Skip to main content
. 2023 Aug 9;11(16):2240. doi: 10.3390/healthcare11162240

Table 17.

Detecting coronary artery disease and coronary heart disease using machine learning techniques.

Data Set/Study Machine Learning Approach Results
——— [195] Logistic regression, Elastic Net,
SVM, Random Forest, XGBoost
AUC CAD 1 classification
LR: 0.79 ± 0.03,
EN: 0.90 ± 0.03,
SVM: 0.82 ± 0.03,
RF: 0.83 ± 0.03,
XGBoost: 0.85 ± 0.03
AUC LVEDP 2 classification
LR: 0.77 ± 0.05,
EN: 0.89 ± 0.03,
SVM: 0.76 ± 0.04,
RF: 0.73 ± 0.05,
XGBoost: 0.81 ± 0.04,
Sensitivity CAD EN: 80%,
Specificity CAD EN: 80%,
Sensitivity LVEDP EN: 91%,
Specificity LVEDP EN: 81%
Framingham Heart Study [196] Multilayer Perceptron Accuracy: 96.50%,
Sensitivity: 91.90%,
Specificity: 98.28%
Cardiovascular Disease Dataset [197] k-NN, Bagging,
Binary Logistic Classification,
Naive Bayes, Boosting
Bagged Decision
Accuracy: 73.9%
Gradient Boosting
Recall: 73.39%
Neural Network
F1-score: 72%
XGB
AUC: 73%
AdaBoost
Precision: 77.8%
MIMIC-II [198] Random Forest Accuracy: 96%
Sensitivity: 100%
Specificity: 85%

1 Coronary artery disease; 2 Left ventricular end-diastolic pressure.