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Abstract: This review explores the emerging role of hydrogen sulfide (H2S) in modulating epige-
netic mechanisms involved in neurodegenerative diseases. Accumulating evidence has begun to
elucidate the multifaceted ways in which H2S influences the epigenetic landscape and, subsequently,
the progression of various neurodegenerative disorders, including Alzheimer’s, Parkinson’s, and
Huntington’s disease. H2S can modulate key components of the epigenetic machinery, such as DNA
methylation, histone modifications, and non-coding RNAs, impacting gene expression and cellular
functions relevant to neuronal survival, inflammation, and synaptic plasticity. We synthesize recent
research that positions H2S as an essential player within this intricate network, with the potential to
open new therapeutic avenues for these currently incurable conditions. Despite significant progress,
there remains a considerable gap in our understanding of the precise molecular mechanisms and the
potential therapeutic implications of modulating H2S levels or its downstream targets. We conclude
by identifying future directions for research aimed at exploiting the therapeutic potential of H2S in
neurodegenerative diseases.

Keywords: hydrogen sulfide; epigenetic regulation; neurodegenerative diseases; DNA methylation;
histone modifications; non-coding RNAs; Alzheimer’s disease; Parkinson’s disease; Huntington’s
disease

1. Introduction

Neurodegenerative diseases, including Alzheimer’s, Parkinson’s, and Huntington’s,
pose a formidable challenge to the modern medicine [1,2]. These conditions are character-
ized by the relentless and irreversible loss of neurons, leading to a gradual decline in cogni-
tive and motor functions [3]. They have become a significant subset of non-communicable
diseases, exacerbated by our longer human lifespan [4], impacting the lives of millions of
individuals worldwide. Not only do these diseases cause emotional distress, but they also
impose substantial economic burdens on society [5].

Delving into the biology of these complex conditions reveals an intricate web of
causative factors involving a complex interplay of genetic, epigenetic, and environmental
influences that collectively drive disease onset and progression [6–9]. Among these factors,
epigenetic changes have emerged as critical determinants in the development and course
of neurodegenerative diseases [10–14].

Epigenetic mechanisms play a fundamental role in gene regulation by facilitating dy-
namic changes in gene activity without altering the underlying DNA sequence [15–24]. Epige-
netics includes DNA methylation, histone modification, and the non-coding RNAs [25–30].

Beyond their biological significance, epigenetic changes also offer an intriguing evolu-
tionary perspective [31–33]. Modifying gene activity in response to environmental cues
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without altering the DNA sequence provides organisms with a remarkable evolutionary
advantage [34–37]. It has likely allowed living organisms to adapt and thrive in diverse
environments [38–42].

Despite its notorious association with the smell of rotten eggs and its potential for
toxicity in high concentrations, H2S has emerged as a molecule of interest in studying many
physiological and pathological processes [43–51]. H2S is endogenously produced in the
brain through the enzymatic breakdown of cysteine by cystathionine β-synthase (CBS),
cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST) [52]. It
acts as a neuromodulator and has been shown to play a pivotal role in regulating synaptic
transmission, neuronal survival, and neuroinflammation [53,54].

Recent evidence suggests that H2S could interact with the various epigenetic mecha-
nisms involved in neurodegenerative diseases [55–60]. By influencing epigenetic changes,
H2S could impact gene expression patterns relevant to these diseases. This potential in-
teraction between H2S and the epigenetic landscape provides a fresh perspective into our
understanding of these complex conditions and highlights the need for further research
into the role and mechanisms of H2S in these diseases [61–65]. Therefore, this review aims
to provide a comprehensive overview of the current research exploring the role of H2S in
regulating epigenetic processes associated with neurodegenerative diseases (Figure 1).
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Figure 1. This figure illustrates the central role of Hydrogen Sulfide (H2S) in epigenetic regulation 
and its interactions with various processes associated with neurodegenerative diseases. H2S affects 
epigenetic mechanisms, including histone modification, DNA methylation, and non-coding RNAs, 
which modulate gene expression and cellular functions relevant to neurodegeneration. H2S 
influences reactive oxygen species (ROS) production and oxidative stress levels, which play a critical 
role in the pathogenesis of neurodegenerative disorders. By reducing ROS production (blue arrow) 
and inhibiting ROS-generating processes at the mitochondrial level (red arrows), H2S impacts a 
broad spectrum of biological functions, as depicted in this figure for illustrative purposes. The 
interplay between H2S, epigenetic processes, and oxidative stress offers valuable insights into the 
molecular mechanisms underlying neurodegeneration and highlights the potential for therapeutic 
interventions to restore epigenetic balance and mitigate oxidative stress to combat 
neurodegenerative diseases effectively. The figure corroborates 3 major parts: 1. external sources 
and internal production of H2S; 2. the epigenetic role of H2S; and 3. the physiological connections 
presented in a simplified way. 

