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Abstract

Introduction: : Parkinson’s disease (PD) is a neurodegenerative disorder that affects

millions of people worldwide. Subthalamic nucleus (STN) deep brain stimulation

(DBS) has been shown to be an effective treatment for PD; however, the effects of

this surgery on cerebral metabolism and presynaptic dopamine transporter (DAT)

distribution are still being studied.

Methods: : In this study, we included 12 PD patients (6 male and 6 female) who under-

went STN-DBS surgery and had both 18F-FDG and 11C-CFT PET/CT imaging before

and 1 year after the surgery. We used paired t-tests to identify changes in cerebral

metabolism and calculated PD-related metabolic covariance pattern (PDRP) scores.

Wealso assessed theuptakeof 11C-CFT in the striatumusing striatal-to-occipital ratios

(SORs).

Results: : One year after surgery, we observed significant reductions in tremor, rigidity,

akinesia, postural instability/gait disturbance, and Unified Parkinson’s Disease Rating

Scale Part III scores (p < .01, p < .001, p < .001, p < .001, and p < .001, respectively).

Hamilton Depression Rating Scale and quality of life (PDQ-39 SI) were also signifi-

cantly reduced (p < .05 and p < .01, respectively). The mean PDRP score decreased

by 37% from 13.0 ± 6.6 to 8.2 ± 7.9 after STN-DBS surgery (p < .05). We observed

decreased 18F-FDG uptake in several areas, including the temporal lobe (BA22),

thalamus, putamen, and cingulate gyrus (BA24), whereas it was increased in the sup-

plementarymotor area, postcentral gyrus, lingual gyrus, and precuneus (p< .05). SORs
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of 11C-CFT in the bilateral caudate nucleus and ipsilateral posterior putamen were

significantly decreased compared to preoperative levels (p< .05).

Conclusion: : Our findings suggest that STN-DBS surgery modifies the metabolic net-

work of PD patients and improves motor symptoms, depression, and quality of life.

However, it does not prevent the decrease of DAT in striatal areas.

KEYWORDS
11C-CFT, 18F-FDG, dopamine transporter, Parkinson’s disease, PET, STN-DBS

1 INTRODUCTION

PD is a progressive neurodegenerative disorder that can lead to

metabolic changes in various regions of the central nervous system

(Bloemet al., 2021). Parkinson’s disease (PD) symptoms encompass the

traditional PD triad consisting of tremor, akinesia, and rigidity, which

are linked to dysregulation of dopaminergic pathways. Additionally,

PD is characterized by various motor symptoms, including gait abnor-

malities, speech impairments, postural disturbances, and postural

instability, which are associated with disruptions in non-dopaminergic

transmission. Furthermore, PD presents a range of non-motor symp-

toms, such as cognitive dysfunction, sleep disturbances, reduced sense

of smell (hyposmia), depression, and anxiety (Bloem et al., 2021; Isaacs

et al., 2020). Although levodopa and other medications can alleviate

symptoms for aperiodof time, drug-induceddyskinesia andmotor fluc-

tuations are common in the late stages of PD for most patients (Evans

& Lees, 2004; Lang & Obeso, 2004; Olanow et al., 2006). Subthalamic

nucleus deep-brain stimulation (STN-DBS) surgery has become widely

accepted as an effective method to manage motor symptoms in PD

patients (Volonte et al., 2021). However, the mechanism of STN-DBS

remains under investigation.

Numerous past studies have shown that PD patients have specific

changes in overall brain metabolism patterns, known as PD-related

metabolic covariance patterns (PDRP) (Meles et al., 2020). These

changes are characterized by increased metabolism in the cerebellum,

brainstem, and basal ganglia, and decreased metabolism in the motor

areas of the parietal and frontal lobes. The score of this metabolic pat-

tern is correlated with the patient’s motor symptoms and clinical stage

and has been considered an indicator of treatment effectiveness in

some studies. In addition, some studies have explored metabolic net-

works associated with PD patients’ motor/cognitive function through

network analysis, such as the PD-related cognitive network (PDCP)

and the PD-related tremor network (PDTP) (Mure et al., 2011; Schindl-

beck et al., 2021). These metabolic patterns can be used to study

the mechanisms of specific symptoms and monitor relevant treatment

effects.

