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Abstract

Digital health and telemonitoring have resulted in a wealth of information to be collected to 

monitor, manage, and improve human health. The multi-source mixed-frequency health data 

overwhelm the modeling capacity of existing statistical and machine learning models, due to many 

challenging properties. Although predictive analytics for big health data plays an important role 

in telemonitoring, there is a lack of rigorous prediction model that can automatically predicts 

patients’ health conditions, e.g., Disease Severity Indicators (DSIs), from multi-source mixed-

frequency data. Sleep disorder is a prevalent cardiac syndrome that is characterized by abnormal 

respiratory patterns during sleep. Although wearable devices are available to administrate sleep 

studies at home, the manual scoring process to generate the DSI remains a bottleneck in automated 

monitoring and diagnosis of sleep disorder. To address the multi-fold challenges for precise 

prediction of the DSI from high-dimensional multi-source mixed-frequency data in sleep disorder, 

we propose a sparse linear mixed model that combines the modified Cholesky decomposition 

with group lasso penalties to enable joint group selection of fixed effects and random effects. 

A novel Expectation Maximization (EM) algorithm integrated with an efficient Majorization 

Maximization (MM) algorithm is developed for model estimation of the proposed sparse linear 

mixed model with group variable selection. The proposed method was applied to the SHHS 

data for telemonitoring and diagnosis of sleep disorder and found that a few significant feature 

groups that are consistent with prior medical studies on sleep disorder. The proposed method also 

outperformed a few benchmark methods with the highest prediction accuracy.
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1. Introduction

Digital health technologies have been increasingly used to monitor, manage, and improve 

human health and well-being at individual and population levels, which provide timely and 

cost-effective solutions to many medical conditions (Nguyen, et al., 2022). Until a few years 

ago, digital health applications were restricted to the use of data obtained from Electronic 

Health Records (EHRs) and other clinical medical information, but in more recent years, 

the context of digital health has notably expanded with the advancements in technologies 

including and especially wearable sensors and devices. For example, Parkinson’s Disease 

is known to impact patients’ mobility and its progression can be closely and remotely 

tracked via built-in sensors in smartphones that can effectively measure the gait quality 

and deficits (Pierce et al., 2021; Hobert et al., 2019). Another example is the monitoring 

and management of migraine, a disabling, chronic, and complex neurological disorder, with 

the use of mobile apps that record and track migraine patients’ disease-related risk factors 

and symptoms, such as dietary intake, exercise, work and life stress, and frequency and 

severity of migraine attacks for personalized disease management (Alves et al., 2021). In 

particular, sleep disorder is a prevalent cardiac syndrome that affects 10% of middle-aged 

women and 25% of middle-aged men. It is characterized by abnormal respiratory patterns 

during sleep and is known to be a significant contributor to short sleep duration among the 

United States population. According to Centers for Disease Control and Prevention (CDC), 

short sleepers are more likely to report chronic health conditions such as cardiovascular 

diseases, cancer, and depression, compared to those who got enough sleep (Consensus 

Conference Panel, 2015). Although effective treatment can be offered to treat sleep disorder 

and mitigate its risk sequelae, many patients with sleep disorder are under-diagnosed, 

mostly likely due to the costly and logistically inconvenient diagnostic approach for sleep 

disorder. The conventional diagnostic criteria are primarily based upon an overnight sleep 

study (Ahmadi et al., 2009) for long-term recording of patients’ bio-signals such as ECG 

and EEG. The overnight sleep study requires patients’ long-time physical presence in a 

specialized clinic that are costly and logistically inconvenient for both the patients and 

medical staff. Recently, the sleep study becomes available at home via wearable devices 

such as the use of the electrocardiogram (ECG) to record the cardiac activity (Fensli et 

al., 2005) and the electroencephalograph (EEG) to record brain activity (Askamp and van 

Putten, 2014), providing a promising and cost-efficient solution to remote monitoring and 

diagnosis of sleep disorder.

Digital health and telemonitoring result in a wealth of multi-source mixed-frequency health 

information. Take sleep disorder as an example. The disease severity of sleep disorder is 

potentially relevant to both clinical data collected at hospital and bio-signal data remotely 

collected at home. It is clear that bio-signal data such as an overnight recording of ECG 

and EEG are measured at a very high frequency. For example, with an epoch length of 30 

seconds, the ECG recording for six hours may result in a total of 720 epochs for the same 

patient. In contrast, clinical data such as patients’ age, gender, Body Mass Index (BMI), 

and other health conditions, would remain very similar if not exactly the same over all 

the epochs for obvious reasons. Thus, there is no need to repeatedly collect such clinical 

data very frequently, e.g., every 30 seconds. Multi-source mixed-frequency big data often 
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overwhelm the modeling capacity of existing statistical and machine learning models, due to 

many challenging properties such as the so-called “four Vs of big data” including Volume, 

Velocity, Variety, and Veracity (Yin and Kaynak, 2015). “Volume” refers to the amount of 

data being collected, which is the base of high-dimensional “big” data. “Velocity” refers to 

how quickly data is generated. High velocity is a common characteristic of high-frequency 

bio-signal data such as ECG and EEG, compared with low-frequency clinical data collected 

at hospital visits. “Variety” refers to the diversity of data types or data sources in which 

data standardization and integration are clear obstacles. “Veracity” refers to the quality and 

accuracy of data that may be inconsistent between data remotely collected via wearable 

devices at home and data collected in clinical settings.

