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Abstract: Over the last decade, the therapeutic scenario for advanced non-small-cell lung cancer
(NSCLC) has undergone a major paradigm shift. Immune checkpoint inhibitors (ICIs) have shown a
meaningful clinical and survival improvement in different settings of the disease. However, the real
benefit of this therapeutic approach remains controversial in selected NSCLC subsets, such as those
of the elderly with active brain metastases or oncogene-addicted mutations. This is mainly due to the
exclusion or underrepresentation of these patient subpopulations in most pivotal phase III studies;
this precludes the generalization of ICI efficacy in this context. Moreover, no predictive biomarkers of
ICI response exist that can help with patient selection for this therapeutic approach. Here, we critically
summarize the current state of ICI efficacy in the most common “special” NSCLC subpopulations.
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1. Introduction

In the last 15 years, one of the major advances in clinical oncology has been the
introduction of immunotherapy (IO) to the treatment of a significant number of cancers,
particularly lung cancer.

Since 2013, several randomized trials have shown the superiority of programmed
cell death protein (PD)-1/PD-ligand (L)1 immune checkpoint inhibitors (ICIs) in terms
of overall survival (OS), in both the first- and second-line treatments of metastatic non-
small-cell lung cancer (NSCLC); in addition, several anti-PD1-PD-L1 drugs have become
integrant or exclusive components of the treatment strategy for unresectable or metastatic
advanced NSCLC [1–4].

However, in all randomized trials of ICIs ± chemotherapy vs. chemotherapy alone, in
both first- and second-line treatments, the real clinical benefit in terms of OS at 5 years of
follow up has resulted in being limited to a restricted number of patients; this has ranged
between 16 and 20% of metastatic stage IV NSCLC patients [5,6]. To date, we do not
have consistent reliable biomarkers to identify these patients beyond PD-L1 expression
or mutational tumor burden (TMB), both of which present significant insufficiency and
heterogeneity. For this reason, IO, in the absence of specific selective biomarkers, has been
registered as the preferred treatment for several cancers of different histology, including
melanoma, kidney cancer, lung cancer, gastrointestinal cancer, bladder cancer, head and
neck cancer, and hepatocellular cancer [7]. Despite this very broad label indication, IO
could not be suitable for all NSCLC patients; this is particularly true with NSCLC.
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In several randomized clinical trials, IO has shown a significant clinical benefit in
comparison to platinum-based chemotherapy in patients with a metastatic NSCLC and PD-
L1 expression over 50%; it has also been shown that there is a significant linear correlation
in clinical outcome between the PD-L1 tumor proportion score (TPS) and the magnitude
of benefit.

The combination of IO and chemotherapy in first-line treatment has been approved
as the potential treatment of choice, but in a recent FDA pooled analysis of 12 random-
ized clinical trials (RCTs) on patients with a PD-L1 of ≥50% treated with FDA-approved
chemo-IO regimens, it was shown that the majority of subgroups may have had improved
outcomes compared to those on IO-only regimens. However, patients ≥ 75 years of age
may not have better survival outcomes with chemo-IO in comparison to IO only [8]; in the
same pooled analysis, IO alone, IO in combination with chemotherapy, or chemotherapy
alone provided similar results regardless of the KRAS mutation status [9].

Traditionally, elderly patients, those with a poor performance status, and those with
brain metastases are considered to be ‘special’ populations of NSCLC patients, because of
their poor prognosis and the possibility that chemotherapy’s efficacy could be limited. The
purpose of this paper is to overview if these categories can also differentially impact on IO’s
efficacy. We also have to add another special population, such as never smokers and/or
oncogene-addicted patients, because an addiction to specific oncogenes could limit the
chance of producing neoantigens that could be targeted by the immune system. Moreover,
we discuss the biomarkers for immune response to try to understand whether potential
predictive factors can select immune-sensitive patients within those special populations.

2. IO in Never-Smoker and/or Oncogene-Addicted NSCLC Patients

Since the discovery of the epidermal growth factor receptor (EGFR) by Stanley Cohen
(Nobel prize, 1986), a number of studies and clinical trials have developed the paradigm of
precision medicine based on targetable genomic alterations. Oncogenic DNA mutations
and DNA tumor rearrangements are the basis for molecular-driven therapy in lung ade-
nocarcinoma. Since 2004, oncogene addiction has been demonstrated in terms of DNA
mutations in the EGFR (exon 19–21); B-RAF (V600E); MET (exon 14 skip mutations); intra-
genic insertions in EGFR and ERB-B2 (exon 20); or fusion rearrangements in ALK, ROS1,
RET, NTRK, and NRG1 in patients with lung adenocarcinoma. Proto-oncogenes induce cell
proliferation and apoptosis inhibition through the activation of different specific tyrosine
kinases (TKs). Therefore, a number of TKI inhibitors have been developed and approved
as the preferred treatments for oncogene-addicted lung adenocarcinomas [10].

TKIs consist of oral small molecules and have shown superiority over chemotherapy
in many randomized clinical trials; consequently, they represent the first line of treatment in
EGFR, ALK, ROS1, and MET proto-oncogene-driven tumors, with a response rate ranging
between 60 and 80% and a clear superiority in PFS and OS [11,12]. However, following
years of critical evaluation of the results of TKI-based targeted therapies in all specific
subsets of lung adenocarcinomas, some concerns have been raised: despite their high
activity, the complete response rate is usually less than 5%, and almost all patients soon or
later develop a resistance to TKIs and experience progressive disease. A large intratumor
heterogeneity for somatic mutations, rearrangements, and gene amplifications was ob-
served in a prospective cohort study on the whole-exome sequencing of 100 early stages of
resected NSCLC [13]. This genomic heterogeneity and chromosomal instability can explain
the different clinical outcomes and variable phenotypes that are present following the same
treatment and in the same oncogene addiction. Currently, platinum-based chemotherapy is
the only consistent second-line treatment; however, it is generally inadequate for patients
with oncogene-addicted metastatic NSCLC. Immunotherapy seems to work poorly on
oncogene-addicted tumors. In all the RCTs comparing IO and chemotherapy as both first-
and second-line treatments, a forest plot analysis showed that oncogene addiction, mainly
that of EGFR mutations and ALK rearrangements, and a never-smoker status represented
the variables that were more consistently associated with a chemotherapy benefit than
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IO [14,15]. The poor activity of IO in these situations can be explained by the absence of
smoking exposure in all these cases, considering that a never-smoker status accounts for
most oncogene-addicted tumors. NSCLC in never smokers has long been considered a
“different disease” [16] with a lower median age, a slight prevalence in females, widespread
clinical dissemination despite a good performance status (PS), and the increasing presence
of oncogene addiction. In never smokers and oncogene-addicted tumors, the number of
somatic TMBs is lower, and the PD-L1 upregulation, which is often present, has a different
biological role [17]. The tumor microenvironment is mostly poorly inflamed and results in
a cold immune phenotype, which can explain the modest activity of IO [18].