Molecular imaging is an important tool in clinical research for

patients with PD (Haider et al., 2023). Dopamine synthesized in the

substantia nigra neurons needs to be transported to the presynaptic

membrane through monoamine vesicles and released into the synap-

tic cleft, and then reuptaken by the presynaptic membrane’s dopamine

transporter (DAT). By using molecular probes to track the distribution

of biomolecules such as DAT and VMAT2, the damaged condition of

substantia nigra neurons in patients can be visually displayed, and it

can be used for semiquantitative analysis to detect disease progression

and assess treatment efficacy. Animal experiments have also shown a

strong correlation between the distribution of DAT obtained from PET

imaging and the number of surviving substantia nigra neurons (German

et al., 2015).

The purpose of this study is to investigate the effects of STN-DBSon

the distribution of presynapticDAT and the pattern of cerebral glucose

metabolism using 11C-CFT and 18F-FDG PET imaging in PD patients

before and after surgery.

2 METHODS

2.1 Study subjects

We consecutively recruited 12 patients with PD from 2011 to 2017

(meanage61.3±6.1 years, 6males and6 females)whowerediagnosed

with idiopathic PDandasked for STN-DBS surgery. Inclusion andexclu-

sion criteria for participants in this study are presented in the following

table.

Inclusion criteria Exclusion criteria

Diagnosis of idiopathic PD according to

the British PDAssociation Brain Bank

criteria

Presence of cognitive

impairment (mini-mental

state examination

[MMSE] score<26)

Age: 18–75 years Severe psychiatric or

behavioral disorders

Disease duration: more than 5 years Severemetabolic, cardiac,

respiratory, renal, and

hepatic conditions

Severe levodopa-inducedmotor

complications despite optimal

adjustment of antiParkinsonian drugs

Inability to comply with the

study protocol

At least 30% improvement inmotor

symptoms assessed by Unified

Parkinson’s Disease Rating Scale Part

III (UPDRS-III) after a levodopa

challenge test

Normal brain magnetic resonance

imaging (MRI)



LUO ET AL. 3 of 9

The study was approved by the Medical Ethics Committee of

the First Affiliated Hospital of Sun Yat-sen University, and a signed

informed consent form was obtained from each participant. All

patients underwent both 18F-FDG and 11C-CFT PET/CT imaging pre-

operatively and 1 year after STN-DBS surgery with stimulation on.

2.2 Clinical profile

In this study, clinical assessment was conducted during the “off” phase,

with patients abstaining from anti-PD medication for more than 12 h.

The assessment was performed by movement disorders specialists

who are neurologists. Clinical motor symptoms were evaluated using

UPDRS-III. Sleep disruption was evaluated using the PD sleep scale

(PDSS). The severity of depression and anxiety was assessed using the

Hamilton Depression Rating Scale (HAMD) and the Hamilton Anxiety

Scale (HAMA), respectively. Cognitive impairment was assessed using

the MMSE and the Montreal Cognitive Assessment (MoCA). In addi-

tion, quality of life was assessed using the PDQ-39 SI, which ranges

from 0 (no impairment) to 100 (maximum impairment).

The implantable pulse generator (IPG) was activated 1 month after

surgery. Patients were asked to return to the clinic for follow-up 1

year after STN-DBS surgery with stimulation on. Doses of antiParkin-

sonian medication were recorded at each follow-up visit. Medication

was calculated as the total levodopa equivalent daily dose (LEDD) for

each patient. Medications were converted to an equivalent dose of

immediate-release levodopa (Madopar, Roche) using the following for-

mula: 100mg immediate-release levodopa= 133mg extended-release

levodopa = 1 mg pramipexole = 100 mg piribedil = 10 mg selegi-

line. The efficacy of levodopa was increased by 25% compared with

entacapone (Jiang et al., 2015).

2.3 STN-DBS surgery

On the day prior to surgery, all patients underwent a brain MRI scan.

A Leksell G-frame (Elekta AB) was secured to the skull during the

preoperative brain CT scan. Subsequently, the CT image was merged

with the MRI image for each patient using stereotactic planning soft-

ware (iPlan, Brainlab) to determine the target and plan the trajectory.

