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Abstract
The ubiquitin-proteasome system (UPS) plays crucial roles in numerous cellular functions.
Dysfunction of the UPS shows certain correlations with the pathological changes in Alzheimer’s
disease (AD). This study aimed to explore the different impairments of the UPS in multiple brain
regions and identify hub ubiquitin ligase (E3) genes in AD. The brain transcriptome, blood tran-
scriptome and proteome data of AD were downloaded from a public database. The UPS genes
were collected from the Ubiquitin and Ubiquitin-like Conjugation Database. The hub E3 genes
were defined as the differentially expressed E3 genes shared by more than three brain regions.
E3Miner and UbiBrowser were used to predict the substrate of hub E3. This study shows varied
impairment of the UPS in different brain regions in AD. Furthermore, we identify seven hub E3
genes (CUL1, CUL3, EIF3I, NSMCE1, PAFAH1B1, RNF175, and UCHL1) that are downregulated
in more than three brain regions. Three of these genes (CUL1, EIF3I, and NSMCE1) showed con-
sistent low expression in blood. Most of these genes have been reported to promote AD,
whereas the impact of RNF175 on AD is not yet reported. Further analysis revealed a potential
regulatory mechanism by which hub E3 and its substrate genes may affect transcription functions
and then exacerbate AD. This study identified seven hub E3 genes and their substrate genes affect
transcription functions and then exacerbate AD. These findings may be helpful for the develop-
ment of diagnostic biomarkers and therapeutic targets for AD.
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Introduction

The ubiquitin-proteasome system (UPS) includes the following enzymes: ubiquitin
activating enzymes (E1), ubiquitin conjugating enzymes (E2), ubiquitin ligase
enzymes (E3), deubiquitinating enzymes (DUB), and the 26S proteasome.1,2 The
UPS is a multicomponent system for protein degradation that is necessary for
eukaryotic organisms to degrade approximately 80% of intracellular proteins.3

Ubiquitin is an evolutionarily conserved peptide containing 76 amino acids;
ubiquitin-related enzymes bind ubiquitin molecules to substrates through a multi-
step catalytic process, and the substrate protein is then degraded by the protea-
some.4 The UPS also plays crucial roles in posttranslational modification,
regulation of cellular signal transduction, cell cycle processes, and repair of DNA
damage.4,5 Numerous metabolic pathways and cellular regulatory networks require
precise spatial and temporal control of effector protein levels by the UPS.6

The UPS is involved in protein quality control and the removal of misfolded or
aggregated proteins, and UPS dysfunction is correlated with neurodegenerative dis-
eases. Damage to the UPS will affect the degradation of amyloid b (Ab) and cause
abnormal aggregation of Ab in Alzheimer’s disease (AD). Aggregated Ab inhibits
proteasome activity and subsequently causes damage to the multivesicular body
sorting pathway.7 The impaired UPS also causes increased b-secretase and g-secre-
tase, which accelerates the hydrolysis of amyloid precursor protein (APP) to pro-
duce Ab and promotes Ab aggregation.7 Ubiquitinated APP cannot be degraded
by the proteasome when the activity of the proteasome is inhibited, which results in
the accumulation of ubiquitinated proteins in the cell.8 Dysfunction of the UPS
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may also promote the aggregation of tau protein in AD, and the higher-order oli-
gomers and aggregates of tau cannot enter the narrow proteasome open channels.9

Recent studies have suggested that UPS-dependent protein degradation is associ-
ated with synaptic plasticity and learning or memory functions, that the UPS plays
a vital role in hippocampal long-term memory consolidation and that substrate-
specific E3 may be the key factor in memory regulation.10

The above studies suggested that the impaired UPS correlated to the pathogen-
esis of AD, and the decreased UPS activity in AD may lead to further deterioration
of the disease. It is worth noting that increasing the UPS activity will enhance the
organism’s ability to resist oxidative stress and prolong life in various animal mod-
els and human cell lines.11 Our previous work revealed the differences in the expres-
sion of learning- and memory-related genes in different brain regions in AD.12 In
this study, we aimed to explore the different impairments of the UPS in multiple
brain regions of AD through transcriptome data analysis and to identify hub E3
genes and their potential substrate genes.