ICI treatment in oncogene-driven tumors has consistently yielded poor clinical results,
and when combined with TKIs in EGFR, ALK, and ROS1 patients, it has been shown to
have highly relevant toxicities, such as intestinal pneumonitis, liver failure, cutaneous
dermatitis up to Stevens–Johnson syndrome, and systemic fever [19].

In the IMMUNOTARGET registry, in which data from 24 international institutions
are collected, the overall response rate (ORR) to anti-PD-1 agents in 115 EGFR-mutated
patients was 12%, and the median progression-free survival (mPFS) was only 2.1 months;
in the same registry, in 19 ALK-rearranged patients, no activity at all was reported with ICI
monotherapy after TKI failure, with an mPFS of 2.5 months [16]. In the same study, the
patient population treated with IO, who harbored MET exon 14 skipping mutations, RET
rearrangements, or BRAF mutations, showed modest activity, with ORRs of 16%, 6%, and
24%, and poor mPFSs of 3.4, 2.1, and 3.1 months, respectively [20].

Furthermore, in a meta-analysis of randomized trials comparing different PD-L1
inhibitors to docetaxel as the control arm in second-line treatment after the failure of
platinum-based chemotherapy, never-smoker patients with an activating EGFR mutation
did not benefit from immunotherapy (HR: 1.05; 95% CI 0.70–1.55) [21].

The poor activity of immunotherapy in EGFR-mutant patients was confirmed in a
prospective phase II study, in which pembrolizumab was used as the first-line treatment in
EGFR-mutant patients with a PD-L1 TPS of >10%. The trial was prematurely closed after
enrolling 11 patients because of the lack of activity and concern about safety, which arose
with the development of interstitial lung disease (ILD) and two reported deaths in the first
6 months of treatment [22].

In a recent retrospective study performed at the Memorial Sloan Kettering Cancer
Center and the Dana–Farber Cancer Institute, in 147 patients with MET exon 14 skipping
alterations of any stage, the response to pembrolizumab in 24 patients was poor (ORR: 17%)
and the PFS was a very short 1.9 months, independent of PD-L1 expression and with a
lower TMB in comparison to non-addicted NSCLC [23].

The idea of combining TKIs and IO to improve the outcome of oncogene-addicted
patients has brought about unexpected safety problems in both the concurrent and sequen-
tial administration of ICIs and TKIs, with different toxicity profiles in EGFR-mutated and
ALK-rearranged patients. Indeed, ILD, pneumonitis, liver toxicities, cutaneous erythema,
and dermatitis have been reported at an increased rate in different trials of combination
treatments with heterogeneous behavior, and most trials have been stopped due to toxicities
and a lack of activity [24,25].

In daily practice, in addition to clinical trials, the sequential administration of IO
and TKIs can occur on the basis of the overexpression of PD-L1 and delayed information
regarding NGS mutational status. In this case, the prolonged half-lives of PD-1/PD-L1
inhibitors can induce enhanced toxicity, which can manifest at the beginning of TKI-based
treatment [26]. We have reported an exon 19 EGFR-mutated young female, who developed
a systemic continuous fever, intestinal lung pneumonitis, and severe liver failure with
Stevens–Johnson syndrome after the sequential administration of ICIs and TKIs. She fully
recovered after one month of supportive treatment [27].

In the absence of molecular information, a wise recommendation is to not start im-
munotherapy in never smokers or former infrequent smokers with a high TPS. A lack
of activity and unexpected enhanced toxicity has similarly been shown when combining
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ICIs and anti-ALK TKIs, mainly with a liver dose-limiting toxicity for both current and
sequential administration [28].

According to these data, immunotherapy seems to have no role in the treatment of
oncogene-addicted patients. Recently, however, in EGFR-mutated patients who failed
first-line TKIs, a randomized trial has shown a significant PFS and OS benefit with the
second-line combination of atezolizumab and carboplatin paclitaxel bevacizumab (PCB) vs.
PCB alone (HR: 0.61 in PFS; HR: 0.31 in OS). This finding suggests an important potential
interaction between immunotherapy and anti-angiogenesis [29], which may represent an
important treatment achievement, with the caveat that it is the result of a post hoc subgroup
analysis. For these reasons, IO is not currently taken into account as a treatment option in
the first-line setting, in combination with TKI, or in a subsequent-line setting.

3. IO in Elderly NSCLC Patients

Owing to the aging population and progress in cancer treatment, the aged population
with advanced NSCLC is increasing globally [30]. Conventionally, the elderly population
includes those aged ≥ 70 years; around half of all patients with advanced NSCLC are
within this population. By using a cutoff of 75 years, these patients represent around one
third of the overall NSCLC population.

In recent years, the concept of being elderly has changed from a purely chronological
evaluation to a more complex one, which also considers the biological age and functional
and social status of the subjects. In this regard, several scales have been developed that
can assess specific aspects, including function, comorbidities, quality of life, cognition,
and emotional state [31], and a comprehensive geriatric assessment on decision making
and treatment allocation is usually included in the multidisciplinary evaluation of elderly
NSCLC patients.

