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Abstract

Background: Depression is a common mental disorder that impacts millions of peo-

ple across the world. However, its diagnosis is difficult due to the dependence on

subjective testing. Although quantitative electroencephalography (EEG) has been

investigated as a promising diagnostic tool for depression, the associated results have

proven contradictory. The current study determines whether the alpha/beta (ABR),

alpha/theta (ATR), and theta/beta (TBR) ratios can serve as biological markers of

depression.

Methods:Weusedopen-access EEGdata fromOpenNeuro to investigate power ratios

in the resting state of 46 patients with depression and 75 healthy controls. Spectral

data were extracted by fast Fourier transform at the theta band (4–8 Hz), alpha band

(8–13Hz), and beta band (13–32Hz). Neural network, logistic regression, and receiver

operating characteristic (ROC) curves were used to assess the diagnostic accuracies

of each suggested index. Additionally, the cutoff point, sensitivity, specificity, positive

predictive value, and negative predictive value at the maximized Youden index were

compared for each variable.

Results: Decreased anterior frontal, frontal, central, parietal, occipital, and temporal

ABR and decreased central and parietal TBR were observed in the depression group.

The area under the curve of the ROC curves further revealed that these ratios could

all effectively differentiate depression. In particular, the central, frontal, and parietal

ABR exhibited high discrimination scores. Multiple logistic regression analysis demon-

strated that the Beck Depression Inventory and Spielberger Trait Anxiety Inventory

scores, aswell as the probability of depression, increasedwith a decrease in the central

ABR. Moreover, neural network analysis revealed that the global ABR was the most

effective index for diagnosing depression among the three global EEG power ratios.

Conclusions: The central, frontal, and parietal ABR represent potential biomarkers to

differentiate patients with depression from healthy controls.
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1 INTRODUCTION

Depression is a common mental disorder that can severely affect

mood, behavior, and personality. According to theWorld Health Orga-

nization (WHO) (2017), the number of patients with depression has

exceeded 300 million globally. Moreover, the recent COVID-19 pan-

demic has increased the prevalence of anxiety, depression, and stress

across theworld (Lakhanet al., 2020).However, the clinical diagnosis of

depression is highly dependent on subjective cognitive tests and physi-

cian judgment. Meanwhile, diagnosing depression using a dimensional

approach has proven even more challenging. Therefore, a more effec-

tive diagnostic method using objective biological markers is needed to

facilitate the early treatment of patients.

Magnetic resonance imaging (MRI) and electroencephalography

(EEG) have been proposed as alternatives to current cognitive tests.

More specifically, several imaging technologies, including functional

MRI (resonance), high-resolution structural imaging (3D-T1), and dif-

fusion tensor imaging, have been evaluated as potentially effective

means to detect neurobiological markers of major depressive disorder

(MDD) (Helm et al., 2018). However, these methods are expensive and

restricted to early diagnosis.

EEG is an inexpensive, noninvasive, and relatively convenient diag-

nostic tool for assessing the cognitive state of individuals. However,

most patterns of EEG abnormalities in patients with depression are

inconsistent (de Aguiar Neto & Rosa, 2019). Among the spectral-

, signal-, and network-based features, including band power in each

frequency range, alpha asymmetry, randomness, and functional con-

nectivity, only results related to the theta and Higuchi’s fractal dimen-

sions have proven relatively consistent in the context of depression

(de Aguiar Neto & Rosa, 2019; Pizzagalli et al., 2006). However, anal-

yses using relative and absolute theta power have generated differing

results. That is, although a significant difference has been reported in

absolute theta power between patients with depression and healthy

controls (CTLs), no significantdifferenceshavebeendetectedusing rel-

ative theta power (Newson&Thiagarajan, 2019). In addition, one study

criticized Higuchi’s fractal dimension method as being mathematically

incorrect (Martišek, 2022). Hence, new neurobiological markers, such

as the spectral power ratio between the slow and fast bands, are

needed for the effective diagnosis of depression. The ratio approach

to evaluate spectral power provides the effective brain index with eas-

ier calculations compared to nonlinear EEG features. Furthermore,

confusion and inconsistency between absolute and relative power

value like the example of theta band could be eradicated when the

ratio between bands is used. By connecting two possibly affected

wave bands together, the ratio approach can also amplify the sub-

tle abnormalities in the depressed brain so that they could easily be

detected.