Methods

Data collection

The microarray data of Alzheimer’s disease were downloaded from the Gene
Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo). Data
screening was based on the following criteria: (1) the data are genome-wide; (2) the
data should include AD and control samples; (3) the data should include multiple
brain regions; (4) no age difference exists between AD and controls in each brain
region; and (5) raw microarray data are available. With these criteria, we finally
chose the dataset of GSE528113 for our reanalysis. The dataset contains 87 AD
samples and 74 control samples. The brain regions in this dataset included the
entorhinal cortex (EC), hippocampus (HIP), medial temporal gyrus (MTG), pos-
terior cingulate (PC), superior frontal gyrus (SFG), and primary visual cortex
(PVC). There was no age difference between AD and controls in each brain region
(Table 1). The datasets of GSE3698014 and GSE4835015 also contain AD and con-
trol transcriptome data for multiple brain regions and were used as validation sets.
In order to explore the expression differences in the blood transcriptome and pro-
teome in patients with AD, we chose the GSE63060 dataset16 to analyze the gene
expression profiles in blood, which contains 145 patients with AD and 104 age-
and sex-matched controls. The GSE29676 dataset17 contains serum proteome data
from 50 patients with AD and 40 controls and was used to explore the changes in
protein levels. For details on data preprocessing, see our previous reports.12,18

Differential expression gene analysis

Bioinformatics analysis of the microarray data was carried out by R statistical soft-
ware v3.6.1 (https://www.r-project.org/) and Bioconductor Library (https://
www.bioconductor.org/). Differential gene expression analysis was performed
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using the empirical Bayesian algorithm in the limma package in R.19 Up- and
downregulated genes were defined as a log2 transformed fold-change (logFC)˜ 1
or �21 for AD samples compared with controls. A false discovery rate (FDR)-
corrected p value �0.05 was considered significant. Differentially expressed genes
shared by more than three brain regions are considered to be hub genes. The heat-
map package in R was used to show the gene expression profiles, and the clustering
method was chosen as ‘‘ward.D2.’’

GO and KEGG enrichment analysis

Information on human genes and related GO terms (including biological process,
cellular component and molecular function) was downloaded from the QuickGO
database (http://www.ebi.ac.uk/QuickGO-Beta/). The reference human genes and
pathways were downloaded from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database (http://www.kegg.jp/). GO terms and KEGG pathways with less
than 10 genes were removed. GO and KEGG enrichment analysis was performed
using the hypergeometric test and the formula shown in a previous report.20 The
reference gene set is all detected genes in the GSE5281 dataset. An FDR-corrected
p value �0.05 was considered significantly enriched.

UPS gene collection

The UPS genes were downloaded from the Ubiquitin and Ubiquitin-like
Conjugation Database (http://uucd.biocuckoo.org).21 This database collected
129,416 potential proteins from 148 different species and protein types, including
E1, E2, E3, DUB, ubiquitin-binding domain-containing protein (UBD) and
ubiquitin-like domain-containing protein (ULD). A total of 878 human UPS genes
(including 10 E1 genes, 42 E2 genes, 700 E3 genes, and 126 DUB genes) were
downloaded in this study. Proteasome-related genes were extracted from the pro-
teasome pathway in the KEGG database. This study mainly focused on the E3

Table 1. Age information between patients with Alzheimer’s disease and controls.

Brain regions Alzheimer’s disease Control pb

Na Age Na Age

Entorhinal cortex 10 85.6 6 6.3 13 80.3 6 9.2 0.118
Hippocampus 10 77.8 6 5.7 13 79.6 6 9.4 0.574
Medial temporal gyrus 16 79.1 6 6.4 12 80.1 6 9.8 0.771
Posterior cingulate 9 77.6 6 6.5 13 79.8 6 9.4 0.522
Superior frontal gyrus 23 79.2 6 7.5 11 79.3 6 10.2 0.978
Primary visual cortex 19 80.2 6 6.7 12 77.9 6 6.9 0.385

aNumber of samples.
bThe p value was calculated by student’s t-test.
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genes, and the hub E3 genes were defined as the differentially expressed E3 genes
shared by more than three brain regions.

Construction of AD prediction models

The prediction models were built using the blood transcriptome and proteome data
of patients with AD and controls. The biomarkers were chosen as the hub E3 genes
and proteins. The receiver operating characteristic (ROC) curve and the area under
the curve (AUC) of the single marker were calculated using the pROC package in
R. A stepwise modeling strategy was used to screen the optimal multigene and
multiprotein models. The model with the largest AUC was defined as the optimal
model. For example, in the multigene prediction model, the gene with the largest
AUC was first selected. Then, we used a multivariate logistic regression model to
generate the combined effect of the selected gene and each of the remaining genes.
Next, we selected the best two-gene model with the highest AUC and repeated the
previous steps. Finally, we selected the optimal model with the highest AUC in
each multigene combination model.