Predictive analytics for big health data plays an important role in telemonitoring. As more 

and more patients’ health data become available, predictive analytics can be introduced 

to analyze the multi-source mixed-frequency data to facilitate cost-effective and precise 

prediction of patients’ health conditions, e.g., the so-called “Disease Severity Indicators” 

(DSIs). Despite of increasing interests in a variety of digital health applications, there 

are significant gaps in predictive analytics that can fully leverage big health data to 

automatically predict patients’ DSIs and is ready to be paired up with emerging digital 

health systems to enable automated disease telemonitoring and diagnosis. For example, the 

DSI of sleep disorder is the number of adverse respiratory events that occur during sleep. In 

current clinical settings, the DSIs need to be scored by the certified medical staff who review 

the recording of multi-channel bio-signals such as ECG and EEG and manually count the 

adverse respiratory events for each epoch. As a result, although wearable devices (Collop 

et al., 2007) are now available to administrate sleep studies at home, the manual scoring 

process to generate the DSI remains a bottleneck in automated monitoring and diagnosis of 

sleep disorder in telemonitoring.

The challenges for precise prediction of the DSI from high-dimensional multi-source 

mixed-frequency data are multi-folds. First, while mixed-frequency data contain rich health 

information, there is lack of rigorous method to integrate high-and low-frequency features of 

the same patient for precise prediction. Second, digital health applications typically enable 

high-dimensional features to be collected that are potentially relevant to patients’ health, 

but it is very likely that some features are not significantly predictive of patients’ DSIs and 

need to be eliminated from the prediction. Last but not least, conventional feature selection 

methods often overlook the relationships among features of multi-sources while it is more 

reasonable to assume grouping structures for multi-source features selection. To address 

these challenges, this paper proposes a sparse linear mixed model with group variable 

selection to simultaneously predict the DSI from multi-source mixed-frequency data with 

high prediction accuracy and select the significant feature groups to facilitate sparse variable 

selection and medical knowledge discovery. The rest of the paper is organized as follows: 

Section 2 reviews the relevant work; Section 3 presents the development of the proposed 

method; Section 4 discusses the application of proposed method for telemonitoring of sleep 

disorder; and Section 5 concludes the paper.
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2. Relevant work

2.1. Statistical models

The proposed sparse linear mixed model is the combination of the conventional statistical 

linear mixed model and modern sparse selection technique. This section first reviews the two 

topics separately and then discusses their limited combinations in the field.

Sparse variable selection techniques are modern statistical machine learning developments 

that were motivated by the emerging high-dimensional data (Hastie et al., 2009). The basic 

idea of sparse selection is to add the lasso-type l − 1 penalty to the model coefficients in 

order to shrink the estimates of insignificant coefficients to be exactly zeros (Tibshirani, 

1996). In recent years, various forms of penalties have been proposed to model different 

structures of the predictors to enable group or structured variable selection. For instance, 

Yuan and Lin (2006) developed a group lasso method with an l − 21 penalty that is capable 

of selecting a sparse set of groups by imposing an l − 1 penalty on the regression coefficients 

of predictors from each group. Jenatton et al. (2011) proposed a structured sparsity-inducing 

penalty by combining the lasso and group lasso. Yan and Bien (2017) also introduced a 

few variations of the lasso penalty to achieve desired structured sparsity relations among 

parameters. However, the integration of group variable selection techniques with linear 

mixed models is very limited.

The linear mixed model is a natural choice of statistical models to make prediction from 

mixed-frequency data in digital health and telemonitoring (Demidenko, 2013). It considers 

the relationship between the response variable and “clustered” variables in prediction and 

has been widely used in many domains (Magezi, 2015; Si et al., 2017). The longitudinal 

measurement of bio-signals over all epochs for the same patient is a classic example 

of clustered variables. While conventional statistical prediction models such as linear 

regression assume fixed effects only, i.e., regression coefficients, the linear mixed model 

assumes both fixed effects and random effects in prediction. Consequently, both low-and 

high-frequency features in the linear mixed model contribute fixed effects to predict the 

response variable, e.g., DSI, by assuming constant fixed coefficients between features and 

response across all the observations. In addition, high-frequency features also bring random 

effects into prediction by assuming a random distribution to account for within-patient 

variability. However, there are very few studies on sparse variable selection for linear mixed 

models, thus limiting its capacity to handle high-dimensional data.

Among a few existing efforts in sparse learning of linear mixed models, most studies 

can select fixed effects only, and sparse selection of random effects is more challenging. 