Electrode implantationwas performedusing stereotactic guidance and

microelectrode recording (MER) technique under local anesthesia. The

quadripolar leads (model 3389,Medtronic) were inserted at the target

positions once satisfactory signals were obtained from MER. Intra-

operative experimental stimulation was performed to evaluate the

improvement in PD symptoms and stimulation-related side effects.

After confirming accurate placement of the electrode, the lead was

secured with a fixation device (Stimloc, Medtronic) to the drilled site.

The implantation of leads on the opposite side was conducted using

the same procedure. Finally, an IPG (Kinetra, Medtronic) was subcuta-

neously implanted in the right subclavicular area and connected to the

extended leads under general anesthesia (Jiang et al., 2015).

2.4 18F-FDG PET/CT imaging

18Fwasproducedusing aCyclone-10 cyclotron (IBA) at ourPETcenter,

and the synthesis of 18F-FDG was performed using a fully automated

synthesizer (Synthera, IBA). Subsequently, 18F-FDG PET/CT imaging

was conducted on a Gemini GXL16 (Philips). Prior to imaging, patients

were required to fast for at least 6 h and be in the “off” period. After

the injection of 370–444MBq 18F-FDG, patients rested for 45min and

underwent a low-dose CT scan of the brain for attenuation correction

of the PET images. PET images were acquired for 10 min in 3D mode

with an axial field of view of 180 mm. The image was reconstructed

using the 3DRamla algorithm to obtain a PET image of the brain with a

resolution of 2mm× 2mm×mm (Xian et al., 2021).

2.5 11C-CFT PET/CT imaging

At our center, an automated method was developed for the synthe-

sis of 11C-CFT tracer. Cyclone-10 cyclotron-produced 11C-CO2 was

used as the starting material, which was first hydrolyzed with lithium

aluminum hydride (LiAlH) to form a salt, followed by hydrolysis with

hydrogen iodide to produce 11C-CH3I. Subsequently, 11C-CH3I was

converted to triflate-11C-CH3 using an Ag triflate/C column. Finally,
11C-CFT was synthesized by methylation with the precursor nor-β-
CFT, eluted with anhydrous ethanol, and filtered through a sterile

membrane. The putative purity was determined by high-performance

liquid chromatography to be >95%. All PD patients were in the “off”

phase prior to PET imaging. Patientswere injectedwith 11C-CFT (aver-

age 185–370 MBq) and rested for 1 h before imaging. The imaging

procedure was the same as that used for 18F-FDG.

2.6 18F-FDG image processing

The DICOM data were converted to the SPM analysis format using

MRIConvert software (v2.1.0). Subsequently, the 18F-FDG images

were normalized to the standard Montreal Neurological Institute

(MNI) brain spatial coordinate system using SPM. The spatially nor-

malized PET images were then smoothed with an 8 mm isotropic

Gaussian kernel to account for interindividual anatomical variability.

Finally, paired t-test analysis was conducted to identify the regions

with metabolic changes, and PDRP scores were calculated using SSM/

PCA.

2.7 11C-CFT image processing

The T1-weighted images from the MRI and the PET images (pre-

and postoperatively) were first aligned. The MRI images were subse-

quently normalized to theMNI coordinate system, and the PET images

were normalized using the same transformation parameters. Regions

of interest in the striatum and occipital lobe were extracted from the
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TABLE 1 Clinical profiles of all patients.

Age (years) 61.3± 6.1

Gender (M/F) 6/6

Disease duration (years) 11.3± 5.1

Hoehn and Yahr stages (III/IV/V) 9/2/1

normalized MRI images. Each side of the striatum was further

divided into the head of the caudate nucleus, the body of the

caudate nucleus, the tail of the caudate nucleus, the anterior

part of the putamen, and the posterior part of the putamen.

Finally, the mean radioactivity counts in the striatum and occip-

ital cortex were used to calculate the striatal-to-occipital ratios

(SORs) of 11C-CFT (Jokinen et al., 2009). As PD patients typi-

cally have a lateralized onset, they were uniformly compared and

analyzed according to the contralateral and ipsilateral sides of

onset.

2.8 Statistical analysis

SPSS 26 software was used for statistical analysis in this study.