Elderly patients can benefit from TKIs if they harbor oncogene driver mutations. In
regard to EGFR-mutated patients, first-generation EGFR TKIs are favored over second-
generation ones because of their lower grade 3–4 toxicity [32]. However, osimertinib is
the best first-line option in older patients due to its good efficacy and tolerability [33,34].
Conversely, few ALK-rearranged elderly patients are represented in clinical trials. However,
the ALEX study showed that, in elderly patients, alectinib achieved a better PFS and
tolerability than crizotinib. More data are available for second-line ALK inhibitors in
elderly patients, and age should not induce the exclusion of patients from receiving these
kinds of drugs [33,35].

The introduction of ICIs to NSCLC patients has led to the reconsideration of the treat-
ment paradigm in the elderly subpopulation, who, before the immunotherapy era, were
often only candidates for best supportive care due to their ineligibility for chemotherapy.

However, though ICIs have demonstrated a better safety profile compared to chemother-
apy, major concerns have been raised about their efficacy in elderly subjects. Indeed,
immune senescence has been proposed as a process that favors cancer occurrence in older
patients, but it can also limit the efficacy and impair the safety of anticancer treatments [29].
Nowadays, we know that aging may foster many mechanisms that affect the immune
system. These include a reduction in bone marrow functions; a decrease in the size of other
organs, such as the thymus, lymph nodes, and spleen; a reduction in the antigenic diversity
of immune cells; a decrease in the co-stimulatory molecule expression on T lymphocytes;
and a reduction in the antibody production of B lymphocytes. Moreover, “inflammaging”,
a low-grade chronic inflammation state, is frequent with advanced age, and it is related to
an increase in pro-inflammatory cytokines [36,37]. Conversely, Erbe and colleagues found
biomarkers within a multi-omics database that were associated with an ICI response (such
as TMB, ICI-related gene expression in selected tumors, and a more immune-stimulatory
signaling TME) and were particularly enriched in tumors from older patients compared to
those of their younger counterparts [38]. Moreover, the assumption that ICI therapy has a
potentially reduced efficacy in the elderly has gradually faded away in light of the results
generated from second-line, randomized clinical studies. Indeed, single-agent anti-PD-1
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(nivolumab and pembrolizumab) and anti-PD-L1 (atezolizumab) have demonstrated a
prolonged OS and long-term survival compared to docetaxel in platinum-refractory pa-
tients, including the subset of older patients aged over 65 years. Based on these results,
ICI treatment has also been firmly established as a further line of treatment in the elderly
population. However, in these studies, the OS was not improved in the restricted cohort of
older patients aged over 75 years; these negative results could possibly have been affected
by the small number of patients.

To further support the efficacy of ICIs in elderly patients, a meta-analysis of 17 random-
ized controlled trials that compared ICIs (nivolumab, pembrolizumab, or atezolizumab) to
standard therapy (chemotherapy or targeted therapy) was conducted. The authors found
comparable survival outcomes between younger patients and those older than 65 years [39].
A subsequent pooled analysis, including some of those trials, confirmed the same results
with regard to the subgroup of patients aged > 75 years. The rates of severe toxicity in this
pooled analysis were not different in this age subgroup, but its small number of patients
could still have influenced this finding. We should presume that these very old patients
were carefully selected according to their performance status; thus, they do not really repre-
sent the real-life population of NSCLC patients older than 75 years [40]. Another pooled
analysis of studies comparing pembrolizumab and docetaxel in subsequent-line therapy
achieved a survival benefit from pembrolizumab in both elderly and younger patients
across each individual study [14,41,42]. Nevertheless, in a retrospective Japanese study,
the enrolled 131 elderly NSCLC patients (aged ≥ 75 years) receiving a subsequent line of
ICI monotherapy achieved an efficacy and safety level similar to that usually observed in
younger patients [43].

Soon after, the use of ICIs rapidly moved to the frontline setting of NSCLC treatment.
As for the second line, a restriction for age was not planned in trials on first-line ICIs versus
chemotherapy, which included the study of pembrolizumab monotherapy for patients with
a PD-L1 expression of ≥50% (Keynote-024); studies of pembrolizumab plus platinum-based
chemotherapy (Keynote-189, Keynote-407); and the study of atezolizumab plus platinum-
based chemotherapy and bevacizumab (IMPower150) [1,2,44,45]. In these trials, the authors
described no differences in terms of overall survival when using a cutoff of 65 years of
age. Similarly, patients aged ≥ 75 years did not show an improved survival with first-line
chemo–IO over IO only [8]. Another trial (EMPOWER-Lung 1) in the first-line setting
achieved a survival improvement for both younger and elderly patients (cutoff: 65 years)
with cemiplimab monotherapy over platinum-based chemotherapy [46].

A real-life study included a larger group of NSCLC patients older than 70 years
(n = 110), but the number of patients older than 80 years was still small (n = 16). Age did not
significantly influence either the survival or toxicity in the patients receiving first- or second-
line ICI-based therapy. The multivariate survival analysis of this study highlighted the
performance status and number of metastatic sites as independent prognostic factors [47].

In a study including three cohorts of NSCLC patients treated with immunotherapy
(n = 665), a high TMB made it possible to predict the durable clinical benefit only in patients
aged less than 65 years [48]. This finding suggests that immune senescence processes could
limit the neoantigen immunogenicity associated with a high TMB.

In a retrospective study comparing the uptake of systemic therapy before and after
the availability of TKIs and IO, a small proportion of elderly patients received systemic
therapy, but those treated achieved comparable survival outcomes to their younger counter-
parts [49]. Another retrospective study, evaluating patients who received anti-PD-1/PD-L1
in various age subgroups (<60, 60–69, 70–79, and ≥80 years), obtained differences in
survival outcomes, but similar toxicity rates [50].