Indeed, there are significant differences in sparse variable selection between fixed effects 

and random effects. The fixed effects are characterized by regression coefficients that be 

easily selected by imposing an l − 1 penalty. In contrast, the random effects are characterized 

by a covariance matrix, Ψ, and it is not straightforward to penalize a covariance matrix 

using the lasso penalties. To address this challenge, the modified Cholesky decomposition 

was proposed to decompose the covariance matrix Ψ into DΓ(DΓ)T  in which D is a diagonal 

matrix and Γ is lower triangular matrix with all the diagonal elements being ones (Ibrahim 
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et al., 2011; Bondell et al., 2010). If one diagonal element in D is penalized to be zero, 

the corresponding row and column in the covariance matrix Ψ becomes zeros, eventually 

leading to the elimination of the corresponding random effect. However, none of these 

existing studies considered group or structured selection of fixed and random effects brought 

in by multi-source features.

2.2. Sleep disorder detection and prediction

Recently, there are emerging studies that utilize data analytical methods to detect adverse 

respiratory events from bio-signals collected during sleep and classify the participants into 

patients with sleep disorders and healthy individuals. Sharma et al. (2019) proposed an 

optimal two-band filter bank technique to split ECG signals into wavelet frequency bands 

for feature extraction and used various classifiers such as K nearest neighbor, decision 

tree, linear discriminant, logistic regression, and support vector machine to differentiate 

patients and healthy individuals with a 90.87% accuracy. Sheta et al. (2021) proposed a 

computer-aided diagnosis system to detect adverse respiratory events based on ECG with a 

number of classic machine learning and deep learning methods and achieved an accuracy 

of 86.25%. Wang et al. (2019) developed a time window artificial neural network that can 

account for the time dependence between ECG signal epochs that significantly outperformed 

traditional non-time window methods for sleep disorder prediction. Niroshana et al. (2021) 

applied a convolutional neural network to extract features from images created with ECG 

epochs and achieved an average accuracy of 92.4% for the fused images. Jarchi et al. (2020) 

proposed to extract features from ECG and EMG using entropy and statistical moments, and 

synchrosqueezed wavelet transform, respectively, and developed a deep learning framework 

to incorporate both ECG and EMG features for classification with a mean accuracy of 

72%. Huysmans et al. (2021) developed a sleep-wake classifier for sleep time estimation 

and used the predicted sleep-wake patterns for healthy, mild, moderate, and severe patient 

classification.

Other types of bio-signals such as EEG have also been leveraged for sleep disorder 

prediction. Wang et al. used the infinite impulse response butterworth band pass filter to 

divide the EEG signals into different frequency sub-bands and applied Random forest, 

K-nearest neighbors, and bagging for classification resulting in an average accuracy of 

90.43% (Wang et al., 2021). Zhao et al. used random forest, K-nearest neighbor, and support 

vector machine to classify EEG features extracted by the neighbor composition analysis 

resulting in an average accuracy of 88.99% (Zhao et al., 2021). Last, there is a recent study 

that combines EEG, ECG, and EMG signals to classify healthy individuals and patients by 

evaluating sleep healthy at different sleep stages, which achieves at least 96% for sensitivity, 

specificity, and accuracy (Moridani et al., 2019).

However, existing studies have a few limitations. First, most of these studies used 

either ECG or EEG only in the prediction without fully leveraging the complementary 

information from multi-source bio-signals including both ECG and EEG. More importantly, 

most existing studies focus on classification of patients with sleep disorder and healthy 

individuals, instead of providing more specific disease severity information among patients 

by predicting their DSIs, which limits the clinical utilization of the developed machine 
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learning methods. For example, patients with mild sleep disorder may be recommended 

to make lifestyle changes such as adapting to a healthy diet, while severe patients may 

need to be aggressively treated with a variety of therapeutic approaches (Chang et al., 

2020). Therefore, compared to the classification of healthy individuals and patients with 

sleep disorder, it is more critical to predict the DSI of each patient so that different 

management and treatment approaches can be offered to patients at different disease severity 

for optimized outcomes.

3. Development of a sparse linear mixed model with group variable 

selection

3.1. Model formulation

The linear mixed model approaches the prediction of mixed-frequency features with a 

two-level model. In the epoch-level (or Level 1), DSI for each epoch is predicted from 

high-frequency features, i.e., bio-signal features, only. In the patient-level (or Level 2), 

the predictive relationship in Level 1 further depends on low-frequency features, i.e., each 

patient’s health covariates such as age, gender, and other basic health information. Figure 1 

exhibits a graphical illustration of the proposed linear mixed model.