2. Methods 
Our systematic review followed PRISMA guidelines and registered on PROSPERO 

ID: 449843. To ensure comprehensive coverage of the relevant literature, we searched 
multiple databases, including PubMed, Scopus/Elsevier, Web of Science, and Google 
Search. The search strategy involved the use of specific keywords and medical subject 
headings (MeSH) related to hydrogen sulfide, epigenetic regulation (DNA methylation, 
histone modifications, non-coding RNAs), and neurodegenerative diseases (such as 
Alzheimer’s, Parkinson’s, and Huntington’s diseases). After removing non-eligible and 
duplicate references, our review included 115 relevant studies. In addition to the 
databases mentioned above, we also searched https://clinicaltrials.gov/ (accessed on 1 
June 2023) to identify potential clinical trials related to our topic (Figure 2). 

Figure 1. This figure illustrates the central role of Hydrogen Sulfide (H2S) in epigenetic regulation
and its interactions with various processes associated with neurodegenerative diseases. H2S affects
epigenetic mechanisms, including histone modification, DNA methylation, and non-coding RNAs,
which modulate gene expression and cellular functions relevant to neurodegeneration. H2S influences
reactive oxygen species (ROS) production and oxidative stress levels, which play a critical role in
the pathogenesis of neurodegenerative disorders. By reducing ROS production (blue arrow) and
inhibiting ROS-generating processes at the mitochondrial level (red arrows), H2S impacts a broad
spectrum of biological functions, as depicted in this figure for illustrative purposes. The interplay
between H2S, epigenetic processes, and oxidative stress offers valuable insights into the molecular
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mechanisms underlying neurodegeneration and highlights the potential for therapeutic interventions
to restore epigenetic balance and mitigate oxidative stress to combat neurodegenerative diseases
effectively. The figure corroborates 3 major parts: 1. external sources and internal production of H2S;
2. the epigenetic role of H2S; and 3. the physiological connections presented in a simplified way.

One of the key epigenetic mechanisms regulated by H2S is histone modification. H2S
has been shown to modify histone proteins through sulfhydration, a process by which a
sulfur atom is added to specific cysteine residues of histones [45]. Sulfhydration of histones
can modulate chromatin structure and gene expression, ultimately influencing various
cellular processes in neurons [66]. For instance, H2S-mediated sulfhydration of histones
has been reported to affect the expression of genes involved in synaptic plasticity, memory
formation, and neuronal survival. Dysregulation of this process has been implicated in
the pathogenesis of neurodegenerative diseases (NDs) [67], including Alzheimer’s disease
(AD) [68], Parkinson’s disease (PD), and Huntington’s disease (HD).

DNA methylation is another critical epigenetic mechanism influenced by H2S [69].
DNA methylation involves the addition of a methyl group to cytosine residues in CpG
dinucleotides, leading to transcriptional repression of target genes. H2S has been shown
to regulate the activity of DNA methyltransferases (DNMTs), the enzymes responsible
for DNA methylation. Changes in DNMT activity due to H2S dysregulation have been
associated with altered DNA methylation patterns in neurons, contributing to the aberrant
gene expression observed in NDs. For instance, H2S-mediated changes in DNA methylation
have been linked to the dysregulation of genes involved in neuroinflammation, oxidative
stress, and neuronal survival [70–73].

In addition to histone modification and DNA methylation, H2S interacts with non-
coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) [74].
miRNAs are small non-coding RNAs that post-transcriptionally regulate gene expression by
targeting mRNAs for degradation or translational repression. The dysregulation of miRNAs
has been implicated in various aspects of neurodegeneration, including protein aggregation,
neuroinflammation, and synaptic dysfunction. H2S has been shown to modulate the
expression and activity of specific miRNAs, leading to altered gene expression profiles in
neurons [75,76].

Furthermore, lncRNAs, a class of non-coding RNAs longer than 200 nucleotides, have
also been found to play crucial roles in neurodegenerative processes. H2S can influence
the expression and function of lncRNAs, thereby affecting gene expression and cellular
processes in neurons. Dysregulation of specific lncRNAs has been associated with NDs,
and their interaction with H2S further highlights the significance of epigenetic regulation
in the neurodegeneration [77,78].

2. Methods

Our systematic review followed PRISMA guidelines and registered on PROSPERO ID:
449843. To ensure comprehensive coverage of the relevant literature, we searched multiple
databases, including PubMed, Scopus/Elsevier, Web of Science, and Google Search. The
search strategy involved the use of specific keywords and medical subject headings (MeSH)
related to hydrogen sulfide, epigenetic regulation (DNA methylation, histone modifications,
non-coding RNAs), and neurodegenerative diseases (such as Alzheimer’s, Parkinson’s,
and Huntington’s diseases). After removing non-eligible and duplicate references, our
review included 115 relevant studies. In addition to the databases mentioned above, we
also searched https://clinicaltrials.gov/ (accessed on 1 June 2023) to identify potential
clinical trials related to our topic (Figure 2).

https://clinicaltrials.gov/
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Figure 2. Adapted PRISMA flow diagram, customized for our study. 
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maintaining neuronal health and adequate brain function [88,89]. H2S also influences 
proper immune system functioning, as it acts as an anti-inflammatory agent, dampening 
excessive inflammation and promoting immune balance [90]. However, it is essential to 
tightly control H2S levels, as high concentrations can become toxic, leading to cellular 
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role in cellular processes has likely evolved to help organisms adapt to changing 
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and cellular functions in various ways [32,93,94]. 