An international retrospective study of almost one thousand elderly patients
(aged ≥ 80 years) also explored the tolerability of IO. They found that ICI-based treat-
ment is effective in this population and mainly well tolerated, though the frequency of
discontinuation owing to immune-related adverse effects increases with age [51]. Similarly,
a meta-analysis of seven studies comparing IO and chemotherapy age subgroups (<65 and
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≥65 years) achieved a similar overall survival benefit to anti-PD-1/PD-L1, but this result
was not observed for the subgroup of patients aged > 75 years [52]. A similar finding was
obtained in the meta-analysis by Sun et al. [53].

Overall, though efficacy was mainly confirmed across the data, some concerns still
remain with regard to IO–chemotherapy combinations, especially in octogenarians. In
this regard, a panel of experts have agreed on the need to expand clinical research with
robust, real-world studies on elderly NSCLC patients. Currently, there is an ongoing phase
III trial comparing atezolizumab plus carboplatin–paclitaxel vs. carboplatin–paclitaxel
specifically in elderly patients (aged 70–89 years) with advanced NSCLC (ClinicalTrial
ID: NCT03977194).

4. IO in Poor Performance Status (PS) Patients

The Eastern Cooperative Oncology Group (ECOG) PS is a scale used to estimate the
impact of a malignancy on a patient’s daily living abilities, and it helps in the determination
of the appropriate treatment and prognosis. It has scores ranging from 0 to 5, where 0 is the
best and 5 means that the patient has died.

A poor PS may be induced by tumor burden and/or comorbidities. It is commonly
believed that cancer patients with a tumor-related poor PS could benefit from treatments
that induce a rapid tumor response. If a poor PS is mainly caused by comorbidities, therapy
cannot change it.

Around one third of patients diagnosed with NSCLC have a poor PS (PS: 2–4) [54].
For those patients with metastatic NSCLC and a PS of 3–4 simultaneously, best supportive
care is deemed to be the standard of care, because of the unfavorable risk–benefit ratio of
chemotherapy and their short life expectancy (2–4 months from diagnosis).

Before the advent of targeted therapy and immunotherapy, chemotherapy was allowed
for PS 2 patients when less toxic regimens were used [55,56]. The observation of the fast
improvement in the PS of patients treated with TKIs, also known as the “Lazarus response”,
allowed clinical practice to change. Thus, metastatic NSCLC patients with activating
oncogene mutations could receive target therapy irrespective of their PS status [57,58].

Data on the efficacy of ICIs in NSCLC patients with a poor PS are limited and usually
come from heterogeneous meta-analyses and small phase II or expanded access trials.
Regarding prospective trials, some studies have included PS 2 patients, such as the PePS2
trial with pembrolizumab, the CheckMate 171 and CheckMate 153 trials with nivolumab,
and the CheckMate 817 trial with nivolumab plus ipilimumab [59–62] (Table 1). The PePS2
trial included only patients with PS 2. In the other trials, PS 2 patients were enrolled
together with elderly patients and PS ≤ 1 patients affected by comorbidities; therefore,
the final results were less specific with regard to the PS 2 patients. However, these trials
found grade 3–4 treatment-related adverse events in the PS 2 patients that were similar to
those observed in the PS ≤ 1 patients. Conversely, the OS was worse in the PS 2 patients
compared to that of the overall population.

A meta-analysis summarized the outcomes of the retrospective studies of first-line
immunotherapy in NSCLC patients with a poor PS (PS ≥ 2). In the selected studies, the
patients with a poor PS showed worse outcomes in comparison to those with a good PS. In
the group with a poor PS, the ORR was 30.9% (vs. 55.2% in the PS ≤ 1 patients), and the
disease control rate (DCR) was 41.5% (vs. 71.5% in the PS ≤ 1 patients). Similarly, both the
PFS and OS were worse in the patients with a poor PS in comparison to those with a good
PS [63].

The “Lazarus response” was also anecdotally described in patients with a very poor
PS (PS ≥ 3), who were treated with immunotherapy [64,65]. An initial PS ≥ 3 improved to
0 after only one month of ICI-based therapy, with a follow-up after more than 24 months
and a major tumor response. On the basis of these observations, pembrolizumab could be
considered to be a valid option for critically ill patients with advanced NSCLC and a PD-L1
expression of ≥50%.
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As PS 2 patients represent a heterogeneous population, the main challenge involves
knowing how to identify the patients who can really benefit from ICI treatment. This aim
could be reached through the identification of ad hoc predictive biomarkers, such as PD-L1,
TMB [66], the lung immune prognostic index, inflammatory markers, LDH, and steroids
exposure, in addition to those already utilized in clinical practice.

Recently, clinical trials for PS 2 NSCLC patients have been launched and are currently
ongoing (ClinicalTrial ID: NCT03620669; ClinicalTrial ID: NCT04108026).

Table 1. Selected clinical studies investigating safety and efficacy of ICI-based regimens for advanced
NSCLC patients with ECOG performance status > 2 ECOG performance status.

Study N Patients
(PS > 2) Setting Drug(s) ORR

(PS > 2)
mPFS

(PS > 2) Ref.

CheckMate171 811 (103) Pre-treated Nivolumab 11% (2.6%) NA (NA) [59]

CheckMate153 127 (7) Pre-treated Nivolumab 68% (NA) 24.7 (34.7) [67]

CheckMate817 589 (139) I line Nivolumab + Ipilimumab 37.3% (20.9%) 5.8 (3.6) [68]

CheckMate169 161 (30) Pre-treated Nivolumab NA (NA) NA (NA) [69]

Immitigata 54 (15) Pre-treated Nivolumab 16% (0) 2.5 (1.4) [70]

Clinivo 902 (121) Any line Nivolumab 19% (12.4%) 2.0 (1.7) [71]

TAIL 615 (61) Pre-treated Atezolizumab 11.1% (3.1%) 2.7 (1.7) [72]

EVIDENS 1420 (192) Pre-treated Nivolumab 19.6% (NA) 2.8 (NA) [73]

PePS2 67 (62) Any line Pembrolizumab NA (NA) NA (NA) [60]

SAKK 19/17 21 (21) I line Durvalumab NA (NA) NA (NA) [74]

Tabah, J. Clin.
Oncol., 2020 254 (34) I line Pembrolizumab + CT NA (NA) NA (NA) [75]

