Skip to main content
. 2023 Aug 9;11(16):2240. doi: 10.3390/healthcare11162240

Table 16.

Detecting myocardial infarction using machine learning techniques.

Data Set Machine Learning Approach Results
Physikalisch-Technische Bundesanstalt
(PTB) diagnostic ECG,
AF Classification [PhysioNet] [189]
Convolutional Neural Network–Long
Short-term memory (CNN-LSTM)
Sensitivity: 92.4%,
Specificity: 97.7%,
PPV 1: 97.2%,
F1-score: 94.6%
Physikalisch-Technische Bundesanstalt [190] Convolutional Neural Network Accuracy: 98.13%,
Sensitivity: 98.19%,
Specificity: 98.09%
MIT-BIH, Electrocardiogram Vigilance
with Electronic data Warehouse (ECG-ViEW II) [191]
Convolutional Neural Network (CNN),
Recurrent Neural Network, XGBoost
Accuracy: 89.8%, 84.6%, 97.5%,
Sensitivity: 93.2%, 78%, 93.5%,
Specificity: 88.1%, 87.8%, 99.4%,
F1-score: 89%, 82.8%, 97.1%,
AUROC: 90.7%, 82.9%, 96.5%
Medical records from the hospital
information system [192]
Random Forest AUC: 85%, Accuracy: 82%
MIT PhysioNet PTB
diagnostic ECG [193]
k-NN Accuracy: 99.96%
Sensitivity: 99.96%
Specificity: 99.95%
Physikalisch-Technische
Bundesanstalt diagnostic ECG [194]
Long Short-Term Memory (LSTM) Accuracy: 89.56%
Recall: 91.88%
Specificity: 80.81%

1 Positive predictive value.