Figure 2. Adapted PRISMA flow diagram, customized for our study.

3. Results and Discussion
3.1. Hydrogen Sulfide and Neurodegenerative Diseases: An Overview

Hydrogen sulfide (H2S) is a multifaceted gasotransmitter, a gas molecule that occurs
naturally in organisms and has been recognized for its diverse roles in physiological and
pathological processes [79–81]. Despite its association with the unpleasant smell of rotten
eggs, H2S has garnered increasing attention in biology [48,82]. H2S has been found to
influence neuroinflammation, oxidative stress, and mitochondrial dysfunction, all of which
are implicated in the pathogenesis of neurodegenerative disorders. Its significance in
neurodegeneration is an intriguing area of investigation, with the potential to reveal new
therapeutic strategies [54,83,84]. By contextualizing the study of H2S within the framework
of evolution and epigenetics, we obtain a deeper understanding of its complex physio-
pathology [45,85–87].

This scientific exploration highlights the importance of interdisciplinary research,
bridging evolutionary biology and molecular medicine, and may pave the way for im-
proved treatments and better quality of life for individuals impacted by neurodegenerative
disorders and potentially other health conditions.

In the central nervous system (CNS), H2S regulates vasodilation, protects against
oxidative stress-induced damage, and modulates inflammatory responses, vital for main-
taining neuronal health and adequate brain function [88,89]. H2S also influences proper
immune system functioning, as it acts as an anti-inflammatory agent, dampening excessive
inflammation and promoting immune balance [90]. However, it is essential to tightly
control H2S levels, as high concentrations can become toxic, leading to cellular damage
and death [54,91]. Enzymes such as CBS, CSE, and 3-MST regulate H2S levels to prevent
harmful accumulation while allowing for its beneficial signaling functions [84,92]. The
study of H2S in biology is placed within the context of evolution, suggesting that its role in
cellular processes has likely evolved to help organisms adapt to changing environments
and cope with environmental challenges, thus influencing gene expression and cellular
functions in various ways [32,93,94].
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In Alzheimer’s disease (AD), H2S has been shown to modulate the activity of enzymes
involved in amyloid-beta (Aβ) production and tau protein phosphorylation, critical pro-
cesses in AD pathogenesis [54,95]. Specifically, H2S can promote the production of Aβ

through its influence on the enzyme beta-secretase (BACE1) and the gamma-secretase com-
plex [96,97]. Additionally, H2S has been shown to induce tau phosphorylation, leading to
the aggregation of hyperphosphorylated tau into neurofibrillary tangles [98]. Furthermore,
H2S can contribute to neuroinflammation and oxidative stress, exacerbating neurodegener-
ation in AD [99].

In Parkinson’s disease (PD), the aggregation of alpha-synuclein protein into Lewy
bodies is a central feature of the disease [100]. H2S has been implicated in the assembly
and misfolding of alpha-synuclein, promoting its neurotoxicity and contributing to the
progression of PD. Moreover, H2S can affect mitochondrial function and induce oxidative
stress, both associated with dopaminergic neuronal death in PD [101–103]. H2S-induced
inflammation and microglial activation may also affect disease pathogenesis [83,103,104].

In Huntington’s disease (HD), accumulating mutant huntingtin protein with an ex-
panded polyglutamine repeat is critical in the disease process [105]. H2S has been shown
to influence the aggregation and toxicity of mutant huntingtin, contributing to the degen-
eration of neurons in the striatum and other brain regions affected in HD. Additionally,
H2S can exacerbate mitochondrial dysfunction and oxidative stress, further contributing to
neuronal damage in HD [106,107].

Emerging research also suggests that H2S may be involved in the dysregulation of au-
tophagy, a cellular process crucial for removing misfolded proteins and damaged organelles.
Dysfunctional autophagy has been implicated in the pathogenesis of neurodegenerative
diseases, and H2S may contribute to autophagic impairments in these conditions [108–111].
Although the precise mechanisms by which H2S exerts its effects in neurodegenerative
diseases are still under investigation, the emerging evidence highlights its potential as a
promising therapeutic target.

3.2. Epigenetic Regulation in Neurodegenerative Diseases

Epigenetic regulation plays a pivotal role in the pathogenesis of neurodegenerative dis-
eases, influencing gene expression and cellular functions relevant to neuronal health [112].
Epigenetics refers to modifications that occur on the genome without altering the un-
derlying DNA sequence, and these changes can be inherited or influenced by environ-
mental factors. In neurodegenerative diseases, dysregulation of epigenetic mechanisms
has been implicated in disrupting normal cellular processes and the progressive loss of
neurons [16,113].

Chromatin remodeling is a fundamental epigenetic mechanism that regulates gene ex-
pression by modifying the chromatin structure, comprising DNA and histone proteins [114].
ATP-dependent chromatin remodeling complexes can lead to the misregulation of crucial
genes involved in neuronal survival and function [115]. Moreover, histone modifications,
such as acetylation and methylation, dynamically regulate gene expression in neurons,
and their perturbations have been observed in various neurodegenerative conditions [116].
These epigenetic alterations in chromatin remodeling can impact the expression of genes
associated with disease pathology, highlighting the significance of chromatin remodeling
in the neurodegeneration [117]. Targeting chromatin remodeling factors may hold promise
for developing epigenetic-based therapies to counteract neurodegenerative disease pro-
gression and promote neuroprotection. Further research is needed to elucidate the precise
molecular mechanisms and potential therapeutic implications of chromatin remodeling in
neurodegenerative diseases [28].