5. IO in NSCLC with Brain Metastases

The occurrence of brain metastases (BM) is relatively frequent in selected solid tumors,
such as lung cancer, breast cancer, and melanoma. It is estimated that up to 40% of lung
cancer patients will experience metastatic spreading to the central nervous system (CNS)
in the course of their disease [76]. Unfortunately, the prognosis and survival of patients
with BM remains poor; the presence of extracranial metastases or leptomeningeal disease,
primary disease control, age, and performance status represent the most relevant prognostic
factors [77]. No treatments have demonstrated real efficacy for non-addicted lung cancer
patients with BM in the pre-immunotherapy era; consistently, their therapeutic options are
largely palliative and include surgical resection, whole-brain radiation therapy (WBRT), or
stereotactic radiosurgery (SRS) [78], though both WBRT and, to a lower degree, SRS have
certain limitations, such as radiation neurotoxicity and cognitive deterioration [79–81]. In
contrast to radiotherapy, chemotherapy is rarely utilized due to its well-known limitation
in effectively crossing the blood–brain barrier (BBB), except for in the case of very limited
drugs [82]. Due to the lack of effective treatment, together with the poorer prognosis, in the
last decade, the BM patient population has usually been excluded from clinical trials with
chemotherapeutic agents, as well as those with immune checkpoint inhibitors (ICIs) [83].
More recently, growing scientific evidence has identified the CNS as immunologically
distinct rather than an immune-isolated compartment [84]. The inflammatory TME of BM
has been shown to be active in the majority of patients with a dense infiltration of tumor-
infiltrating lymphocytes (TILs), which often express immunosuppressive factors such as PD-
L1 [85]. This evidence and the availability of effective immunotherapeutic strategies [86,87]
targeting CTLA-4, PD-1, and PD-L1 have prompted their use in patients with BM [88],
particularly those with negative driver genes [89]. In this regard, Cohen J.V. et al. suggested
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that ICIs and active T cells could penetrate the BBB [90], which is necessary for ICIs to
work.

Limited data are currently available on the clinical efficacy of ICIs in NSCLC patients
with BM. The data generated in this scenario are mostly retrospective; they are real-world
data and have been preferentially generated in pretreated BM.

For example, clinicopathological features have been retrospectively related to efficacy
outcomes in advanced NSCLC patients who receive IO in combination with antiangiogenic
drugs. The authors found via a multivariate analysis that brain metastasis represented an
independent predictive factor of PFS [91].

In a prospective phase II trial, pembrolizumab induced an intracranial (ic) ORR in
10 out of 34 (29.4%) PD-L1-positive patients, while no objective responses were observed
in the 5 PD-L1-negative patient subsets [92]. The median OS among all the patients was
8.9 months, and 31% of the patients were alive after 2 years [92].

A pooled analysis from the three CheckMate (CM) studies (the phase II CM-063 and
phase III CM-017 and CM-057) explored the role of nivolumab in second-line NSCLC
patients with pretreated BM. The results showed an improvement in survival in patients
treated with nivolumab (8.4 months) as compared to those treated with chemotherapy
(docetaxel) (6.2 months). Supporting the efficacy of ICIs in this patient population, in
409 NSCLC patients with BM treated with nivolumab within the Italian expanded access
program (EAP), the ORR and DCR were 17% and 40%, respectively [93]. Additionally, in
the OAK study, an exploratory analysis performed on a cohort of NSCLC patients with
no active BM [94] showed an improvement in survival with atezolizumab compared to
docetaxel (16 months versus 11.9 months, respectively). Moreover, atezolizumab led to a
prolonged time to the radiologic identification of new symptomatic BM compared to the
docetaxel arm [95]. A pooled analysis of KEYNOTE-001, KEYNOTE-010, KEYNOTE-024,
and KEYNOTE-042 explored the effects of baseline stable BM in both patients with previ-
ously treated or untreated PD-L1-positive advanced or metastatic NSCLC who received
pembrolizumab monotherapy versus chemotherapy. All the efficacy (PFS and OS) and
activity (ORR and duration of response) outcomes were improved by pembrolizumab over
chemotherapy, regardless of brain metastasis status [96].

A meta-analysis summarized the outcomes of the three first-line studies (Keynote
(KN)-021, KN-189, and KN-407) in the NSCLC patient subpopulation with stable BM
compared to those receiving only chemotherapy. Interestingly, the patients who received
pembrolizumab alone or combined with chemotherapy received a benefit in terms of their
mOS (18.8 months vs. 7.6 months, HR 0.48), mPFS (6.9 months vs. 4.1 months, HR 0.44),
and ORR (39% vs. 17.7%), regardless of their PD-L1 status [97]. Similarly, the results
generated in the CM-9LA study showed an improvement in mOS (19.3 vs. 6.8 months),
mPFS (10.6 vs. 4.1 months), and ORR (43% vs. 24%) in patients with pretreated BM who had
received a platinum-based regimen combined with nivolumab plus ipilimumab, compared
to those who received only chemotherapy [98]. These results were comparable to the
results generated in the IMPower-Lung1 study, in which NSCLC patients with no active
BM receiving cemiplimab had a better mPFS compared to those treated with chemotherapy
(18.7 months vs. 7.4 months) [46] (Table 2).

Table 2. Selected clinical studies investigating efficacy and safety of ICI-based regimens in NSCLC
patients with pre-treated, stable brain metastases.

Study N Patients
(BMs) Setting Drug(s) ORR

(BMs)
mPFS
(BMs)

mOS
(BMs)

%G3–4 irAEs
(BMs) Ref.