E3 substrate prediction and correlation analysis

Two web server tools, including E3Miner (http://e3miner.biopathway.org)22 and
UbiBrowser (http://ubibrowser.ncpsb.org),23 were used to predict the substrate of
hub E3. The hub E3 genes and the top 10 predicted substrate genes based on confi-
dence were used to construct the E3-substrate interactive network. Network visua-
lization was performed using Cytoscape v3.4.0 (https://cytoscape.org/). Pearson
correlation analysis was used to analyze the correlation between the E3 genes and
the predicted substrate genes. A p value �0.05 was considered significant. The
mouse dataset GSE113436 was used to validate the expression of NSMCE1 and
the predicted target genes. The data is the transcriptome profile of Nsmce1 overex-
pression in mouse hippocampal neuronal cells.24

Results

Commonly differentially expressed genes correlate to AD pathology

Differential expression analysis showed that there were a large number of downre-
gulated genes in EC, HIP, MTG, and PC, and relatively few genes were affected in
SFG and PVC (Figure 1(a)). Furthermore, there were also a considerable number
of upregulated genes in the MTG and SFG. Most of these genes were differentially
expressed in multiple brain regions, and few genes were differentially expressed in
specific brain regions (Figure 1(b)). There were two differentially expressed genes
shared by all six brain regions (APOO and PCYOX1L). A Venn diagram showed
that a total of 462 genes were differentially expressed in more than three brain
regions (Figure 1(b)). The KEGG pathway enrichment results suggested that these
genes were mainly involved in the pathways of neurodegenerative diseases (such as
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Alzheimer’s disease), nervous system (such as synaptic vesicle cycle and
GABAergic synapse), metabolism (such as oxidative phosphorylation, glycolysis
and the TCA cycle), signal transduction (such as the Hippo signaling pathway and
cAMP signaling pathway), protein degradation (such as the proteasome) and tran-
scription (such as basal transcription factors) (Figure 1(c)). Numerous studies have
reported that these pathways are correlated with the Ab and tau protein processes,
synaptic dysfunction and neurodegeneration in AD.7,25–28 This evidence suggests
that the damaged genes and pathways shared by multiple brain regions can accu-
rately reflect the pathological changes of AD.

UPS-related functions were damaged in multiple brain regions in AD

GO and KEGG enrichment analyses were performed using the differentially
expressed genes in each brain region. The results showed that there were 193, 357,
272, 283, 666, and 265 enriched GO items (Figure 2(a)) and 23, 40, 29, 38, 3, and
22 enriched KEGG pathways (Figure 2(b)) in the EC, HIP, MTG, PC, SFG, and
PVC, respectively. There were 195 enriched GO items and 27 enriched KEGG
pathways shared by more than three brain regions. These enriched GO items and
KEGG pathways included multiple UPS-related functions. By analyzing the
enriched UPS-related functions in different brain regions, we found that HIP and
PC showed the highest significance, EC and MTG showed moderate significance,
and SFG and PVC showed relatively low significance (Figure 2(c)).

E3 genes were downregulated in multiple brain regions

There were multiple differentially expressed UPS genes in the EC, HIP, MTG, and
PC, whereas only a few genes were affected in the SFG and PVC (Figure 3(a)).
Because E3 has substrate specificity, this study mainly focused on the E3 genes.
These differential E3 genes were almost all downregulated in the EC, HIP, and
PC, and only MTG showed more than a dozen upregulated genes. The clustering
results of the 73 combined differentially expressed E3 genes in six brain regions
confirmed this trend (Figure 3(b)). The Venn diagram analysis showed that there
were seven differentially expressed E3 genes shared by more than three brain
regions (Figure 3(c)), and these genes were identified as hub E3 genes. Among
these genes, UCHL1 was downregulated in the EC, HIP, MTG, and PC; CUL3,
EIF3I, and NSMCE1 were downregulated in the EC, HIP, and PC; and CUL1,
PAFAH1B1, and RNF175 were downregulated in the HIP, MTG, and PC (Figure
3(d)). The clustering results suggested that the HIP and PC showed the most seri-
ous downregulation of the hub E3 genes, followed by the MTG and EC, whereas
the SFG and PVC showed relatively slight damage. The clustering results of the
proteasome genes also showed a consistent trend (Figure 3(e)). Furthermore,
most of the combined differentially expressed E3 genes showed a low expression
trend in different brain regions, and the hub E3 genes also showed a consistent
downregulation trend in almost all brain regions in the two validation datasets
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Figure 1. Overview of the differentially expressed genes and their functions: (a) volcano plot
of all genes in six brain regions. Red points indicate upregulated genes, and green points indicate
down regulated genes, (b) Venn diagram of differentially expressed genes in six brain regions,
and (c) enriched KEGG pathways of differentially expressed genes shared by more than three
brain regions.
Each color represents a pathway class. The dashed line indicates statistical significance, and the bar width