Three primary epigenetic mechanisms are particularly relevant to neurodegeneration:
DNA methylation; histone modification; and non-coding RNAs [25].
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3.2.1. DNA Methylation

DNA methylation involves adding a methyl group to specific cytosine residues in the
DNA sequence, typically occurring at CpG sites (Cytosine-phosphate-Guanine) [118–120].
Methylation of CpG islands in the promoter regions of genes is associated with gene
silencing, leading to reduced gene expression. In neurodegenerative diseases, aberrant
DNA methylation patterns have been observed in genes that play crucial roles in neuronal
function, such as synaptic plasticity, neuroinflammation, and oxidative stress response.
These changes in DNA methylation can impact the expression of genes linked to disease
pathogenesis, contributing to the dysfunction and death of neurons [120].

Emerging research has shed light on the dynamic nature of DNA methylation in
neurodegenerative disorders and its impact on disease progression [121]. For instance,
studies have shown altered DNA methylation patterns in genes associated with amyloid-
beta processing and tau phosphorylation in Alzheimer’s disease (AD) [122]. Similarly, in
Parkinson’s disease (PD) [123], dysregulated DNA methylation has been observed in genes
linked to mitochondrial function, dopamine signaling, and neuroinflammation [124].

Moreover, DNA methylation changes have been implicated in regulating genes in-
volved in response to oxidative stress, a process closely linked to neurodegeneration. Ox-
idative stress-induced DNA methylation alterations can affect the expression of antioxidant
defense genes, exacerbating neuronal vulnerability to oxidative damage [125].

Advancements in epigenomic technologies, such as genome-wide DNA methylation
profiling, have provided valuable insights into the specific genes and pathways affected by
DNA methylation changes in neurodegenerative diseases [119].

3.2.2. Histone Modification

Histones are proteins around which DNA is wrapped to form chromatin, the complex
structure that packages DNA within the cell nucleus. Histone modifications, such as
acetylation, methylation, phosphorylation, and ubiquitination, can alter the accessibility
of DNA to transcriptional machinery, affecting gene expression. Dysregulation of histone
modifications has been involved in neurodegenerative diseases, leading to altered gene
expression patterns that might contribute to disease progression. For example, histone
deacetylases (HDACs), enzymes involved in histone deacetylation, have been shown to
regulate gene expression in Alzheimer’s and Huntington’s disease [126].

In Alzheimer’s disease (AD), perturbations in histone acetylation and deacetylation
processes have been linked to disease pathology. Histone deacetylases (HDACs), a class
of enzymes responsible for histone deacetylation, play a crucial role in regulating gene
expression in AD [117]. Studies have shown that dysregulation of specific HDACs, such
as HDAC2, is associated with synaptic dysfunction and cognitive impairment in AD.
Additionally, histone acetyltransferases (HATs), the enzymes responsible for histone acety-
lation, have been implicated in AD pathogenesis. HATs are involved in the acetylation
of histones, leading to a relaxed chromatin structure and increased gene transcription.
Notably, dysregulation of HATs may contribute to the altered expression of genes involved
in neuroinflammation and amyloid-beta processing [116].

Moreover, histone modifications have been linked to other neurodegenerative diseases,
such as Parkinson’s disease (PD) [127]. In PD, altered histone acetylation levels have
been associated with mitochondrial dysfunction and oxidative stress, contributing to
dopaminergic neuronal degeneration [128]. Additionally, histone methylation patterns
have been reported to regulate alpha-synuclein expression, a protein implicated in PD
pathology [60].

In Huntington’s disease (HD), an inherited neurodegenerative disorder, histone mod-
ifications have also been implicated in disease pathophysiology. For instance, aberrant
histone methylation patterns have been observed in HD, leading to changes in gene expres-
sion associated with neuronal dysfunction. Furthermore, HDAC inhibitors have shown
promising effects in preclinical models of HD, indicating the therapeutic potential of target-
ing histone modifications in this disorder [129].
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3.2.3. Non-Coding RNAs

Non-coding RNAs (ncRNAs) are RNA molecules that do not code for proteins but
have regulatory functions in the cell. Two major types of ncRNAs involved in epigenetic
regulation are microRNAs (miRNAs) and long non-coding RNAs (lncRNAs).

MiRNAs are small RNA molecules that can bind to target messenger RNAs (mRNAs),
leading to mRNA degradation or translational repression. The dysregulation of miRNAs
has been linked to neurodegenerative diseases. Aberrant expression of specific miRNAs can
disrupt key pathways related to neuroinflammation, synaptic plasticity, and mitochondrial
function, contributing to the pathogenesis of neurodegenerative diseases.

LncRNAs, on the other hand, are a diverse group of transcripts that are longer than
200 nucleotides and do not encode proteins [130]. LncRNAs can interact with chromatin-
modifying complexes, influencing gene expression by epigenetic mechanisms. Altered
expression of lncRNAs has been associated with neurodegenerative disorders, contributing
to the dysregulation of gene expression and cellular functions [131–134].

