Skip to main content
. 2023 Aug 9;13(16):2635. doi: 10.3390/diagnostics13162635
Algorithm 1 Training the Classification Model Based on DCGAN-Based Classifier
Input:
1: Load the dataset ISIC2017_Training_Data, S17;
2. Split the dataset: Training 70% and Testing 30%
3: Preprocessing of S17: interp2(), histeq(), imsharpen(), imfilter(), rgb2lab(), gaussian_median_filter()
4: Initialize the networks: Generator G(latent_noise), Discriminator D ();
5. Create optimizers to update the weights using backpropagation sgdmupdate () and learning rate();
6. Train the networks G with noise and D with real and G-generated images for a number of epochs.
    minGmaxDVG,D=Ex~Pdataxlogx+Ex~Pzzlog1DGz
7. ReLu and Tanh activation function for G; Leaky ReLu and SoftMax for D;
8. Calculate the loss function and repeat 5–7.
          D_loss=D_real_loss+D_fake_loss
9. D acts as Classifier N + 1 output
Output:
1: N + 1 Output
2: Confusion Matrix of Classification; Plots of AUC_ROC.
3: return Accuracy, Recall, Precision, Specificity and F1_Score.