The frequency band power ratios reflect the activity and state of the

brain, with the slow and fast band ratios used to assess various cogni-

tive states. Alpha oscillation manifests neuronal inactivity, relaxation,

and goal-related emotion, whereas beta oscillation is associated with

expectancy, anxiety, and internal control, and theta oscillation reflects

emotional processing (Abhang et al., 2016; Aftanas & Golocheikine,

2001; Aftanas et al., 2002; Coan & Allen, 2004; Freeman & Quian

Quiroga, 2012; Rao, 2013). Combination of such different frequency

ranges enables an acute assessment of complex cognitive states. For

instance, the alpha/beta (ABR) and theta/beta (TBR) ratios have been

successfully applied to determine the degree of stress (YiWen&Mohd

Aris, 2020). Meanwhile, the ATR or theta/alpha ratios can successfully

differentiate patients with Alzheimer’s, Parkinson’s, and other Lewy

body diseases from CTLs (Baik et al., 2022; Jaramillo-Jimenez et al.,

2021; Özbek et al., 2021; Schmidt et al., 2013; Zawiślak-Fornagiel

et al., 2023). Additionally, the TBR is useful for distinguishing Lewy

body diseases fromAlzheimer’s disease (Baik et al., 2022). Accordingly,

spectral power ratios may also be capable of effectively differentiat-

ing between patients with depression and healthy individuals, given

that several cognitive abnormalities are associated with depression.

ATRmight be able to detect emotional fluctuation and impaired cogni-

tive ability, which is highly correlated with depressive states (Beaujean

et al., 2013; Hammen, 2005). In addition, ABR and TBR might be able

to capture emotional stress and anxiety commonly found in depres-

sion group (Hammen, 2005; YiWen&MohdAris, 2020).We, therefore,

hypothesize that, by using a machine learning approach, the ATR, TBR,

and ABR can effectively differentiate patients with depression from

CTLs.

2 METHODS

2.1 Participants

This study used open-access datasets from OpenNeuro (Cavanagh,

2021) comprising 122 participantswhose cognitive statewas assessed

using the Beck Depression Inventory (BDI) and the Spielberger Trait

Anxiety Inventory (STAI) in mass and laboratory assessments. Accord-

ing to the original study (Cavanagh et al., 2019), participants aged

18–25 years with no history of head trauma or seizures and no cur-

rent psychoactive medication use were included in the study. If the

BDI scores were consistently high, a Structured Clinical Interview for

Depression was conducted to determine whether the participant had

MDD (Cavanagh et al., 2019). The MDD group (n = 21) was not sepa-

rated but incorporated in the depression group in the current study as

it used a dimensional approach for depression. Among the 122 partici-

pants, one was excluded due to unstable BDI scores betweenmass and

laboratory assessments. Participants with BDI scores >13 were con-

sidered depressed (n=46; 34 females). CTLs had stable lowBDI scores

(<7) and no self-reported history or symptoms of anxiety disorder

(n = 75, 40 females). According to the original study (Cavanagh et al.,

2019), all participants provided written informed consent as approved

by the University of Arizona. The current study was approved by the

public institutional review board designated by the Ministry of Health

andWelfare (P01-202304-01-003).
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2.2 EEG acquisition

Scalp EEGwasmeasuredwith64Ag/AgCl electrodes in a10/10 system

using a Synamps2 system (band-pass filter: 0.5–100 Hz, sampling rate:

500 Hz, impedances <10 kΩ; the online reference was a single chan-

nel placed between Cz and CPz) (Cavanagh et al., 2019). All raw EEG

data were recorded for 6 min per session in the resting state, and two

recording sessions per participantwere conducted: onebefore the task

described in the original study (Cavanagh et al., 2019) and the other

after the task. Each EEG session included eyes-closed and eyes-open

states and lasted1min.Only the resting-state EEGobtainedbefore the

task was used to avoid the probable interference effect of the task on

the resting-state EEG.