Specifically, in the epoch-level (Level 1), we use ynt and znt to denote the DSI and bio-signal 

features for patient n at epoch t, respectively, for n = 1, …, N and t = 1, …, T . N is the total 

number of patients and T  is the total number of epochs. Without loss of generality, we 

assume all patients have the same number of epochs to keep the notations simple. The 

epoch-level model predicts the DSI of patient n at epoch t ynt  from his or her bio-signal 

features znt  and can be written as

ynt = αn
0 + znt

T αn1 + εnt, (1)

where εnt ∼ N 0, σ2 . The differences between model (1) and the classic linear regression 

model are: (a) the intercept and coefficients αn
0 and αn1 are patient-specific and depend on 

the patient index n, while the classic regression model assumes the same intercept and 

coefficients across all the observations; (b) observations in (1) are not independent of each 

other, because DSIs of the same patient across different epochs, i.e., yn1, …, ynT, are clearly 

dependent, thus violating the independent and identically distributed (i.i.d.) assumption of 

the linear regression model. In the patient-level (Level 2), the patient-specific intercept 

and coefficients αn
0 and αn1 can be further characterized by low-frequency features such 

as patient’s age, gender, and other basic health information, denoted by wn, to describe 

how a patient’s characteristics affect the relationship between patient’s DSI and his or her 

bio-signal features at each epoch. Without loss of generality, we follow the widely used 

assumption of linear mixed models and write the patient-level model as

αn
0 = wn

Tβx and αn1 = βz + en for n = 1, …, N, (2)

where en ∼ N 0, σ2Ψ .
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Then, we can substitute (2) into (1) and obtain the two-level linear mixed model that predicts 

the DSI from mixed-frequency features as below:

ynt = wn
Tβx + znt

T βz + znt
T en + εnt . (3)

where βx ∈ RI × 1 and βy ∈ RJ × 1 are considered as fixed effects and en are considered as 

random effects. The combined linear mixed model in (3) clearly shows that both high-and 

low-frequency features, i.e., wn and znt, contribute fixed effects to predict the response 

variable, i.e., ynt, and only high-frequency features, i.e., znt, contribute random effects to the 

prediction. After reparameterization, we can rewrite the combined model in (3) as

ynt = xnt
Tβ + znt

T en + εnt, (4)

where xnt = wn
T, znt

T T , β = βx
T, βz

T T , en ∼ N 0, σ2Ψ , and εnt ∼ N 0, σ2 . The fixed effects are 

characterized by the coefficients β and random effects are characterized by the covariance 

matrix Ψ. Then, we apply a modified Cholesky decomposition to the covariance matrix 

of random effects and have Ψ = DΓ(DΓ)T  in which D is a diagonal matrix and Γ is 

lower triangular matrix with all the diagonal elements being ones. To ease the following 

discussion, we let en = DΓen where en ∼ N 0, σ2  and Model (4) becomes

ynt = xnt
Tβ + znt

T DΓen + εnt . (5)

For patient n, we can stack up his or her data across all epochs and have

yn = Xnβ + ZnDΓen + εn, (6)

where yn = yn1, …, ynT
T , Xn = xn1, …, xnT

T , , Zn = zn1, …, znT
T , and εn = εn1, …, εnT

T . By 

pooling the data across all patients, the complete linear mixed model becomes

y1

⋮
yN

=
X1

⋮
XN

β +
Z1

⋱
ZN

D
⋱

D

Γ
⋱

Γ

e1

⋮
eN

+
ε1

⋮
εN

, and then

y = Xβ + Z I ⊗ D I ⊗ Γ e + ε .

(7)

In Equation (7), the parameters to be estimated include β, D, Γ, and σ2 that can be organized 

into a vector ϕ = βT , dT , γT , σ2 T
. We assume the total numbers of fixed effects and 

random effects are P = I + J and Q = J, respectively. Then, we have β ∈ RP × 1, d ∈ RQ × 1

consisting of all the diagonal elements in the diagonal matrix D, and a vector γ consisting of 

all the non-zero elements in the lower triangular matrix Γ. After dropping constant terms, the 

complete log-likelihood function of the linear mixed model in (7) can be written as
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l ϕ ∣ y, e = − NT + NQ
2 log σ2 − 1

2σ2

( ∥ y − Xβ − Z I ⊗ D I ⊗ Γ e ∥2 + eTe) .
(8)

The challenge, however, is that we don’t know which fixed and random effects contribute 

to the prediction of DSIs so we propose to adopt sparse learning approaches such as lasso-

based penalties to select fixed effects and random effects in model estimation. Moreover, we 

propose to add an l − 21 penalty based on features grouped by their sources to the complete 

log-likelihood function in (8), resulting in the following optimization problem:

minϕg(ϕ) = minϕ −l(ϕ ∣ y, e) + λ ∑g1 = 1

G1 βg1 2 + ∑g2 = 1

G2 dg2 2 , (9)

in which we refer to features’ sources to divide β and d into G1 and G2 groups, respectively. 

For example, all depression questions to measure patients’ mental status are considered 

low-frequency features that bring in fixed effects only, and their fixed coefficients can be 

put in the same group, i.e., βg1; while all the high-frequency ECG features bring in both 

fixed and random effects, and their fixed and random effects are penalized as two groups, 

i.e., βg1 and dg2. Note that Equation (9) applied the l − 21 penalty to all features to simplify 

the formula. However, we can choose to hold off the sparse selection for some features by 

adding different weights to each group. This flexibility of group lasso is very useful for 

healthcare applications in which some critical features such as age, gender, and race are 

known to be significant contributors to disease severity according to medical knowledge and 

should always be kept in the prediction models.