The Shapiro–Wilk test was utilized to assess the normality of the

distribution of the clinical scores. When parametric tests were appli-

cable, clinical scores from baseline to follow-up were tested using

Wilcoxon signed-rank or paired t-tests. Metabolic changes were ana-

lyzed by paired t-tests based on voxel levels using SPM software, and

FDR-corrected p < .05 was considered statistically significant. The

xjView toolbox (https://www.alivelearn.net/xjview)wasused todisplay

the metabolism of each brain region. Paired t-tests were performed

for SORs of 11C-CFT in each striatal region. Spearman correlation

analysis was conducted between preoperative PDRP and preopera-

tive UPDRS-III scores. A p-value of <.05 was considered statistically

significant.

3 RESULT

3.1 Clinical assessment

Twelve PD patients (6 male and 6 female) were included in this study,

with ameanageof61.3±6.1 years,meandiseasedurationof11.3±5.1

years, and mean UPDRS-III-OFF score of 54.7 ± 13.1 (Tables 1 and 2).

All patients underwent STN-DBS surgery and no cases of persis-

tent neurological sequelae or electrode dislocation after surgery were

reported. One year after STN-DBS, there was a reduction in tremor,

rigidity, akinesia, PI/GD, andUPDRS-III scores, with a 49% reduction in

tremor (p < .01), 58% reduction in rigidity (p < .001), 37% reduction in

akinesia (p< .001), 33% reduction in PI/GD (p< .001), 42% reduction in

UPDRS-III scores (p< .001), and a21% reduction in LEDD (p= .15). The

HAMD and PDQ-39 SI scores were also reduced by 31% (p < .05) and

37% (p< .01), respectively. However, therewere no significant changes

in the PDSS, HAMA, MMSE, and MoCA scores at 1 year after STN-

DBS.

3.2 18F-FDG metabolism

After surgery, there was a significant decrease in PDRP scores by 37%

with a change from 13.0 ± 6.6 to 8.2 ± 7.9 (p < .05). Additionally,

preoperative PDRP scores demonstrated a positive correlation with

preoperative UPDRS-III scores (r = .63, p < .05). The study also found

a significant change in regional cerebral metabolism after surgery, with

areas such as the supplementary motor area (SMA), postcentral gyrus,

lingual gyrus, and precuneus showing increased 18F-FDG uptake. Con-

versely, regions such as the temporal lobes (BA22), thalamus, putamen,

and cingulate gyrus (BA 24) showed reduced 18F-FDG uptake (cluster

size>50 voxels, p< .05) (Table 3 and Figure 1).

3.3 11C-CFT distribution

As depicted in Table 4, there were no significant differences in SORs

of 11C-CFT between the contralateral and ipsilateral anterior puta-

men. However, SORs of the bilateral caudate nucleus and ipsilateral

posterior putamen showed significant changes after surgery (p < .05).

Specifically, there was a 3.6% decline in SORs in the contralateral pos-

terior putamen, a 4.8% decline in the contralateral caudate nucleus,

and a 7.3% decline in the ipsilateral caudate nucleus. These findings

suggest that STN-DBS surgery does not prevent the decrease of DAT

distribution in the striatal region (Figure 2).

4 DISCUSSION

In this study, we investigated the impact of STN-DBS surgery on stri-

atal DAT distribution and cerebral metabolism. Our findings indicated

that STN-DBS could modify the cerebral network without preventing

striatal DAT decline. On the other hand, UPDRS-III scores, particularly

resting tremor and rigidity, were significantly reduced after STN-DBS

surgery, confirming that STN-DBS is an effective therapeutic approach

in controlling symptoms in patients with PD.

Our study found that preoperative PDRP was correlated with

preoperative UPDRS-III scores (Ge et al., 2020). Changes in brain

glucose metabolism were noted in several regions, with decreased

metabolism in cingulate, superior temporal, putamen, and thalamus,

and increasedmetabolism in lingual, precuneus, postcentral gyrus, and

SMA. These findings were in line with previous studies (Ge et al., 2020;

Langner-Lemercier et al., 2015). Kotaro’s research revealed that bilat-

eral STN-DBS decreased glucose metabolism in specific brain regions,

including the putamen, globus pallidus, primary motor area, prefrontal

cortex, and cerebellar vermis (Asanuma et al., 2006). The manifes-

tations of akinesia and rigidity in PD are believed to be associated

with abnormal functions of the cortico-striatopallido-thalamocortical

motor circuits, whereas tremor is associated with abnormalities of the

https://www.alivelearn.net/xjview
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TABLE 2 Clinical assessment of patients.