Goldberg, 2018 42 (42) Any line Pembrolizumab 29.4 (ic) 1.9 (1.9) 8.9 (8.9) 21 (21) [92]

Italian EAP Nivolumab 1588 (409) Any line Nivolumab NA (17) NA (NA) NA (8.1) NA (NA) [99]

OAK Exploratory Study 425 (61) Pre-treated Atezolizumab NA (NA) NA (NA) 13.2 (16.0) 15 (15) [95]

Keynote 021–189-407 1298 (171) I line Pembrolizumab + CT 54.6 (39) 8.8 (6.9) 22.5 (18.8) 50.5 (59.8) [97]

CheckMate 9LA-BMs 361 (51) I line Nivolumab +
Ipilimumab + CT 37 (43) 5.8 (10.6) 15.6 (19.3) NA (NA) [100]

EMpower-Lung 1 BMs 563 (68) I line Cemiplimab NA (41.2) 8.2 (10.4) 23.4 (18.7) 29.7 (NA) [101]
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Despite these intriguing findings, the efficacy of immunotherapy in BM currently
remains controversial due to the limited sample sizes and long-term efficacy data in the
above clinical trials, and to the use of various immunotherapy regimens for which there
has been no comparison of effectiveness.

In order to overcome these limitations, Chu and colleagues [102] performed a comprehen-
sive meta-analysis that included a total of 3160 participants from 46 trials. The results showed
an improvement in PFS (HR = 0.48) and OS (HR = 0.64) for the immunotherapy-based regimen
compared to non-immunotherapy in NSCLC patients with BM; this was probably due to the
well-known synergy between ICIs and chemotherapy and/or radiotherapy.

Additionally, no significant differences in PFS (HR = 0.97, 95% CI: 0.40–2.35); OS
(HR = 0.69, 95% CI: 0.23–1.15); extracranial overall response rate (odds ratios (OR) = 0.75,
95% CI: 0.28–2.01); intracerebral overall response rate (OR = 1.27, 95% CI: 0.65–2.47);
intracerebral disease control rate (OR = 1.52, 95% CI: 0.80–2.91); or extracranial disease
control rate (OR = 0.99, 95% CI: 0.26–3.81) were observed between ICIs combined with
RT and ICI monotherapy. In this regard, future studies should be addressed toward the
investigation of both the sequencing of IO and RT and the optimal interval between ICIs
and cranial RT in the treatment of BM from NSCLC, in view of their potential influence
on the efficacy of ICIs combined with RT. Indeed, the evidence supports concurrent ICIs
combined with RT rather than sequential ICIs combined with RT, in terms of a decreased
incidence of recurrence. Furthermore, an interval shorter than 2 weeks between ICIs and
RT has been associated with a longer OS and PFS. Finally, dual ICIs combined with CT or
ICIs combined with CT have provided a better PFS and OS than ICIs alone.

An intriguing, relevant aspect concerns the efficacy of ICIs in NSCLC patients with
active BM, for whom limited data are currently available. The data generated in this
scenario are mostly retrospective and based on real-world data. However, the evidence
shown in metastatic melanoma patients with active BM strongly support the efficacy of
ICI treatment, especially in a combination regimen; this has become the new standard of
care for metastatic melanoma patients with BM [103,104]. In this regard, and seeking to
expand the potential efficacy of ICI treatment in NSCLC patients with active BM, a variety
of prospective clinical trials are currently ongoing (Table 3).

Table 3. Selected, ongoing clinical trials investigating efficacy and safety of ICI-based regimens in
NSCLC or melanoma patients with untreated brain metastases.

Study Name Status Primary Tumor Treatment Study ID (NCT) N
Patients

Primary
Endpoint

USZ-STRIKE Recruiting NSCLC,
Melanoma ICIs ± SRS NCT05522660 190 CNS-PFS

Durvalumab and
Radiosurgery for NSCLC BMs Recruiting NSCLC Durvalumab + SRS/

Durvalumab + Pulsar NCT04889066 46 Intracranial
clinical benefit

Pembro + Chemo in Brain
Mets Recruiting NSCLC Pembrolizumab + CT NCT04964960 45 DCR

Beva + Atezo ± Cobimetinib
in Brain Mets Recruiting Melanoma Bevacizumab+

Atezolizumab ± RT NCT03175432 60 icORR

An additional major concern is the appropriate evaluation of the radiologic response
of brain metastases during treatment with immunotherapy. Indeed, immunotherapy may
significantly affect the imaging features of BM, as well as the brain parenchyma, hinder-
ing the correct neuroradiological interpretation of post-treatment findings. Consistently,
atypical responses, such as initial disease progression or the appearance of new lesions
followed by a clinical response and pseudo-progression, can be observed in the course
of immunotherapy and misinterpreted as tumor recurrence or progression [105]. This
aspect is also more relevant for patients receiving radiotherapy for BM and immunotherapy.
Therefore, it is crucial for neuroradiologists to be more comprehensively familiar with
the treatment response criteria and treatment-induced changes in brain lesions [106–108].
With the aim of standardizing the radiologic evaluation of BM, novel criteria have been
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proposed and incorporated into the immunotherapy RANO (iRANO) criteria [109,110],
providing recommendations for the interpretation of neuroradiological changes in the
course of this therapeutic approach [109]. Moreover, PET-based imaging, especially with
amino acid tracers, provides information on tumor metabolism and is currently under in-
vestigation with regard to the proper differentiation of neoplastic tissues from non-specific,
treatment-related changes [111–114].

In conclusion, the results of ICI-based treatment in NSCLC patients with BM may soon
lead to significant changes in their comprehensive management; thus, the roles of surgery
and radiotherapy in treating BM may be revisited. Indeed, in selected cases, the ICI-based
regimen alone could represent the first, optimal therapeutic choice, though its use requires
a careful patient evaluation due to the lack of well-defined selection criteria. Prospective
clinical data to corroborate the efficacy of ICI treatment in NSCLC patients with BM are
awaited; in the daily practice scenario, a multidisciplinary interaction is mandatory for the
optimal management of lung cancer patients with BM and must undoubtedly include a
neuroradiologist to support the treating physicians in evaluating clinical responses and
neurological side effects.