3.2. Model estimation by integrating EM algorithm with an efficient MM algorithm

The model estimation of the sparse linear mixed model results in the optimization 

problem as shown in Equation (9). There are two challenges in solving this optimization 

problem. First, the objective function in (9) contains unobserved latent variables e in 

addition to observed data, and thus relies on the Expectation Maximization (EM) algorithm 

for the model estimation. EM algorithm is an iterative algorithm with E-steps and M-

steps. In the ω + 1 -th iteration, the E-step calculates the expectation of unobserved 

variables based on their conditional probabilities given observed data, i.e., f(e ∣ y; ϕ ω ), 
and then the subsequent M-step aims to maximize the expected log-likelihood function, 

i.e., Ee ∣ y; ϕ ω g(ϕ; ϕ ω ) , to obtain an updated set of parameters ϕ ω + 1 . The second 

challenge, however, is how to efficiently solve the non-smooth maximization problem with 

l − 21 penalty in M-steps, while the conventional maximization algorithms such as Block 

Coordinate Gradient Descent (Meier et al., 2008) and Nesterov’s method (Liu et al., 2009) 

are computationally expensive. To address these challenges, this paper proposes to integrate 

the EM algorithm with a Majorization Maximization (MM) algorithm to efficiently solve the 

optimization problems in M-steps.
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In the E-step at the ω + 1 -th iteration, we first derive the conditional distribute of latent 

variables e, i.e., f(e ∣ y; ϕ ω ), which is a normal distribution with mean e ω  and covariance 

Σ ω  as below:

ê ω

= (I ⊗ Γ ω )T(I ⊗ D ω )TZTZ(I ⊗ D ω )(I ⊗ Γ ω ) + I
−1

Z(I ⊗ D ω )(I ⊗ Γ ω ) T

(y − Xβ ω );

(10)

Σ ω = σ2 ω
((I ⊗ Γ ω )T(I ⊗ D ω )TZTZ(I ⊗ D ω )(I ⊗ Γ ω ) + I)

−1
. (11)

Then, we can use (10) and (11) to calculate the expectation of the objective function with 

respect to the conditional distribution, i.e., Ee ∣ y;ϕ ω g(ϕ; ϕ ω ) . After dropping non-relevant 

terms and expect out the latent variables, the expectation can be explicitly written as

g′(ϕ; ϕ ω ) = 1
2σ2

β
d

T XTX A12

A12
T A22

β
d − 2yT X B2

β
d + λ

(∑g1 = 1

G1 ∥ βg1 ∥2 + ∑g2 = 1

G2 ∥ dg2 ∥2) ⋅
(12)

Some of the terms in (12) are shown as below:

A12 = XTZDiag (I ⊗ Γ ω )ê ω 1N ⊗ I , (13)

A22 = 1N ⊗ I T ZTZ ∘ (I ⊗ Γ ω ) Σ ω + ê ω ê(ω)T (I ⊗ Γ ω )T 1N ⊗ I , and (14)

B2 = ZDiag (I ⊗ Γ ω )ê(ω) 1N ⊗ I , (15)

where “o” is the Hadamard product operator.

In the subsequent M-step, all parameters in ϕ = βT , dT , γT , σ2 T
 can be iteratively estimated 

and γ and σ2 have closed forms in each iteration. β and d need to be jointly estimated 

through an efficient MM algorithm. Compared to conventional optimizers, the MM 

algorithm tackles the maximization of a complex objective function such as Equation 

(12) in our model by finding and maximizing a surrogate object function. Because the 

surrogate model is typically simpler than the original objective function, the maximization 

of the surrogate mode can often be analytically solved with a closed-form formula and 

therefore the MM algorithm is known to be more computationally efficient than most 

conventional optimizers such as Block Coordinate Gradient Descent method and Nesterov’s 

method. However, to apply the MM algorithm, the objective function in (12), specifically 
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its loss function without the l − 21 penalty, needs to satisfy a Quadratic Majorization (QM) 

condition.

To adopt the MM algorithm for the M-step, we first present the definition of QM conditions 

as below. Then, we derive the proposition to show that the unpenalized loss function in (12) 

satisfies the QM conditions so that the efficient MM algorithm is applicable to the proposed 

model.

Definition:

QM condition (Yang and Zou, 2015): We let t and D to denote the parameters and 

working data, respectively. The loss function L t ∣ D  satisfies the QM condition if and only 
if the following two assumptions hold:

i. L t ∣ D  is differentiable as a function of t, i.e., ∇L t ∣ D  exists everywhere.

ii. There exists a matrix H that only depends on the data D such that for any t and 

t*,

L t ∣ D ≤ L t* ∣ D + t − t* T ∇L t* ∣ D + 1
2 t − t* TH t − t* . (16)

Proposition:

The loss function without the l − 21 penalty in (12) of the proposed sparse linear mixed 

model satisfies the QM condition.

Proof: The proposed objective function in (12) has parameters β and d to be estimated. We 

denote t = βT , dT T
 and the loss function without the l-21 penalty in (12) becomes

L t ∣ D = A, b, σ2 = 1
2σ2 tTAt − 2bTt , (17)

where A = XTX A12

A12
T A22

 and bT = yT X B2 .