indicates the enrichment percentage.
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(Figure 3(f)–(i)). Combining the above analysis results, we infer that these hub E3
genes may play crucial roles in the pathogenesis of AD. The role of these hub E3
genes in AD pathology showed in Supplemental Table 1, and the brief signaling
cascade of these hub E3 genes showed in Supplemental Figure 1. To explore the
possible E2 conjugating enzyme in connection with identified E3 ligases, we used
Pearson correlation analysis to explore the combination possibility between hub E3
and E2 genes. Among these hub E3 genes, CUL1, CUL3, PAFAH1B1, and RNF175
showed a strong correlation with multiple E2 genes (Supplemental Figure 2).

Figure 2. Enriched GO functions and KEGG pathways in six brain regions: (a) Venn diagram of
enriched GO functions (including biological process, cellular component and molecular function)
in six brain regions, (b) Venn diagram of enriched KEGG pathways in six brain regions, and (c)
significantly enriched ubiquitin-proteasome system-related functions and pathways in more than
three brain regions.
The color bar indicates the FDR-corrected p value. The blank indicates that there are no differentially

expressed genes in the pathway corresponding to the brain region.
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Figure 3. Expression profiles of ubiquitin-proteasome system-related genes and hub E3 genes:
(a) gene expression of ubiquitin-related genes in different brain regions. The line length indicates
the log2 (fold-change). The red, green and gray colors indicate that the gene is upregulated,
downregulated and not statistically significant, (b) heatmap of the combined differentially
expressed E3 genes in six brain regions, (c) Venn diagram of the differentially expressed E3
genes in the EC, HIP, MTG and PC, (d) heatmap of the hub E3 genes in six brain regions, (e)
heatmap of the proteasome-related genes in six brain regions, (f) heatmap of the combined
differentially expressed E3 genes in the validation set of GSE36980, (g) heatmap of the hub E3
genes in the validation set of GSE36980, (h) heatmap of the combined differentially expressed E3
genes in the validation set of GSE48350, and (i) heatmap of the hub E3 genes in the validation
set of GSE48350.
The color bar and the number in the box of the heatmap indicate the log2 (fold-change). The yellow box

indicates statistical significance.
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Expression of hub E3 genes and proteins in the blood of AD

To explore the expression difference in E3 genes in blood, we mapped the AD
brain transcriptome data with blood transcriptome and proteome data. There were
73 combined differentially expressed E3 genes in the GSE63060 dataset and 28
combined differentially expressed E3 proteins in the GSE29676 dataset. The clus-
tering results showed that the total expression profiles of these genes or proteins
may not distinguish patients with AD and controls (Figure 4(a) and (b)). Three
hub E3 genes (CUL1, EIF3I, and NSMCE1) were significantly expressed at low
levels in patients with AD compared to controls in blood, which is consistent with
the expression trend in the brain (Figure 4(c)). However, the protein expression of
CUL1 and RNF175 showed the opposite trend between AD and controls in blood
(Figure 4(d)). We constructed prediction models to explore the diagnostic accuracy
of these hub E3 genes and proteins in AD. The optimal multigene model is the
combination of five hub E3 genes, including NSMCE1, PAFAH1B1, CUL1,
RNF175, and EIF3I (Figure 4(e)), which had the highest AUC of 0.726 (Figure
4(f)). The optimal multiprotein model is the combination of five hub E3 proteins,
including RNF175, PAFAH1B1, CUL3, CUL1, and UCHL1 (Figure 4(g)), which
had the highest AUC of 0.789 (Figure 4(h)). Unfortunately, neither the multigene
nor the multiprotein model achieved high prediction accuracy.