2.3 EEG preprocessing

EEGLAB was used to preprocess all EEG datasets. The EEG signals

were filtered at 1 Hz, which is appropriate for independent compo-

nent analysis (ICA) (Klug & Gramann, 2020). The sampling rate was

downsampled to 256 Hz. The raw data were cleaned with clean raw

data and ASR plugins in EEGLAB to remove bad data periods (Delorme

& Makeig, 2004; Miyakoshi & Kothe, 2019). ICA was conducted, and

artifacts from the eyes, muscles, line noise, and channel noise were

removed. All remaining data were average-referenced.

2.4 Spectral data acquisition

The spectral power was obtained by a fast Fourier transform (FFT)

with 2048 samples for the FFT length. The absolute spectral power

was extracted from each frequency band of theta (4–8 Hz), alpha (8–

13 Hz), and beta (13–32 Hz). Electrodes were separated and averaged

into regional groups: anterior frontal (AF3, AF4), frontal (F1, F2, F3, F4,

F5, F6, F7, F8, FC1, FC2, FC3, FC4, FC5, FC6, FCz, Fp1, Fp2, Fpz, FT7,

FT8, Fz), central (C1, C2, C3, C4, C5, C6, CP1,CP2,CP3,CP4,CP5,CP6,

CPz, Cz), occipital (O1, O2, Oz), parietal (P1, P2, P3, P4, P5, P6, P7, P8,

PO3, PO4, PO5, PO6, PO7, PO8, POz, Pz), and temporal (T7, T8, TP7, TP8).

Electrode location is shown in Figure 1. The spectral band ratios were

obtained by calculating the ABR, ATR, and TBR.

2.5 Neural network analysis

A neural network model was developed using the Keras package

in Python. The available data comprising 120 EEG datasets each of

which was extracted from each participant were partitioned into three

groups: training (85 datasets), evaluation (11 datasets), and testing

(24 datasets) sets, using a random sampling technique. The number of

datasets for each group was determined arbitrarily, but the number of

datasets for training was set to be larger than the half and three times

more than that for testing. The neural network architecture consisted

of an input layer comprising 60 neurons and two hidden layers com-

prising 40 and 20 neurons, respectively. The structure was determined

empirically using the criterion ofmaximizing accuracy in predicting the

results. Backpropagation was employed as the training method, with

the network weights redetermined for every three input data points

(batch size = 3). The neural network was trained for 2500 epochs to

minimize errors. The sigmoid and Rectified Linear Unit activation func-

tions were used, and the network was evaluated. An output threshold

of 0.5 was set, with values of 0 and 1 used to represent normal and

depressed, respectively. The performance of the network on the test

datawas evaluated by comparing the output results, whichwere trans-

formed using the activation functions and threshold values, with the

true values.

2.6 Statistical analyses

The statistical packages for the Social Sciences version 25.0 (IBM

Corp.) andMedCalc Statistical Softwareversion20.218 (MedCalc Soft-

ware Ltd.; https://www.medcalc.org; 2023) were used for all statistical

analyses. Chi-square and Mann–Whitney U-tests were used to com-

pare the clinical anddemographic characteristics andEEGpower ratios

between patients with depression andCTLs.Multiple linear regression

analyses with forward selection were used to determine the rela-

tionship between each lobar power ratio and the neuropsychological

test scores. Age and sex were included as the covariates and factors,

respectively. Multiple logistic regression using forward selection with

a likelihood ratio was used to determine the association between each

lobar power ratio and depression. Age and sex were included as the

covariates and factors, respectively. For both regression models, an

F probability <.05 was used as the entry, and >.10 was set as the

removal level. For each lobar power ratio, receiver operating charac-

teristic (ROC) curves and the areas under the curve (AUC) were drawn

and compared using Delong’s method, and binomial exact 95% AUC

confidence intervals (CIs) were calculated (Delong et al., 1988). Cut-

off point, sensitivity, specificity, positive predictive value (PPV), and

negative predictive value (NPV) were measured at maximum Youden

index after the standardization of disease prevalence to 50% (Hes-

ton, 2011; Youden, 1950). Overall, 95% CI for cutoff point and Youden

index was estimated with bootstrapping method (5000 iterations, 978

seeds). Overall, 95% binomial exact CI for sensitivity, specificity, PPV,

and NPV was estimated by Delong’s method (Delong et al., 1988). The

machine learning results using alpha/beta, alpha/theta, and theta/beta

were assessed for accuracy, sensitivity, specificity, PPV, NPV, and AUC.