For any t and t* ∈ RP + Q, we denote t − t* = v and define k s = L t* + sv ∣ D  so that 

k 0 = L t* ∣ D  and k 1 = L t ∣ D . Based on the Mean Value Theorem (Rudin, 1976), we 

can find a value a ∈ 0,1  such that

k 1 = k 0 + k′ 0 + k′′ a , (18)

where k′ 0  and k′′ a  can be derived as

k′(0) = ∂L(t* + sv ∣ D)
∂s s = 0

= vT ∇L t* ∣ D = t − t* T ∇L t* ∣ D ; (19)
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k′′ a = ∂2L(t + sv ∣ D)
∂s2

s = a

= ∂(t + sv T

∂s
∂2L(t + sv ∣ D)

∂(t + sv)2
∂(t + sv)

∂s
s = a

+ ∂L(t + sv ∣ D)
∂(t + sv)

T ∂2(t + sv)
∂s2

s = a

= vT A
σ2v .

(20)

To obtain Equation (16) in QM conditions’ definition, we need to find a matrix H such that

k′′(a) = vT A
σ2v ≤ 1

2vTHv. Note that this is trivial since the matrix A only depends on data D.

Then, we have

k 1 = k 0 + k′ 0 + k′′ a = k 0 + k′ 0 + kvT A
σ2v ≤ k 0 + k′ 0 + 1

2vTHv . (21)

Since we have k 1 = L t ∣ D , k 0 = L t* ∣ D , and k′(0) = t − t* T ∇L t* ∣ D , Equation (21) 

can be rewritten as

L t ∣ D ≤ L t* ∣ D + t − t* T ∇L t* ∣ D + 1
2 t − t* TH t − t* .

4. Application in telemonitoring of sleep disorder

4.1. Data description and bio-signal processing

This section illustrates the application of the proposed sparse linear mixed model with group 

variable selection using data collected in the Sleep Heart Health Study (SHHS) (Quan et 

al., 1997, Zhang et al., 2018). The SHHS is an epidemiological study on sleep disorder in 

the United States. After examining the quality and reliability of bio-signal recordings and 

data missingness, this study randomly selected 100 subjects with 20 epochs for each subject, 

resulting in a total number of 2,000 observations, i.e., N = 100, T = 20, and N × T = 2,000. 

In this application of sleep disorder, the epoch length is chosen to be 5 minutes due to the 

characteristics of its DSIs, i.e., the frequency of adverse respiratory events that is typically 

between 5–30 per hour for patients with mild and moderate sleep disorder. A shorter epoch 

length may result in many observed epochs with DSIs being zeros and cause data imbalance, 

while a longer epoch length may overlook the longitudinal variation of DSIs for the same 

patient. In general, the epoch length can be customized based on the health conditions to be 

monitored, as long as the total number of patients and total number of epochs per patient 

are able to provide sufficient statistical power to estimate the fixed effects and random 

effects in the sparse linear mixed models. The SHHS dataset contains rich multi-source 

mixed-frequency features that are potentially predictive of the severity of sleep disorder. As 

described in Section 3, all the low-frequency features contribute fixed effects only, while 

the high-frequency features contribute both fixed and random effects. Next, we present 

the low-and high-frequency features included in this case study. An overview of features’ 

descriptive statistics is depicted in Table 1.
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The patient’s low-frequency features contain basic health information including age, gender, 

ethnicity, and BMI, and other health conditions from different sources to measure the 

patient’s mental health, sleep habits, and general health status. For example, the patient’s 

mental status is known to be associated with his or her sleep health so that the SHHS study 

examined patient’s depression status by administrating a depression screening questionnaire 

with questions such as during the past 4 weeks, how much of the time: “Have you felt 

downhearted and blue”; “Have you been a very nervous person”; and “Did you feel tired?” 

The answer is on the five-Likert scale with 1 representing “never” and 5 representing 

“almost always”. Then, all the depression questions are considered as one group in the 

sparse selection of the proposed linear mixed model. That is, if all the fixed effects brought 

in by the depression questions are penalized to be zeros, then it implies that the patient’s 

depression status is not significantly predictive of his or her DSI in the presence of other 

predictors in the proposed model. It is worth noting that patient’s basic information such as 

age, gender, ethnicity, and BMI are widely used as clinical indicators of disease severity, and 

should not be selected off in the proposed method. To incorporate this medical knowledge 

into prediction, the group lasso can be generalized to assign separate penalty weights 

to different groups that allow differential shrinkage for select feature groups. Therefore, 

without loss of generality, we can assign a separate weight with no shrinkage in group 

lasso to avoid the basic important information such as age, gender, ethnicity, and BMI being 

eliminated from the prediction model.