Hub E3 and its substrates aggravate AD by affecting transcription functions

The interactive network of the hub E3 genes and the predicted substrate genes
showed that there were eight substrates that were regulated by multiple E3 (Figure
5(a)). The heatmap showed that there were four differentially expressed substrate
genes: EDF1 was downregulated in the EC, HIP, MTG, and PC; TAF7 was down-
regulated in the HIP, PC, and PVC; TAF3 was upregulated in the HIP, MTG, and
SFG; and PIK3C2B was upregulated in the MTG (Figure 5(b)). The KEGG
enrichment results showed that these substrate genes are involved in transcription
functions (Figure 5(c)). Pearson correlation analysis of the hub E3 genes and the
differentially expressed substrate genes showed that EIF3I and UCHL1 positively
correlated with EDF1 in all brain regions; EIF3I, NSMCE1, and UCHL1 posi-
tively correlated with TAF7 in most brain regions; NSMCE1 negatively correlated
with TAF3 in the HIP and MTG; and PAFAH1B1 negatively correlated with
PIK3C2B in the MTG and PC (Figure 5(d)). Based on the above results, we con-
cluded that the downregulated E3 genes may affect the substrate genes, damage
the transcription functions and aggravate AD (Figure 5(e)). In the validation data-
set, there was no difference in the expression of Taf3 or Taf7 after Nsmce1 was
overexpressed (Supplemental Figure 3).

Discussion

This study showed varied impairment of the UPS in different brain regions in AD.
The UPS was seriously damaged in the HIP and PC, moderately damaged in the
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Figure 4. Expression of hub E3 genes and proteins in the blood of AD and diagnostic model
construction: (a) heatmap of the combined differentially expressed E3 genes in the GSE63060
dataset, (b) heatmap of the combined differentially expressed E3 proteins in the GSE29676
dataset. The gene and protein expression values were z-score converted, and the color bar
indicates the z-score, (c) gene expression of the hub E3 genes in the blood between patients
with AD and controls, (d) protein expression of the hub E3 genes in the blood between patients
with AD and controls (no protein expression data of EIF3I or NSMCE1). Statistical significance:
*p \ 0.05, **p \ 0.01, ***p \ 0.001, (e) stepwise screened prediction models using hub E3
gene expression values in blood transcriptome data. From left to right on the x-axis (stepwise
screened genes), each additional gene corresponds to a model (for example, the gene of
NSMCE1 represents model 1, which contains one gene of NSMCE1, PAFAH1B1 represents
model 2, which contains two genes including NSMCE1 and PAFAH1B1). The red arrow shows
the optimal model, (f) ROC curve of the screened optimal multigene model, (g) stepwise
screened prediction models using hub E3 protein expression values in blood proteome data, and
(h) ROC curve of the screened optimal multiprotein model.
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Figure 5. Network and function of hub E3 and their substrate genes: (a) hub E3 and their
substrate gene interactive network. The red color indicates E3 genes, and the blue color
indicates substrate genes, (b) heatmap of the hub E3 substrate genes in six brain regions. The
color bar indicates the log2 (fold-change), and the yellow point indicates statistical significance,
(c) top 15 enriched GO biological processes of the hub E3 substrate genes. The dashed line
indicates statistical significance, and the bar width indicates the enrichment percentage, (d)
Pearson correlation of hub E3 genes and differentially expressed substrate genes (represented by
S). The R2 indicates the square of the Pearson correlation coefficient. Statistical significance:
*p \ 0.05, **p \ 0.01, ***p \ 0.001, and (e) the potential mechanism of down regulated hub E3
genes aggravating AD.
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EC and MTG, and slightly damaged in the SFG and PCV. The seven identified
hub E3 genes were downregulated in most brain regions, and three of these genes
were also expressed at low levels in blood. These hub E3 genes and their substrate
genes may affect transcription functions and then exacerbate AD.

Different brain regions have specific functions, and there are strong connections
among one another. The EC is the main channel between the HIP and neocortex
and is involved in the formation of long-term memory.29 EC receives information
from the HIP and transmits it to the neocortex through neurotransmitters such as
glutamate and is one of the brain regions affected in the early stages of AD.30 The
HIP is a part of the temporal lobe, which is essential for the formation of new mem-
ories. Usually, HIP function is impaired earlier than other cortices in patients with
AD, suggesting that the first process in AD is memory impairment.31 The MTG
involves many cognitive processes, such as semantic memory and language process-
ing, and integrates information from different senses. Studies have shown that there
is active neuronal loss in the MTG in AD.32,33 The PC is a part of the cingulate cor-
tex, which is a highly connected and metabolically active brain region and is func-
tionally involved in learning and spatial memory. It has been identified that there
was amyloid deposition and decreased metabolism in PC during AD progression,
and the volume of the PC in patients with AD is smaller than that of healthy con-
trols.34,35 The SFG is located in the upper part of the prefrontal cortex, accounting
for approximately one-third of the frontal lobe. Impaired SFG will lead to disor-
ders of working memory and self-awareness.36,37 Several studies have shown that
reduced metabolic functions in FC are associated with AD.38 The PVC occupies
the entire surface of the occipital lobe and acts as a receiver of visual data. Some
evidence suggests that the changes in PVC are associated with normal aging, and
Ab plaques and neurofibrillary tangles usually occur in the late stages of AD.39,40

