics and potency of sEVs derived from MSCs cultured in
different media may be addressed in the future.

5. Conclusions

Overall, our study demonstrates that in addition to the biological pleiotropy of MSCs,
even seemingly small changes in the expansion conditions, e.g., modification of supple-
ments in the growth media, can result in substantial changes in cell characteristics. We
cannot conclude whether one approach (XF/PL-based expansion alone, SF/XF medium
alone, or a combination thereof) is generally superior. Rather, our experiments reveal that
the choice of the growth-promoting supplement can result in alterations in MSC phenotype
and function. The choice might depend on the targeted properties and the intended use of
the clinical MSCs. While specific MSC properties obtained during varying culture condi-
tions may be favorable for different applications, the stronger proliferation of cells grown
in combined media might help in reducing manufacturing costs due to a lower expansion
time required to obtain clinically relevant cell numbers. Nevertheless, for practical reasons,
the regulatory burden must not be disregarded when using combined media. Hence, the
results should underline that the type and concentration of the MSC-growth-promoting
supplement are critical components of the GMP manufacturing process of MSCs, which
requires careful validation in case of change.
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