A.Motor symptoms and LEDD (mean± SD)

Tremor Rigidity Akinesia PI/GD UPDRS-III LEDD (mg)

Baseline (n= 12) 9.9 ± 7.2 11.7 ± 1.6 22.5 ± 5.1 8.1 ± 3.1 54.7 ± 13.1 970.3 ± 523.9

1 year (n= 12) 5.1 ± 4.2 4.9 ± 3.8 14.2 ± 5.7 5.5 ± 3.1 31.9 ± 12.5 763.0 ± 492.5

1 year vs. baseline ** *** *** *** *** p= .15

B. Nonmotor symptoms (mean± SD)

PDSS HAMD HAMA MMSE MoCA PDQ-39 SI

Baseline (n= 12) 101.7 ± 18.6 11.7 ± 6.3 7.1 ± 4.4 27.0 ± 4.0 23.2 ± 5.7 33.0 ± 10.3

1 year (n= 12) 110.6 ± 21.3 8.1 ± 3.9 4.6 ± 2.2 27.8 ± 1.8 24.0 ± 4.4 20.9 ± 14.1

1 year vs. baseline p= .13 * p= .96 p= .36 p= .35 **

Abbreviations: HAMA, Hamilton Anxiety Scale; HAMD, Hamilton Depression Scale; LEDD, levodopa equivalent daily dose; MMSE, mini-mental state exami-

nation; MoCA, Montreal Cognitive Assessment; PDQ-39 SI, the 39-item Parkinson’s disease questionnaire summary index score; PDSS, Parkinson’s disease

sleep scale; PI/GD, posture instability/gait disturbance; UPDRS, Unified ParkinsonDisease Rating Scale; UPDRS-III, Unified Parkinson’s Disease Rating Scale

Part III.

*p< .05.

**p< .01.

***p< .001.

TABLE 3 Brain regions with significant 18F-FDGmetabolic changes after subthalamic nucleus-deep brain stimulation (STN-DBS) surgery.

Item Brain region

MNI coordinates

Zmax Cluster size (voxels)X Y Z

Metabolic decreases Cingulum_Mid_L(BA24) −12 4 40 −5.1 291

Temporal_Sup_R(BA22) 52 −14 8 −4.2 80

Thalamus_L −4 −22 −6 −4.2 85

SupraMarginal −44 −54 32 −4.1 347

Putamen −28 12 −4 −4.1 211

Metabolic increases Lingual_R 4 −62 2 5.5 536

Cerebelum_Crus1_R 16 −90 −26 5.1 1012

Precuneus 12 −40 44 4.4 279

Supp_Motor_Area 6 14 62 4.0 546

Postcentral 20 −40 60 4.0 511

Abbreviation:MNI, Montreal Neurological Institute.

TABLE 4 Striatal dopamine transporter (DAT) striatal-to-occipital ratios (SORs) before and after subthalamic nucleus-deep brain stimulation
(STN-DBS) (mean± SD).

APu PPu CNH CNB CNT

Ipsilateral Before 1.61± 0.15 1.37± 0.08 1.84± 0.26 1.60± 0.20 1.44± 0.29

After 1.59± 0.16 1.32± 0.07 1.76± 0.24 1.53± 0.19 1.36± 0.25

p ns * * * **

Contralateral Before 1.73± 0.17 1.40± 0.07 1.95± 0.25 1.73± 0.22 1.42± 0.17

After 1.70± 0.16 1.38± 0.06 1.82± 0.25 1.60± 0.21 1.31± 0.17

p ns ns * ** **

Abbreviations: APu, anterior putamen; CN, caudate nucleus; CNB, caudate nucleus body; CNH, caudate nucleus head; CNT, caudate nucleus tail; ns, no

significant; PPu, posterior putamen; Pu, putamen.

*p< .05.

**p< .01.
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F IGURE 1 18F-FDGmetabolic changes 1 year after the subthalamic nucleus-deep brain stimulation (STN-DBS) surgery (p< .01, FDR< .05).
“Red” indicates the regions with increasedmetabolism, “blue” indicates the regions with decreasedmetabolism (cluster size>50 voxels).