Our previous study found that multiple learning and memory-related genes were
affected in the HIP and temporal lobe in AD.12 Combined with the findings in this
study that UPS showed the most serious damage in the HIP and PC, we speculate
that there may be a causal relationship between UPS impairment and reduced
learning or memory functions.

The number of E1, E2, and E3 has a pyramid structure, and a previous report
showed that there were approximately 2 E1 genes, 30-40 E2 genes and more than
600 E3 genes in humans.11 Recent studies have revealed more genes in the human
ubiquitination pathway (including E1, E2, E3, and DUB).21 E3 has substrate speci-
ficity and is the most critical enzyme in the UPS. This study identified seven hub
E3 genes, including CUL1, CUL3, EIF3I, NSMCE1, PAFAH1B1, RNF175, and
UCHL1. The proteins encoded by CUL1 and CUL3 belong to the cullin protein
family. Multisubunit Cullin-RING structure ligase is the most diverse E3 and plays
important roles in AD pathology. The CUL1-dependent ubiquitination process is
activated by the Neddylation process, which regulates the degradation process of
APP and causes APP to be degraded by endocytosis. Studies have shown that
downregulated CUL1 leads to APP aggregation and promotes Ab production.41

Under normal conditions, the KEAP1-CUL3 complex polyubiquitylates NRF2

Liu et al. 13



and is subsequently degraded by the proteasome. However, the interaction between
the KEAP1-CUL3 complex and NRF2 is unstable under oxidative stress condi-
tions,42 which may cause NRF2 aggregation and inhibit its downstream gene
expression in AD.43 EIF3I encodes eukaryotic translation initiation factor 3 subu-
nit I and is involved in the transcription process of Ab23.44 NSMCE1 encodes a
subunit of the SMC5-SMC6 complex and plays an important role in DNA repair,
and overexpression of NSMCE1 inhibits APP and other AD marker genes in
mice.24 A previous study showed that heterozygous mutations in PAFAH1B1
cause learning and behavior disorders in mice.45 Compared with cerebral malaria-
resistant mice, PAFAH1B1 was reduced in cerebral malaria-susceptible mice and
was associated with AD.46 Several studies reported that UCHL1 mRNA and pro-
tein levels were reduced in AD.47–50 A previous study showed identified UCHL1
was deregulated in four out of six brain regions, suggested that there were region-
specific changes in UPS components.50 Overexpression of UCHL1 in APP23 trans-
genic mice delayed AD progression.51 However, a correlation between RNF175
and AD has not yet been reported. Furthermore, studies have reported that the
substrate genes of hub E3 have certain correlations with AD, such as EDF1,52

TAF7,53 and TAF3.54 These substrate genes are correlated to transcription
functions.

There were several limitations to this study. Firstly, the potential substrate genes
of hub E3 genes were obtained through database mining and literature search, the
interactions between hub E3 genes and the substrate genes still need experimental
verification. Secondly, the combination of multiple E1-E2-E3 axes is still unknown,
and more in-depth research is needed. Lastly, this study performed only transcrip-
tome level analysis. Whether the protein expression of these E3 or substrates are
consistent with gene expression remains to be confirmed.

Conclusion

In summary, the damaged UPS extensively and persistently exacerbates the AD
process. This study identified seven hub E3 genes (CUL1, CUL3, EIF3I,
NSMCE1, PAFAH1B1, RNF175, and UCHL1) and their substrate genes (EDF1,
TAF3, TAF7, etc.) affect transcription functions and then exacerbate AD. Among
these E3 genes, CUL1, EIF3I, and NSMCE1 were both downregulated in blood
and brain and may be used as potential markers for AD diagnosis. However, the
underlying mechanism of the interactions between E3 and substrates affecting
AD remains unclear. Therefore, revealing the E3-substrate regulatory mechanisms
in future works will help develop diagnostic biomarkers and therapeutic targets
for AD.
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