PPV and NPV were measured after standardizing the disease preva-

lence to 50%. The AUC was calculated using the single-point method

(Zhang &Mueller, 2005). For the neural network, eight iterations were

used for statistical analysis.

https://www.medcalc.org
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F IGURE 1 Electroencephalography (EEG) electrode placement. The electrode location is allocated on 10–20 system.

TABLE 1 Clinical and demographic characteristics of depressed
patients and healthy controls.

Characteristic Depressed Control pValue

STAI 55.76 (7.08) 31.05 (5.49) <.001

BDI 22.22 (4.90) 1.73 (1.66) <.001

Age 18.74 (1.19) 18.99 (1.21) .211

Sex, female 34 (0.74) 40 (0.53) .02

Sample size 46 75 N/A

Note: Data are expressed as mean (SD) or number (proportion). Chi-square

orMann–WhitneyU-tests were employed as appropriate.

Abbreviations: BDI, Beck Depression Inventory; STAI, Spielberger Trait

Anxiety Inventory.

3 RESULTS

3.1 Clinical and demographic characteristics

The clinical and demographic characteristics are presented in Table 1.

No significant differences were observed in age between the depres-

sion and CTL groups (p = .211). However, the BDI and STAI scores

were higher in the depression group than in the CTL group (p < .001),

and the depression group comprisedmore females than the CTL group

(p= .02).

3.2 Significant differences in the power ratios
between the depression and control groups

The statistical analysis of differences in the power ratios between the

depression and control groups is presented in Table 2. The Mann–

Whitney U-test was conducted to determine differences in lobar

ABR, ATR, and TBR between the depression and control groups. The

anterior frontal (p = .005), frontal (p < .001), central (p < .001),

parietal (p < .001), occipital (p = .008), and temporal (p = .005)

regions exhibited lower ABRs in the depression group than the

CTL group. Similarly, the central (p = .006) and parietal (p = .03)

TBRs were lower in the depression group than the CTL group.

Meanwhile, no regions exhibited significant differences in the ATR

(p> .05).
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TABLE 2 Comparison of lobar power ratio between depressed
patients and healthy controls.

Depressed Control pValue

Anterior ABR 0.95 (0.27) 1.11 (0.28) .005

ATR 0.75 (0.19) 0.81 (0.19) .101

TBR 1.43 (0.72) 1.50 (0.81) .399

Frontal ABR 0.96 (0.24) 1.10 (0.21) <.001

ATR 0.80 (0.16) 0.85 (0.16) .165

TBR 1.35 (0.60) 1.39 (0.39) .172

Central ABR 0.89 (0.21) 1.07 (0.22) <.001

ATR 0.95 (0.18) 0.99 (0.19) .286

TBR 1.00 (0.33) 1.13 (0.32) .006

Parietal ABR 0.98 (0.26) 1.16 (0.24) <.001

ATR 1.03 (0.21) 1.07 (0.18) .221

TBR 1.02 (0.40) 1.13 (0.31) .03

Occipital ABR 0.97 (0.32) 1.12 (0.28) .008

ATR 1.09 (0.25) 1.09 (0.21) .81

TBR 0.98 (0.61) 1.06 (0.33) .055

Temporal ABR 0.91 (0.24) 1.04 (0.27) .005

ATR 0.88 (0.18) 0.91 (0.16) .315

TBR 1.15 (0.58) 1.22 (0.63) .116

Note: Data are expressed asmean (SD); Mann–WhitneyU-test.
Abbreviations: ABR, alpha/beta ratio; ATR, alpha/theta ratio; TBR,

theta/beta ratio.

TABLE 3 Association of lobar power ratio with
neuropsychological test scores and the presence of depression.