Accumulating evidence has revealed the pivotal roles of lncRNAs in epigenetic regu-
lation, acting as scaffolds for chromatin-modifying complexes or interacting with various
epigenetic regulators to influence gene expression [135].

In neurodegenerative diseases, altered expression of lncRNAs has been associated
with dysregulated gene expression patterns and cellular dysfunctions [136]. For instance,
some lncRNAs have been found to interact with histone-modifying enzymes, such as
histone methyltransferases or demethylases, leading to changes in histone methylation
patterns and subsequent transcriptional alterations [25].

Additionally, lncRNAs can function as competing endogenous RNAs (ceRNAs) by
competitively binding to miRNAs, thereby modulating the availability of miRNAs for
target mRNAs. This ceRNA crosstalk may play a critical role in fine-tuning gene expression
networks in the context of neurodegeneration [137].

Dysregulated lncRNA-miRNA interactions have been reported in neurodegenerative
diseases, and their effects on target gene expression may impact pathways involved in
neuronal survival, neuroinflammation, and protein aggregation [138].

Moreover, recent studies have highlighted the involvement of circular RNAs (cir-
cRNAs) in neurodegenerative diseases. CircRNAs are a unique class of ncRNAs with
covalently closed circular structures. They have been shown to regulate gene expression
by interacting with miRNAs or RNA-binding proteins, and their dysregulation has been
implicated in the pathogenesis of neurodegenerative disorders [139].

The dynamic nature of epigenetic modifications presents opportunities for therapeutic
interventions, as these changes are potentially reversible. Targeting epigenetic mechanisms
holds promise for developing novel therapies to modify disease progression and improve
the outcomes for individuals affected by neurodegenerative diseases. However, a compre-
hensive understanding of the specific epigenetic changes and their functional consequences
in different neurodegenerative disorders remains an area of active research. Unraveling the
complexities of epigenetic regulation in these diseases may lead to identifying biomarkers
and novel therapeutic targets, ultimately providing hope for more effective treatments in
the future [121,140,141].

Given the complex nature of neurodegenerative diseases, including Alzheimer’s,
Parkinson’s, and Huntington’s, it is evident that epigenetic regulation plays a significant
role in disease progression. The intricate interplay between genetic, environmental, and
epigenetic factors contributes to the loss of neurons observed in these disorders.

H2S has been found to interact with various epigenetic mechanisms, influencing
gene expression and cellular functions relevant to neuronal health. By interacting with
key epigenetic regulators such as DNA methylation, histone modifications, and non-
coding RNAs, H2S can influence the expression of genes crucial for neuronal function and
survival [8,142,143].
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3.3. Hydrogen Sulfide and DNA Methylation

The modulation of DNA methylation by hydrogen sulfide (H2S) represents a fasci-
nating interplay between this gasotransmitter and epigenetic regulation in the context of
neurodegenerative diseases. Studies have revealed that H2S can modulate DNA methyla-
tion patterns by affecting the activity of enzymes involved in DNA methylation, such as
DNA methyltransferases (DNMTs). For instance, H2S has been shown to inhibit DNMT
activity, resulting in decreased DNA methylation at specific gene promoter regions. This
reduced methylation can lead to altered gene expression, potentially impacting pathways
crucial to neuronal survival, neuroinflammation, and oxidative stress response. Moreover,
H2S has been found to influence the expression of genes’ expression in regulating H2S
metabolism, creating a feedback loop that further impacts the epigenetic landscape. This
intricate interplay between H2S and DNA methylation highlights the potential importance
of epigenetic mechanisms in the pathogenesis of neurodegenerative disorders, offering
new avenues for therapeutic interventions targeting H2S-mediated epigenetic dysregula-
tion. Further research in this area may unveil the full extent of H2S’s role in shaping the
epigenetic landscape and its implications for neurodegenerative disease progression and
potential treatment strategies [51,144–148] (Table 1).

Table 1. Data regarding Hydrogen Sulfide and DNA Methylation in Neurodegenerative diseases.

Ref. Title Pathology Extracted Data Regarding Epigenetics Major Outcome

[51]

Therapeutic importance
of hydrogen sulfide in

age-associated
neurodegenerative

diseases

Neurodegenerative
diseases

H2S, a crucial signaling molecule,
regulates DNA methylation, an essential
epigenetic modification impacting gene
expression and cellular function. H2S
influences DNA methylation in
oxidative stress and aging conditions,
safeguarding against DNA damage and
preserving genomic integrity.

H2S modulates DNA
methyltransferases.

[144]

Abnormal Homocysteine
Metabolism: An Insight
of Alzheimer’s Disease
from DNA Methylation

Alzheimer’s disease

DNA methylation involves adding
methyl groups to
cytosine-phosphate-guanine (CpG)
sequences catalyzed by DNMT enzymes.
DNMT1 maintains existing methylation
during cell division, while DNMT3a
and DNMT3b create new methylation
patterns on unmethylated DNA strands.
H2S interference with these processes
opens the potential for novel
therapeutic strategies against
neurodegenerative diseases.