6. Biomarkers

The use of biomarkers could represent an opportunity to stratify patients according
to their prognosis or IO efficacy. In this review, we grouped immune-related biomark-
ers into three categories: biomarkers of tumor immunogenicity (i.e., PD-L1, TMB, and
microsatellite instability), biomarkers of the tumor immune microenvironment (i.e., tumor-
infiltrating lymphocytes), and biomarkers of the host immune system (i.e., peripheral blood
inflammatory markers and myeloid-derived suppressor cells).

6.1. Biomarkers of Tumor Immunogenicity

Currently, PD-L1 expression is the most studied predictive biomarker of ICIs targeting
the PD-1/PD-L1 axis [115]. Metastatic NSCLC patients achieve a better OS benefit from
pembrolizumab in comparison to chemotherapy when their tumors express a PD-L1 of
≥50% [1]. Some data have also highlighted that the higher the PD-L1 expression level, the
greater the benefit from anti-PD-1/PD-L1, particularly when used as a monotherapy [41].
Despite these findings, PD-L1 expression has great limitations as a biomarker, given that
benefits from immunotherapy are also observed in patients bearing PD-L1-negative tumors.
For this reason, research on further biomarkers is ongoing.

TMB represents the total amount of DNA mutation per megabase. Only nonsyn-
onymous tumor mutations are considered. This amount is supposed to be related to the
generation of neoantigens that T lymphocytes can recognize as non-self. A higher num-
ber of neoantigens could enhance the efficacy of ICI-based therapy. TMB is independent
of PD-L1 expression [116]. However, a high TMB is more related to the efficacy of the
combination of nivolumab plus ipilimumab in NSCLC patients with negative PD-L1 [117].
Moreover, a combination of the CTLA-4 inhibitor tremelimumab plus the PD-L1 inhibitor
durvalumab did not improve OS in comparison to chemotherapy, but a better OS was
observed in patients with a high TMB in their ctDNA; these patients were treated with
this combination immunotherapy [118]. In the B-F1RST phase 2 trial, blood-based TMB
was evaluated as a predictive biomarker for first-line monotherapy with atezolizumab in
advanced NSCLC patients. A TMB of ≥16 was associated with higher tumor responses,
which further increased at higher TMB cutoffs. The OS was also better with a TMB of ≥16
in an exploratory analysis of this trial [119]. In a meta-analysis by Ma et al., including
almost three thousand patient tumor responses, the PFS and OS were improved in the
group of patients with a high TMB in comparison to those with a low TMB [120]. However,
the use of TMB as a biomarker is still limited by its heterogeneity across the various NSCLC
subtypes and variable detection assays, and the lack of a cutoff standardization.

Microsatellite instability (MSI) is the genomic consequence of mismatch repair defi-
ciency (dMMR). Microsatellites are short tandem repeats present throughout the genome.
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The instantaneous dissociation of the DNA strand during replication can change the mi-
crosatellite lengths, which should be corrected by the mismatch repair system. MSI severity
can be categorized into three groups: microsatellite stable (MSS), MSI low (MSI-L), and MSI
high (MSI-H) [121,122]. MSI and dMMR involve a high tumor immunogenicity; thus, some
authors have hypothesized that they have a role as predictive biomarkers for ICI-related
outcomes. The combined results of the study on ICI efficacy emerged in MSI-H tumors,
irrespective of tumor type [123]. These findings led the FDA to approve pembrolizumab
for the treatment of patients with advanced solid tumors when an MSI-H or dMMR status
was present. Prospective randomized studies focused on NSCLC are needed in order to
better identify further applications for these biomarkers.

Many efforts have also been made to standardize the analysis of these biomarkers in
the peripheral blood instead of tumor tissue. These include TMB in cell-free DNA from the
plasma of NSCLC patients treated with atezolizumab as subsequent-line treatment [124],
or with pembrolizumab-based first-line treatment [125], soluble PD-1/PD-L1 [126], PD-L1
mRNA and exoPD-L1 [127], or PD-L1-positive circulating tumor cells [128]. Even though
some of these biomarkers have achieved a prognostic impact in patients treated with IO,
none of these have reached an immediate applicability in clinical practice.

6.2. Biomarkers of Tumor Immune Microenvironment

The presence of CD8+ cytotoxic T lymphocytes infiltrating the tumor stroma (TILs) is
a requirement for ICI anti-tumor action. Some studies have already shown the favorable
prognostic role of TILs in NSCLCs [129,130]. These findings led to the hypothesis that these
cells could also represent a predictive biomarker of ICI efficacy [131]. Various approaches
have been used to address this aim. Among these, RNA sequencing and immunohisto-
chemistry staining of NSCLC samples from patients treated with anti-PD-1 showed that
high CD8A and CD274 mRNA expressions were associated with a longer PFS [132]. TILs
were also taken into account as an Immunoscore to supplement TNM staging in NSCLC,
called TNM-Immune (TNM-I) [133].

In the KEYNOTE-001 phase I trial, the tumor responses to pembrolizumab were
associated with a higher quantity of TILs in baseline tumor biopsies. For this purpose, the
biopsy slices were stained for CD8 [134]. Similarly, the search for TILs in tissue samples
from metastatic NSCLC or melanoma patients treated with anti-PD1 drugs highlighted that
response rates increased with CD8+ lymphocyte count and CD8+/CD4+ ratios [135]. Other
authors have used multiplexed quantitative immunofluorescence to characterize both PD-
L1 expression and TILs and their state of activation; they have also been characterized in
relation to their mutational status. NSCLC tissues bearing a KRAS mutation were more
inflamed because of a greater quantity of active TILs. However, EGFR mutant tumors
hosted inactive TILs. Moreover, activated TILs were related to a higher PD-L1 expression,
only in tumors without EGFR or KRAS mutations [136]. Some authors have also used the
gene expression signature of CD8+ T lymphocytes in correlation with a radiomic signature
for the detection of CD8+ TILs. The aim of this association was an indirect estimation
of the presence of TILs through a computed tomography scan to predict responses to
ICI-based therapy [137]. A new technique is under development using CD8 PET imaging
with the 89Zr-Df-IAB22M2C radioisotope to visualize the distribution of CD8+ T cells in
the whole body or at tumor sites, and potentially to predict early tumor responses to
immunotherapy [138].