BDI

Central ABR Beta (SE) Std. beta pValue

−14.063 (3.895) −.315 <.001

STAI

Central ABR Beta (SE) Std. beta pValue

−16.27 (5.041) −.285 .002

Depression

Central ABR Odds ratio pValue

.021 (.003–.158) <.001

Note: Multiple logistic or linear regression was performed with forward

selection (enter variables if probability<0.05 and remove if>0.1).

Abbreviations: ABR, alpha/beta ratio; BDI, Beck Depression Inventory;

STAI, Spielberger Trait Anxiety Inventory.

3.3 Effect of power ratio on neuropsychological
test scores and probability of depression

The effect of the power ratio on neuropsychological test scores and the

probability of depression is presented inTable 3.Multiple linear regres-

sion was conducted to determine the effect of the lobar power ratios

on the BDI and STAI scores. As a result of forward selection, only the

central ABR had a significant effect on the BDI scores (p < .001). That

F IGURE 2 Area under the curve (AUC) of the receiver operating
characteristic (ROC) curve for each lobar power ratio. Null hypothesis
was set as 0.5 AUC; Delong’s methodwas used to statistically assess
whether AUC of each lobar power ratio is bigger than 0.5 AUC. Error
bars represent the 95% confidence interval. *p< .05, **p< .01,
***p< .001. ABR, alpha/beta ratio; ATR, alpha/theta ratio; TBR,
theta/beta ratio.

is, an increase in the central ABR caused a decrease in the BDI (stan-

dardbeta=−.315). In addition, as a result of forward selection, only the

central ABR had a significant effect on the STAI scores (p = .002), with

an increase in the central ABR associated with a decrease in the STAI

(standard beta=−.285). Sex and age did not influence either model.

A multiple logistic regression analysis with forward selection using

the likelihood ratio was conducted to determine the effects of lobar

ABR, ATR, and TBR on the probability of depression. Only the central

ABR was a significant independent variable in the model (p < .001); an

increase in centralABRwasassociatedwith adecrease in the likelihood

of depression (odds ratio: .021, 95%CI: .003–.158).

3.4 AUC of ROC analysis for lobar power ratios
and depression

The AUC of the ROC curve for each lobar power ratio for depression is

shown in Figure 2. A mean AUC > 0.7 was observed for central ABR

(0.723, 95% CI: .645–.801), frontal ABR (0.703, 95% CI: .624–.782),

and parietal ABR (0.702, 95% CI: .622–.782). A mean AUC = 0.6–0.7

was observed for the anterior frontal ABR (0.651 95% CI: .567–.735),

central TBR (0.648 95% CI: .564–.732), occipital ABR (0.643 95% CI:

.558–.728) and TBR (0.604 95% CI: .516–.692), parietal TBR (0.618

95% CI: .531–.705), and temporal ABR (0.652 95% CI: .568–.736). A

mean AUC < 0.6 was observed for the anterior frontal ATR and TBR,

central ATR, frontal ATR and TBR, occipital ATR, parietal ATR, and

temporal ATR and TBR. Lobar power ratios with an AUC > 0.5 were

anterior frontal ABR (p = .0034), central ABR (p < .0001), central TBR

(p= .0051), frontal ABR (p= .0001), occipital ABR (p= .0069), parietal

ABR (p= .0001), parietal TBR (p= .0358), and temporal ABR (p= .004).
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TABLE 4 Representative diagnostic accuracy values for lobar power ratios.

Cutoff Sensitivity Specificity Youden index PPV NPV

Anterior ABR ≤1.02 (0.77–1.28) 65.2 (49.8–78.6) 61.3 (49.4–72.4) 0.266 (0.103–0.381) 62.8 (54.2–70.6) 63.8 (53.3–73.1)

ATR ≤0.82 (0.77–1.14) 73.9 (58.9–85.7) 48.0 (36.3–59.8) 0.219 (0.098–0.351) 58.7 (51.9–65.2) 64.8 (51.7–76.0)

TBR ≤0.98 (0.82–1.60) 28.3 (16.0–43.5) 89.3 (80.1–95.3) 0.176 (0.080–0.250 72.6 (54.3–85.5) 55.5 (50.5–60.3)

Central ABR ≤0.87 (0.70–0.99) 50.0 (34.9–65.1) 88.0 (78.4–94.4) 0.380 (0.188–0.483) 80.6 (67.9–89.1) 63.8 (56.6–70.4)