The patient’s high-frequency data contain ECG-derived and EEG-derived features, along 

with the frequency of adverse respiratory events, i.e., DSIs, per epoch. For each patient, 

we first identified the epochs with both reliable ECG and EEG signals available and then 

collected features from both signals. The ECG signals were processed by the Heart Rate 

Variability (HRV) analysis to extract the morphology of the waves and intervals on the ECG 

curve (Qin et al., 2021). As shown in Figure 2 (a), the QRS complex is the most well-known 

waveform showing electrical activity inside the heart, and the interval between R peaks in 

two adjacent QRS complexes is defined as the “NN interval” (Normal-to-Normal interval to 

emphasize that the heartbeats are normal). HRV features included in this study are Average 

and Standard Deviation of NN intervals (AVNN and SDNN), NN < 10 ms counts divided 

by the total number of all NN intervals (pNN10), and other frequency domain features 

with Very low, low, and high frequencies (VLF, LF, and HF). All the six HRV features 

are considered as one group that captures the ECG information. The EEG signals were 

processed by the Power Spectral Analysis (PSD) (Stoica and Mosees, 2005; Hayes, 2009). 

First, we decompose the EEG signals into distinct frequency sub-bands including Slow (0.5–

1 Hz), Delta (1–4 Hz), Theta (4–8 Hz), Alpha (8–12 Hz), Sigma (12–15 Hz), Beta (15–30 

Hz), and Gamma (30+ Hz). Then, we used PSD to calculate the power distribution of EEG 

by estimating the area under the power density curve for each sub-band as shown in Figure 2 

(b), resulting in seven EEG-derived features, i.e., mean of spectral band power for the seven 

sub-bands. All the seven PSD features are considered as one group that captures the EEG 

information.
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4.2. Results and discussion

We applied the proposed sparse linear mixed model with group variable selection in Section 

3 to the SHHS dataset. The regularized parameter λ for the group lasso in Equation (9) can 

be selected based on Bayesian Information Criterion (BIC) that balances the model fitness 

and complexity. BIC takes the form of −2l + log N × df where l is the log-likelihood of 

the observed data and df is the degree of freedom that depends on the number of non-zero 

parameters in the model. Using the exhaustive grid search, we chose the optimal λ that 

minimizes BIC.

In the optimal model, both ECG- and EEG-derived features were selected as significant 

fixed and random effects in the prediction of DSIs at epoch-level, which were consistent 

with prior studies on the association between sleep disorder and multi-channel bio-signals 

(Stein and Pu, 2012; Zhou et al., 2020). Among the three types of low-frequency survey 

data, i.e., mental health, sleep habits, and daytime sleepiness, only the daytime sleepiness 

group was selected as significant fixed effects in predicting the severity of sleep disorder. 

Although existing studies showed that patients’ depression and sleep habits may be related 

to their sleep health, the daytime sleepiness questionnaire, also referred to as the Epworth 

Sleepiness Scale (ESS), is widely used in the field of sleep medicine as a subjective measure 

of patients’ sleepiness (Rosenthal and Dolan, 2008; Belgü et al., 2015). Finally, since no 

penalty were imposed on patients’ age, gender, ethnicity, and BMI, all the four variables 

remained in the final prediction model. The estimates of their fixed effects are all positive 

(coefficients of 0.23,0.02,0.02, and 0.11 for age, gender, ethnicity, and BMI, respectively) 

indicating that subjects that are “older”, “male”, “non-Hispanic”, or “with a higher BMI” are 

positively associated with a higher DSI, and thus may be more likely to have more severer 

sleep disorder, most of which are consistent with medical findings on sleep disorder (Deng 

et al., 2014; Jehan et al., 2017). The only exception is the finding that shows “non-Hispanic” 

people may be associated with more severity sleep disorder, while more and more medical 

studies show that Hispanic minorities may be more susceptible to sleep disorder (Redline et 

al., 2014). Although sleep disorder is more prevalent in Hispanics compared with the white 

majority, the Hispanic population is heterogeneous and Hispanics from different origins such 

as Cuban, Puerto Rican, and Mexican may have distinctly different lifestyles and health 

conditions (Merchant et al., 2015). Therefore, one possible explanation is that the origin 

of Hispanic participates in the SHHS study affects the association between sleep disorder 

severity and ethnicity, i.e., Hispanic versus non-Hispanic.

Moreover, we compare the prediction accuracy of the proposed model with a few 

benchmarks such as Regression Tree, Linear Regression, Support Vector Regression, and 

Random Forest. To avoid overfitting, we randomly split the SHHS dataset into a training 

set and a testing set with different splitting percentages from 30%, 50%, 70%, to 90%. We 

adopt different splitting percentages to test the model’s performance with different sample 

sizes. The Mean Absolute Prediction Error (MAPE) is used to calculate the prediction 

accuracy. To account for randomness in data splitting, we repeatedly performed the similar 

comparison for 50 times by randomly splitting the dataset into a training set and a testing 

set using distinct random number generators. Both the mean value and standard deviation of 

MAPEs across the 50 replicates are reported in Figure 3.
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As shown in Figure 3, the proposed method achieved the lowest MAPE compared with 

other competing methods under four different scenarios. As we increase the percentage 

of training data from 30%,50%, 70%, to 90%, all the methods obtained smaller MAPEs 

and performed better as expected. The proposed method still consistently outperforms the 

competing methods with significant P-values of <0.001, <0.001, <0.001, and 0.02 for the 

four scenarios, respectively, most likely because all the competing methods do not consider 

the heterogeneity in mixed-frequency features as what we did for the proposed sparse linear 

mixed model. Moreover, it is noteworthy that standard deviations of MAPEs increase for 

most of the models including the proposed model as more data is used for model training. 