In Alzheimer’s disease
(AD), changes in DNA
methylation impact the
production of
amyloid-beta (Aβ)
plaques and tau
hyperphosphorylation,
key factors in AD
pathology.

[145]

Hydrogen sulfide
signalling in the

CNS—Comparison with
NO

Schizophrenia

In C3H mice, DNA methylation levels at
the MPST gene were significantly
increased and positively correlated with
MPST expression. In schizophrenia
patients, MPST levels were positively
associated with symptom severity
scores. In MPST-transgenic mice, genes
related to energy formation were
downregulated, and mitochondrial
energy metabolism was impaired.

H2S involvement in
DNA methylation
regulation of the MPST
gene in schizophrenia
may shed light on the
molecular basis of
energy metabolism
dysregulation in the
CNS.
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Table 1. Cont.

Ref. Title Pathology Extracted Data Regarding Epigenetics Major Outcome

[146]

Hydrogen Sulfide
Improves Angiogenesis

by Regulating the
Transcription of

pri-miR-126 in Diabetic
Endothelial Cells

Parkinson’s disease

DNA methylation, an essential
epigenetic modification, regulates gene
expression. In diabetic mice, DNMT1
overexpression reduces miR-126-3p
levels, impairing endothelial cell
function and blood flow recovery.
Exogenous H2S reverses these effects by
downregulating DNMT1 expression,
enhancing miR-126-3p levels, and
promoting angiogenesis.

The interplay between
H2S and DNA
methylation in the
regulation of
miR-126-3p expression.

[147]
Hydrogen sulfide in

ageing, longevity, and
disease

Alzheimer’s disease
Parkinson’s disease

Metformin interacts with H2S signaling
and activates AMPK, inhibiting mTOR
and IIS signaling pathways. It removes
homocysteine-stimulated
hypermethylation of the CSE promotor
region, resulting in increased CSE
expression and H2S production.

Metformin’s ability to
increase H2S levels is
linked to its role in
remodeling DNA
methylation patterns.

[148]

Cell Rearrangement and
Oxidant/Antioxidant

Imbalance in
Huntington’s Disease

Huntington’s disease

In HD, the toxic protein mHtt can
interfere with the transcriptional
machinery, altering histone
modifications and DNA methylation
and impairing gene expression and
neuronal dysfunction.

HD is linked to
accelerated epigenetic
aging. Epigenetic
clocks show a
correlation between
HD progression and
epigenetic age.

3.4. Hydrogen Sulfide and Histone Modifications

H2S exerts its effects on histones through interactions with histone-modifying enzymes,
affecting histones’ acetylation, methylation, and phosphorylation. By influencing these his-
tone modifications, H2S can modulate the accessibility of DNA to transcriptional machinery,
leading to changes in gene expression patterns. Notably, H2S has been shown to impact the
activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs), enzymes
involved in histone acetylation, which play crucial roles in regulating gene expression in
neurodegenerative diseases. Dysregulation of histone modifications by H2S may contribute
to altered expression of genes linked to neuroinflammation, neuroprotection, and other
processes involved in neurodegeneration. Further investigations into the specific molecular
interactions between H2S and histone-modifying enzymes will be crucial for unraveling
the complex mechanisms underlying H2S-mediated epigenetic regulation in the context
of neurodegeneration, potentially leading to the development of novel epigenetic-based
interventions for neurodegenerative diseases [45,84,149–152] (Table 2).

Table 2. Data regarding Hydrogen Sulfide and Histone Modifications in Neurodegenerative Diseases.

Ref. Title Pathology Extracted Data Regarding Epigenetics Major Outcome

[45]

Hydrogen
sulfide-induced

post-translational
modification as a

potential drug target

Neurodegenerative
disease,

Alzheimer’s,
Parkinson’s,

Huntington’s
diseases

H2S affects histones. S-sulfhydration of
histones can regulate gene expression
and epigenetic modifications.
H2S-mediated S-sulfhydration of
histone modifiers, such as Sirt1, affects
aging, metabolism, and oxidative stress
tolerance.

H2S-S-sulfhydration
histone modifiers, such

as Sirt1, influences
aging, metabolism, and

oxidative stress.
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Table 2. Cont.

Ref. Title Pathology Extracted Data Regarding Epigenetics Major Outcome

[84]

Exploring mitochondrial
hydrogen sulfide

signalling for therapeutic
interventions in vascular

diseases

Neurodegenerative
diseases,

Parkinson’s disease

H2S administration has been found to
increase antioxidant proteins such as
Trx-1 through the Nrf-2 pathway,
leading to cardioprotection in
ischemia-induced heart failure. H2S also
regulates members of the SIRT family,
such as SIRT1, SIRT3, and SIRT6, which
play critical roles in histone and
non-histone protein modifications.
These findings highlight the importance
of H2S-SIRT interactions in mediating
cellular protection and physiological
effects.

H2S-SIRT interactions
mediate cellular

protection, impacting
histone modifications
and cellular functions.