ATR ≤0.96 (0.84–1.22) 60.9 (45.4–74.9) 54.7 (42.7–66.2) 0.155 (0.081–0.213) 57.3 (48.9–65.4) 58.3 (48.0–67.9)

TBR ≤0.95 (0.81–1.31 54.4 (39.0–69.1) 76.0 (64.7–85.1) 0.304 (0.148–0.444) 69.4 (58.3–78.6) 62.5 (54.2–70.0)

Frontal ABR ≤0.99 (0.85–1.04) 65.2 (49.8–78.6) 70.7 (59.0–80.6) 0.359 (0.156–0.466) 69 (59.6–77.0) 67 (57.1–75.6)

ATR ≤0.80 (0.65–0.93) 58.7 (43.2–73.0) 61.3 (49.4–72.4) 0.200 (0.092–0.314) 60.3 (51.1–68.8) 59.8 (50.2–68.7)

TBR ≤0.97 (0.81–1.31 30.4 (17.7–45.8) 93.3 (85.1–97.8) 0.238 (0.148–0.444) 82 (63.8–92.2) 57.3 (52.3–62.1)

Occipital ABR ≤1.09 (0.84–1.45) 71.7 (56.5–84.0) 54.7 (42.7–66.2) 0.264 (0.111–0.373) 61.3 (53.8–68.3) 65.9 (53.9–76.2)

ATR ≤1.35 (0.84–1.22) 78.3 (63.6–89.1) 6.7 (2.2–14.9) 0.151 (0.082–0.213) 45.6 (41.6–49.7) 23.5 (10.1–45.7)

TBR ≤0.75 (0.70–1.18) 39.1 (25.1–54.6) 92 8 (83.4–97.0) 0.311 (0.167–0.447) 83.67 (67.7–91.9) 60.2 (54.3–65.8)

Parietal ABR ≤1.03 (0.88–1.19) 63.0 (47.5–76.8) 72.6 (60.4–81.8) 0.356 (0.162–0.464) 69.2 (59.5–77.5) 66.1 (56.6–74.5)

ATR ≤1.01 (1.00–1.36) 56.5 (41.1–71.1) 70.7 (59.0–80.6) 0.272 (0.137–0.446) 65.8 (55.5–74.8) 61.9 (53.1–70.0)

TBR ≤0.86 (0.77–1.27) 41.3 (27.0–56.8) 89.3 (80.1–95.3) 0.306 (0.159–0.449) 79.5 (64.9–89.0) 60.3 (54.1–66.3)

Temporal ABR ≤0.85 (0.76–1.12) 47.8 (32.9–63.1) 80.0 (69.2–88.4) 0.278 (0.114–0.392) 70.5 (58.1–80.5) 60.5 (53.2–67.4)

ATR ≤0.77 (0.72–1.03) 34.8 (21.4–50.2) 85.3 (75.3–92.4) 0.201 (0.108–0.306) 70.3 (54.7–82.3) 56.7 (50.9–62.2)

TBR ≤1.00 (0.86–2.15 52.2 (36.9–67.1) 70.7 (59.0–80.6) 0.228–(0.1100.350) 64 (53.2–73.6) 59.6 (51.4–67.4)

Note: Data are expressed asmean (95%CI). Cutoff point, sensitivity, specificity, PPV, andNPVweremeasured atmaximumYouden index after standardization

of disease prevalence to 50%; 95%CI for cutoff point andYouden indexwas estimatedwith bootstrappingmethod (5000 iterations, 978 seeds); 95%binomial

exact CI for sensitivity, specificity, PPV, andNPVwas estimated by Delong’s method.

Abbreviations: ABR, alpha/beta ratio; ATR, alpha/theta ratio; CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value; TBR,

theta/beta ratio.

No significant differenceswere observed between the central ABRand

TBR (p = .0912), although the central ABR had a larger AUC than the

central TBR. The parietal ABRwas significantly higher than the parietal

TBR (p= .0301).