6.3. Biomarkers of Host Immune System

Currently, a lot of evidence is available regarding systemic inflammation markers in
the peripheral blood as prognostic or predictive factors, particularly in metastatic NSCLC
patients treated with ICI-based therapy. The neutrophil-to-lymphocyte ratio (NLR) and
platelet-to-lymphocyte ratio (PLR) are the most studied. These biomarkers are based on
the association between tumor development and increased inflammation and can be easily
extracted from routine blood tests. Thus, these markers are usually available worldwide
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and are highly reproducible with no further costs [139,140]. Many studies on this topic
have been carried out; then, these studies have been summarized in some meta-analyses,
which confirmed that NLR and PLR may be considered as prognostic factors in metastatic
NSCLC patients treated with ICI-based therapy [141,142]. The former, by Tan et al. [141],
suggested that a high baseline NLR predicted a worse PFS and OS, but this result was
not confirmed for PLR. The latter, by Platini et al. [142], found that both biomarkers were
prognostic in the same setting.

Peripheral blood inflammatory markers were combined with other parameters to
obtain prognostic scores in order to predict the outcomes in metastatic NSCLC patients
treated with ICIs. These scores included further laboratory variables, e.g., the derived
NLR (dNLR), calculated with the formula [neutrophils/leucocytes–neutrophils], lactate
dehydrogenase (LDH), albumin, and C-reactive protein, as well as clinical variables, e.g.,
ECOG PS or tumor stage. Twenty-two combined scores were studied on the basis of
baseline values used only for prognosis. Some of these also showed a predictive value
for ICI-based therapy in both pretreated patients and the first-line setting or treatment
monitoring [143].

Among these prognostic scores, the lung immune prognostic index (LIPI) has been
the most studied in metastatic NSCLC patients. It includes two parameters, the dNLR
(cutoff: three) and LDH (cutoff: above the limit of normal). The presence or absence of
each factor defines a score for prognostic stratification, which is categorized into three
groups: a good LIPI for both factors under the cutoff; an intermediate LIPI for one factor
above the cutoff; and a poor LIPI for both factors above the cutoff [144]. Some subgroup
analyses of randomized trials and a pooled analysis including the above prognostic score
have confirmed its prognostic role in patients treated with both ICI and chemotherapy, but
not its predictive usefulness [145,146].

The presence or activation of suppressive cells can also limit the efficacy of ICIs.
Myeloid-derived suppressor cells (MDSCs) are the most studied and have shown a prog-
nostic role both in treatments with chemotherapy and in those with ICIs. MDSCs are
immature myeloid cells, which usually increase with tumor progression and are related
to systemic chronic inflammation. MDSCs interact with the host immune system through
various mechanisms: the inhibition of T cell function via the depletion of some fundamental
amino acids in the proliferation of T lymphocytes; the interference of the PD-1/PD-L1
signaling pathway with T cell viability and relative migration; the production of nitric oxide
(NO) and reactive oxygen species (ROS), which induces T cell apoptosis; the transition of
CD4+ T cells into regulatory T cells (Tregs) via TGF-β; the repolarization of macrophages
towards an M2 phenotype; the impairment of natural killer (NK) cell function via direct
cell–cell contact; and the reduction in IFN-γ production [147–150].

MDSCs can be grouped into two subpopulations: polymorphonuclear cells (PMN-
MDSCs), characterized by CD11b+CD14−CD15+ or CD11b+CD14-CD66b+, and monocytic
cells (M-MDSC), characterized as CD11b+CD14+HLA-DR−/lowCD15 cells. These surface
markers have great limitation in that they cannot help to distinguish normal monocytes
from M-MDSCs and neutrophils from PMN-MDSCs. A unique pattern of markers specific
for MDSCs is not currently available [151]. However, these cells have the advantage that
they can be studied in the peripheral blood as circulating markers.

A recent meta-analysis highlighted that NSCLC patients with high circulating M-
MDSC levels achieved a statistically significant shorter PFS and OS than patients with
low levels, irrespective of treatment. Statistical significance was not reached for PMN-
MDSCs [152]. Among the 14 studies summarized in this meta-analysis, 3 considered
NSCLC patients treated with immunotherapy and included 1 study on PMN-MDSCs, 1 on
M-MDSCs, and 1 on both cell subpopulations. The first one achieved a better OS when the
circulating PMN-MDSCs were higher [153]. In the second one, the OS was worse, with high
circulating M-MDSCs [154]. In the latter, a worse OS was associated with high PMN- and
M-MDSCs [155]. Given that these cells could also be targeted through various strategies,
the research on MDSCs treated with ICI-based therapy is still ongoing [156].
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7. Conclusions

In the last few years, we have witnessed an impressive therapeutic paradigm shift
in NSCLC with the appearance of the IO-based regimen in all clinical settings. However,
the role of these IO regimens has not been fully established for a significant proportion of
patients, particularly elderly patients with cases complicated by BM and/or TKI-resistant
driver gene mutations; it remains a challenge to treat these patients. The knowledge on the
applicability of immunotherapy in “special” NSCLC populations is mostly derived from
studies with other purposes. The various studies discussed in this paper highlight how
ICI-based therapy is not precluded in these patients.

A broader understanding of immune and inflammatory responses will fully allow
a definition of the real benefit of IO-based treatment for “special” NSCLC populations,
as will the ad hoc design of combined/sequential therapies. The availability of predic-
tive/prognostic biomarkers could help to select the patients for whom immunotherapy
would actually be beneficial, rather than those patients belonging to a “special population”.
Currently, we have some data on the biomarkers of tumor immunogenicity (i.e., TMB and
MSI), the tumor immune microenvironment (i.e., TILs), and the host immune system (i.e.,
NLR, PLR, LIPI, and MDSCs). However, these biomarkers have not yet been sufficient
to stratify patients belonging to ‘special populations’. Additionally, the identification of
validated biomarkers via multi-omics approaches will also be mandatory for the better
selection of NSCLC patients for IO therapy.
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