[149]
Hydrogen Sulfide

Biology and Its Role in
Cancer

Neurodegenerative
diseases

H2S can increase E-cadherin levels,
inhibit histone deacetylase, and
modulate NF-κB signaling, resulting in
anti-metastatic and tumor-suppressive
effects. However, the exact molecular
targets underlying H2S’s diverse effects
on biological processes, including
cancer, require further investigation.
Chronic exposure to H2S or its
derivatives may have detrimental
effects, including NF-κB inhibition and
apoptosis.

H2S influences histone
deacetylase and
acetyltransferase

activities, impacting
gene expression and
chromatin structure.

[150]

Protective effect of
hydrogen sulfide is

mediated by
negative regulation of

epigenetic histone
acetylation in

Parkinson’s disease

Neurodegenerative
diseases

Parkinson’s disease

Histone modifications and DNA
methylation have been linked to the
pathogenicity of Parkinson’s disease
(PD). Histone deacetylase (HDAC)
enzymes mediate chromatin
condensation and inhibit gene
transcription, while histone
acetyltransferases (HAT) reverse these
effects. Imbalances in HDAC and HAT
activities are associated with
neurodegenerative diseases, including
PD. Inhibiting HDAC has shown
promise in rescuing cells from
degeneration in PD models. This study
investigated the impact of HDAC
inhibitor TSA on
6-hydroxydopamine-induced
neurotoxicity in PD animal models.

H2S negatively
regulates histone

acetylation, impacting
gene expression and
neuronal survival in

PD.

[151]
One-carbon epigenetics

and redox biology of
neurodegeneration

Alzheimer’s disease
Parkinson’s disease
Amyotrophic lateral

sclerosis

Histone proteins form the histone
octamer around which DNA is wrapped
to create nucleosomes.
Post-translational modifications (PTMs)
of histone tails, including acetylation
and methylation, regulate chromatin
structure and gene expression. Histone
acetyltransferases (HATs) add acetyl
groups to lysine residues, promoting
transcription, while histone deacetylases
(HDACs) remove acetyl groups, leading
to chromatin compaction and
transcriptional inhibition.

H2S modulates histone
acetyltransferases

(HATs) and histone
deacetylases (HDACs),

influencing gene
expression and

chromatin remodeling.
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Table 2. Cont.

Ref. Title Pathology Extracted Data Regarding Epigenetics Major Outcome

[152]

Brain energy rescue: an
emerging therapeutic

concept for
neurodegenerative
disorders of ageing

Neurodegenerative
disorders

Histones, as crucial chromatin
components, are subject to
post-translational modifications,
including acetylation, which influences
gene expression. Hydrogen sulfide
(H2S) plays a role in cellular energetics
by regulating the availability of
acetyl-CoA, a precursor of acetyl groups
used in histone acetylation. H2S-related
pathways, such as sirtuin 1 activation,
mitochondrial function, and gut
microbiota-produced short-chain fatty
acids, also impact histone modifications,
linking cellular energetics to epigenetic
regulation. Targeting these mechanisms
may hold therapeutic potential for
neurodegenerative disorders.

H2S-related pathways
influence histone

modifications, linking
cellular energetics to

epigenetic regulation in
neurodegenerative

disorders.

3.5. Hydrogen Sulfide and Non-Coding RNAs

H2S has been shown to modulate the expression of specific microRNAs (miRNAs)
and long non-coding RNAs (lncRNAs) that play regulatory roles in gene expression. By
influencing the levels of these ncRNAs, H2S can affect the stability of mRNAs and protein
translation, leading to changes in cellular functions. Dysregulation of miRNAs and lncR-
NAs has been observed in neurodegenerative diseases, and the interplay between H2S and
these ncRNAs may contribute to disease pathogenesis [75,146,153,154] (Table 3).

Table 3. Data regarding Hydrogen Sulfide and Non-Coding RNAs in Neurodegenerative diseases.

Ref. Title Pathology Extracted Data Regarding Epigenetics Major Outcome

[146]

Hydrogen Sulfide
Improves Angiogenesis

by Regulating the
Transcription of

pri-miR-126 in Diabetic
Endothelial Cells

Parkinson’s
disease

MicroRNAs (miRNAs) are non-coding
RNAs that modulate various cellular
processes, including angiogenesis. Specific
miRNAs, such as miR-126-3p, regulate
angiogenesis in vascular endothelial cells.
H2S is involved in miRNA transcription
regulation, and the interplay between H2S
and miRNAs is critical in cardiovascular
disease pathophysiology. H2S has been
shown to decrease cardiomyocyte apoptosis
and impact Parkinson’s disease through
miRNA regulation.

miRNAs such as
miR-126-3p regulate

angiogenesis—
connected to

PD

[75]

Regulating of
LncRNA2264/

miR-20b-5p/IL17RD axis
on hydrogen sulfide
exposure-induced

inflammation in broiler
thymus by activating

MYD88/NF-κB pathway

Neurodegenerative
disorders

lncRNA2264/miR-20b-5p/IL17RD axis was
identified as part of the H2S-induced thymic
inflammatory response. NcRNAs, including
miRNAs and lncRNAs, can be potential
biomarkers of environmental chemical
exposure. In this study, lncRNA-sequencing
revealed differentially expressed lncRNAs
and miRNAs in the H2S-exposed group
compared to the control group. Notably,
lncRNA2264 showed significant
downregulation, and it was identified as a
molecular sponge for miR-20b-5p.
MiR-20b-5p, which plays a role in immune
cell function and inflammation, was
significantly increased after H2S exposure.