3.5 Representative diagnostic values of the lobar
power ratios for depression

The representative diagnostic values of the lobar power ratio for

depression are shown in Table 4. Optimal cutoff points for sensitiv-

ity, specificity, PPV, and NPV were suggested using the Youden index

method. The NPV and PPV were standardized at a disease prevalence

of 50%. These values can be used for comparison in future studies.

3.6 Representative diagnostic values of the
neural network for depression

The representative diagnostic values of the neural network for depres-

sion are presented in Table 5. Accuracy, sensitivity, specificity, PPV,

NPV, and AUC are presented with a 95% CI. PPV and NPV were esti-

mated after standardization of disease prevalence at 50%. The ABR

showed a significantly higher mean accuracy, specificity, and PPV than

the ATR. Compared with the TBR, the ABR exhibited higher diagnos-

tic discrimination power in all aspects, including accuracy, sensitivity,

specificity, PPV, NPV, and AUC. Similarly, the ATR showed a higher

accuracy, sensitivity, PPV, NPV, and AUC than the TBR.

4 DISCUSSION

The current study evaluated whether ABR, ATR, and TBR could

effectively discriminate patients with depression from CTLs. Before

examining the spectral power ratios, clinical and demographic charac-

teristics of the depression and control groupswere assessed. Although

both groups had similar age ranges, the depression group had a sig-

nificantly higher number of females. As depression is more common

and severe in women, this difference should be considered in future

studies (World Health Organization [WHO], 2017). Significance tests

revealed that all lobar ABRs decreased in the depression group com-

pared to the CTL group, whereas no differences in the ATRs, and a

smaller TBR, were observed only in the central and parietal lobes. In

particular, in the regression model, a decreased central ABR caused

an increase in BDI and STAI scores and the likelihood of depression.

In the AUC comparison, all lobar ABRs and central and parietal TBRs

exhibited significant AUC discrimination scores (>0.5), which was con-

sistent with the results of the significance test. In particular, central,
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TABLE 5 Representative values of neural network diagnostic accuracy.

ABR ATR TBR

Mean 95%CI Mean 95%CI Mean 95%CI

Accuracy 67.71a,b 64.10–71.31 58.85a,c 55.40–62.31 49.48b,c 48.25–50.71

Sensitivity 56.94b 53.66–60.23 59.72c 47.62–71.82 36.36b,c 32.30–40.43

Specificity 74.17a,b 67.89–80.44 59.17a 49.54–68.79 62.5b 60.23–64.77

PPV 69.31a,b 64.12–74.51 59.60a,c 56.81–62.38 49.09b,c 44.96–53.24

NPV 63.23b 61.11–65.35 60.29c 56.24–64.34 49.59b,c 47.24–51.94

AUC 0.717b MIN–MAX 0.633c MIN–MAX 0.5b,c MIN-MAX

0.656–.778 .594–.671 .5–.5

Note: Accuracy, sensitivity, specificity, PPV, NPV, and AUC are presented at disease prevalence of 50%. AUCs of receiver operating characteristic curve were

calculated by single-point method.

Abbreviations: ABR, alpha/beta ratio; ATR, alpha/theta ratio; AUC, area under curve; CI, confidence interval; NPV, negative predictive value; PPV, positive

predictive value; TBR, theta/beta ratio.
aSignificantly different in the comparison between ABR and ATR.
bSignificantly different in the comparison between ABR and TBR.
cSignificantly different in the comparison between ATR and TBR.

frontal, and parietal ABRs showed AUC discrimination scores >0.7,

which represents a “good” indicator of depression (Simundic, 2012).

Representative diagnostic values of each lobar power ratio, includ-

ing the cutoff point, sensitivity, specificity, PPV,NPV, andYouden index,

are presented at optimal cutoff points determined by the maximized

Youden index with a standardized disease prevalence of 50% (Hes-

ton, 2011; Youden, 1950). However, these representative values do

not represent the diagnostic accuracy of real tests. In the current

study, although the optimal cutoff points were determined using the

Youden index, this method assumes equal sensitivity and specificity

weights, ignoring the cost of decisions, and pursues only the maxi-

mized sum of sensitivity and specificity, which is clearly not the case in

real-world settings. In addition, disease prevalence was standardized

at 50% to estimate the PPV and NPV; however, the actual prevalence

wasmuch lower. Nevertheless, these standardized values enable a sim-

ple and effective comparison with other biomarkers of depression,

unlike the non-standardized values, for which the actual prevalence

or pretest probability is not fixed. As such, it is difficult to compare

non-standardized values under the same conditions. In addition, using

neural networks, the current study presents the representative diag-

nostic values of combined ABR, ATR, and TBR. ABRwasmore effective

in detecting depression than ATR and TBR. The ATR was also more

effective than TBR for diagnosing depression, whereas the ATR was

inferior to the ABR in terms of accuracy, specificity, and PPV.