F IGURE 2 11C-CFT imaging results of a 60-year-old male patient before (a) and after (b) subthalamic nucleus-deep brain stimulation
(STN-DBS) surgery. Striatal dopamine transporter (DAT) distribution is reduced 1 year after STN-DBS.

cerebello-thalamo-cortical pathway (Mure et al., 2011). The improve-

ment of these symptoms may be attributed to the modulation of these

pathways, which can also be confirmed through neuroimaging studies

of cerebral metabolism (Poston & Eidelberg, 2012).

Inour study, theDATdistributionwas consistentwithprevious stud-

ies showing that dopamine function remained persistently decreased

in the caudate nucleus and ipsilateral posterior putamen, indicating

that STN-DBS did not prevent nigrostriatal neuronal apoptosis. How-

ever, the lower rate of decline per year compared to previous studies

may be due to differences in disease progression or receptor target

selection. It is also worth noting that the results of DAT distribution

in the ipsilateral anterior putamen and the contralateral putamen after

STN-DBS surgery were not statistically different in our study, possibly

due to the late stage of the patients or the limited resolution of PET.

Jacobs suggests that STN-DBS has complex electrical effects on indi-

vidual neurons and neuronal networks, which can alter the dynamics
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of neurotransmitters, shape themicroenvironment, and influence neu-

roplasticity, neuroprotection, and neurogenesis (Jakobs et al., 2019;

Miller et al., 2021). However, several studies have found that therewas

no significant change in striatal dopamine concentration after surgery,

and that STN-DBSdidnothaveaneuroprotectiveeffect onSTNtargets

(Hilker et al., 2003, 2005).

Research on STN-DBS has demonstrated positive effects on var-

ious NMS in patients with PD, such as sweating, sleep/fatigue,

mood/cognition, attention/memory, perceptual/hallucinations, urinary

symptoms, pain, and olfactory function (Cury et al., 2014; Dafsari et al.,

2018, 2020; Jost et al., 2020). In our study, we utilized the PDSS,

HAMD, HAMA,MMSE, MoCA, and PDQ-39 SI to assess sleep, depres-

sion, anxiety, cognitive impairment, and quality of life. While sleep did

not significantly improve 1 year after STN-DBS, we observed signif-

icant improvements in depression which is consistent with previous

research that suggests STN-DBS may regulate the limbic system and

lead to improvements in depression (Cartmill et al., 2021). The lingual

gyrus is believed to play a role in episodic memory consolidation. The

activity of the lingual gyrus is associatedwith happiness and loneliness,

suggesting that the lingual gyrus is involved in emotional processes

(Kong et al., 2015). PD patients with depression may benefit from

lingual gyrus glucose metabolism increasing after STN-DBS. Future

research is needed to better understand the underlying mechanisms

of these improvements and to identify patients who are most likely to

benefit from STN-DBS for non-motor symptoms.

Reducing the LEDD can have significant benefits in reducing

medication-related dyskinesias, motor fluctuations, and other side

effects, which is a primary aim of STN-DBS surgery (Nakajima et al.,

2018). Research has shown that Parkinson’s patients who undergo

STN-DBS surgery require significantly less levodopa following the pro-

cedure (Krack et al., 2003). It is generally recommended to use the

lowest possible drug dosage to achieve satisfactory symptom con-

trol, which can help reduce motor complications and allow for future

medication adjustments. Our research found that at 1-year follow-

up after surgery, the patients’ LEDD decreased by 21%. However, the

paired test comparison before and after surgery did not have sta-

tistical significance (p = .15). This is different from other research

results, mainly because the two advanced patients included in the

study had an increase in LEDD after surgery, whereas the LEDD of

the other 10 patients decreased by an average of 36% (p = .02). This

also indicates that the surgical outcome of STN-DBS still has individual

differences.

This study had some limitations that need to be taken into consider-

ation. First, therewere no nonsurgical controls at the same stage of the

disease, which limits our ability to conclude whether STN-DBS slowed

the degeneration of substantia nigra cells. Secondly, the sample size

was relatively small, and thus the results of the study need to be veri-

fied further to ensure their accuracy and generalizability.Despite these

limitations, the studyprovides valuable insights into the effects of STN-

DBS on DAT density in PD patients and adds to the existing body of

literature on the topic.

5 CONCLUSION

In conclusion, STN-DBS surgerydid not prevent thedecreaseof striatal

DAT density, but it modified the cerebral metabolism.
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