NcRNAs, including
miR-20b-5p and

lncRNA2264, were
identified as part of the

H2S-induced thymic
inflammatory response.
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Table 3. Cont.

Ref. Title Pathology Extracted Data Regarding Epigenetics Major Outcome

[153]

Overview on hydrogen
sulfide-mediated

suppression of vascular
calcification and

hemoglobin/heme-
mediated vascular

damage in
atherosclerosis

Neurodegenerative
disorders

Epigenetic alterations, including DNA
methylation and microRNAs (miRNAs), are
implicated in atherosclerosis development
and are linked to H2S pathways. H2S
influences histone modifications, enhancing
SIRT1 activity to reduce endothelial
inflammation and foam cell formation,
potentially reducing atherosclerotic plaque
development. Targeting these epigenetic
regulatory checkpoints holds promise for
atherosclerosis therapy.

H2S-mediated
epigenetic changes may
alleviate atherosclerosis
by modulating SIRT1

activity.

[154]

The emerging role of long
non-coding RNAs and

microRNAs in
neurodegenerative

diseases: A perspective
of machine learning

Neurodegenerative
disease

Alzheimer’s
Parkinson’s

Huntington’s
diseases

Neurodegenerative diseases (NDs) exhibit
similar early symptoms, making their
timely detection and differentiation crucial.
Dysregulation of microRNAs and long
non-coding RNAs is associated with NDs,
highlighting their potential as diagnostic
and therapeutic targets. Machine learning
can effectively classify non-coding RNA
expression profiles between healthy and
affected individuals, aiding in accurate ND
diagnosis with accuracy rates of 85% to 95%.
Artificial intelligence offers a promising
approach to enhance clinical diagnosis and
early disease identification based on
non-coding RNAs.

ncRNAs, potential
diagnostic and

therapeutic targets in
neurodegenerative

diseases, and machine
learning improve ND

diagnosis based on
ncRNA expression.

3.6. Future Directions

Future research efforts will be pivotal in advancing the potential of H2S-based thera-
pies for neurodegenerative diseases, offering new hope to patients facing these devastating
disorders. To achieve this objective, several crucial areas require investigation. Firstly,
elucidating the precise molecular mechanisms through which H2S interacts with epigenetic
regulation and cellular pathways in neurodegeneration is essential to fully understanding
its neuroprotective effects and therapeutic applications. Secondly, comprehensive studies
assessing long-term safety and efficacy are necessary before translating H2S-based therapies
to clinical settings. Understanding potential side effects, dose-response relationships, and
effects on cellular processes will ensure the therapies’ safety and effectiveness. Thirdly,
it is crucial to identify optimal delivery methods for H2S-based therapies, considering
their bioavailability and tissue distribution in different administration routes for varying
disease stages and patient populations. Furthermore, targeted research is needed to deter-
mine the suitability of H2S-based therapies for specific neurodegenerative diseases, such
as Alzheimer’s, Parkinson’s, and Huntington’s, and personalized medicine approaches
should be explored to develop tailored therapies based on individual disease profiles and
patient characteristics.

Investigating the potential synergistic effects of H2S-based therapies with existing
treatments or emerging therapeutic agents may lead to innovative combination therapies
that enhance neuroprotection and disease modification. Moving H2S-based therapies from
preclinical research to clinical trials will require well-designed translational studies to
establish safety, efficacy, and dosage recommendations. Neuroimaging techniques can
provide valuable insights into the mechanisms of action and potential benefits of H2S-
based therapies. Determining the optimal therapeutic window and identifying reliable
biomarkers for monitoring treatment response are also crucial steps in advancing the field
of H2S-based therapies for neurodegenerative diseases. Emphasizing research in these
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areas will pave the way for innovative and targeted therapies, bringing us closer to effective
treatments for these debilitating conditions.

4. Conclusions

Epigenetic regulation has emerged as a critical determinant in the pathogenesis and
progression of neurodegenerative diseases. The interaction between H2S and different
epigenetic mechanisms, such as DNA methylation, histone modifications, and non-coding
RNAs, suggests that H2S could influence gene expression and cellular functions relevant to
neurodegenerative diseases. Understanding the precise molecular mechanisms underlying
H2S’s interactions with epigenetic processes is essential to develop targeted and effective
therapeutic strategies. Furthermore, investigating the long-term safety and efficacy of
H2S-based therapies will be critical for their clinical translation.

Identifying optimal delivery methods, targeting disease-specific effects, and develop-
ing personalized medicine approaches will ensure the efficacy of H2S-based therapies for
individual patients. Additionally, research on combination therapies and the development
of reliable biomarkers for monitoring treatment response will further enhance the potential
benefits of H2S interventions.

Overall, exploring H2S’s role in epigenetic regulation and neurodegeneration repre-
sents a promising avenue for future research. Advancements in this field have the potential
to revolutionize the treatment landscape for neurodegenerative diseases, offering new hope
to patients and their families facing these currently incurable conditions.
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