Although it is difficult to determine the precise role of theABR, ATR,

and TBR in depression due to the high state-dependent characteristics

of EEG power, previous studies have provided empirical evidence to

predict their functions. For instance, the decreased ABRs and TBRs in

the depression group may represent increased mental stress, which is

predictive of depression (Hammen, 2015; Yi Wen &Mohd Aris, 2020).

Meanwhile, the ATR is effective in diagnosing patients with demen-

tia and cognitive decline (Baik et al., 2022; Jaramillo-Jimenez et al.,

2021;Özbek et al., 2021; Schmidt et al., 2013; Zawiślak-Fornagiel et al.,

2023); however, the results of this study suggest that depression may

not be associated with this index. This difference might be attributed

to a relatively lower degree of cognitive impairment in depression than

in dementia. Moreover, a significant difference in ABR was observed

across all electrode ranges, including the anterior frontal, posterior

frontal, central, parietal, and occipital lobes. This global decrease in the

ABR may be related to a wide range of alterations in functional con-

nectivity in the resting state of depression (Helm et al., 2018; Mulders

et al., 2015). Depression broadly affects myriad functional networks in

the resting state, including thedefaultmode, salience, and central exec-

utive networks, as well as the interaction between these networks and

between the anterior and posterior default mode network (Mulders

et al., 2015). Furthermore, more local analyses on functional connec-

tivity have reported that not only are the anterior frontal, posterior

frontal, parietal, occipital, and temporal lobes differently connected

to each other, but also several subcortical and limbic regions that

could affect the amplitudes of local electrodes are also associated

with these alterations in functional connectivity (Helm et al., 2018).

These alterations in functional connectivity might ultimately lead to

global changes in the ABR. Beyond this global change in EEG power

over every region, the central, frontal, and parietal lobes were highly

altered, as evidenced by an AUC discrimination score >0.7 in the cen-

tral, frontal, and parietal ABR, changes in the central and parietal TBR,

and identification of the central ABR as the sole factor that signifi-

cantly impactedBDI and STAI scores and depression probability. These

significant localized differences may be attributed to the prominently

altered functional connectivity around the medial frontal lobe, senso-

rimotor cortex, superior parietal lobe, and inferior parietal lobe (Helm

et al., 2018;Mulders et al., 2015).

Among the three EEG power ratios, the ABRwas the most effective

biomarker of depression. Although the central and parietal TBRs

exhibited differences between the depression and control groups,

global TBR was not effective in diagnosing depression using machine

learning. Meanwhile, each lobar ABR exhibited differences between

the two groups, and the global ABR was more effective than TBR
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in diagnosing depression. However, the effectiveness of the ABR in

diagnosing depression requires further investigation as the depression

group in the current study was based on a dimensional approach and

BDI score, which is not a reliable gold standard. . In addition, the EEG

data used in the current study were extracted from young populations

underage of 25, but depressive disorders are most frequent between

25 and 65 (Gurland, 1976). A paucity of sample sizes and variability

in FFT parameters might have led to an over- or underestimation of

the results of the current study. Hence, further analyses with bigger

sample sizes and various cognitive tests with diverse age groups are

needed to evaluate the real effectiveness of the ABR in diagnosing

depression. Moreover, current diagnostic accuracy in this study may

not be enough for practical and clinical use, although high discrimina-

tion scores still imply that ABR and TBR can be potential markers of

depression. Deep learningmethodwith an appropriate classifierwould

further improve the diagnostic accuracy using spectral power ratios.

We believe that the results of this study provide insights for future

work on amore effective and efficient diagnostic model of depression.
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