In particular, when 90% of the data is used for training, the standard deviations of MAPEs 

in the testing data across the 50 replicates drastically increase for all the methods. This 

observation may indicate overfitting for many of the replicates in this extreme scenario that 

90% of data is used for training and only 10% is left for testing.

5. Conclusion

Digital health and telemonitoring have resulted in a wealth of information to be collected 

to monitor, manage, and improve human health. However, the multi-source mixed-frequency 

health data overwhelmed the modeling capacity of existing statistical and machine learning 

models, due to many challenging properties. Therefore, although predictive analytics for 

big health data plays an important role in telemonitoring, there is a lack of rigorous 

prediction model that can automatically predicts patients’ health conditions, e.g., DSIs, 

from the multi-source mixed-frequency data, which is ready to be paired up with emerging 

digital health systems to enable automated disease telemonitoring and diagnosis. Take sleep 

disorder as an example. Sleep disorder is a prevalent cardiac syndrome that is characterized 

by abnormal respiratory patterns during sleep. Although effective treatment can be offered 

to treat sleep disorder and mitigate its risk sequelae, many patients with sleep disorder are 

under-diagnosed, mostly likely due to the costly and logistically inconvenient diagnostic 

approach for sleep disorder. Although wearable devices are now available to administrate 

sleep studies at home, the manual scoring process to generate the DSI remains a bottleneck 

in automated monitoring and diagnosis of sleep disorder.

The challenges for precise prediction of the DSI from high-dimensional multi-source mixed-

frequency data in sleep disorder are multi-folds. First, the severity of sleep disorder is 

potentially relevant to both clinical data collected at hospital and bio-signal data remotely 

collected at home. While bio-signal data such as an overnight recording of ECG and EEG 

are measured at a very high frequency, clinical data such as patients’ age, gender, BMI, and 

other health conditions, would remain very similar if not exactly the same over all epochs 

and are considered low-frequency data. To leverage both high-and low-frequency data in 

prediction, we proposed to formulate the prediction model using a statistical linear mixed 

model. The second challenge, however, is how to simultaneously estimate the linear mixed 

model and select fixed and random effects from multi-source features groups. While the 

sparse selection of fixed effects, characterized by regression coefficients, is relatively simple, 

random effects are characterized by the covariance matrix and their sparse selection is not 

straightforward. To address this, we proposed to adopt the modified Cholesky decomposition 

with the group lasso penalties to enable joint group selection of fixed effects and random 
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effects. Last but not least, we developed an EM algorithm integrated with an efficient MM 

algorithm for model estimation of the proposed sparse linear mixed model with group 

variable selection.

Finally, the proposed method was applied to the SHHS data for telemonitoring and diagnosis 

of sleep disorder. The ECG and EEG signals are respectively processed by the HRV analysis 

and PSD method to prepare the ECG-and EEG-derived features groups, to be integrated 

with the low-frequency data including patients’ age, gender, ethnicity, BMI, and other health 

conditions such as mental status, daytime sleepiness, and general health information. Then, 

we predicted patients’ DSIs from their multi-source mixed-frequency data and found a few 

significant feature groups that are consistent with prior medical studies on sleep disorder. 

Moreover, the proposed method was compared with a few benchmarks and achieved the 

highest prediction accuracy.
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Figure 1: 
Graphical illustration of the mixed-frequency data
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Figure 2: 
Bio-signal processing methods.

(a) ECG as the basis of measuring HRV. (b) Example of an EEG spectrum and its sub-bands 

(Adopted and revised from (Dong, 2016; van Albada and Robinson, 2013))
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Figure 3: 
MAPEs on testing data with 30%,50%,70%, and 90% of the data used for model training
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Table 1:

Description of variables included in the study

Variables Summary statistics

Low-frequency independent variables 

Age (Unit: year) 53.5 ± 10.0

Gender (Female: 0; Male: 1) 42.0% / 58.0%

Ethnicity (Hispanic: 0; Non-Hispanic: 1) 9.0% / 91.0%

BMI (Unit: kg/m2) 26.6 ± 4.5

Depression survey (9 variables; 5-Likert scale from 1 to 6) 4.0 ± 0.3*

Sleep habit survey (7 variables; 5-Likert scale from 1 to 5) 2.3 ± 0.6*

Daytime sleepiness survey (10 variables; 5-Likert scale from 1 to 4) 1.7 ± 0.5*

High-frequency independent variables 

ECG features (6 variables) Average of all NN intervals (Unit: ms) 931.5 ± 135.6

Standard deviation of NN intervals (Unit: ms) 56.4 ± 34.46

NN<10ms counts divided by the total number of NN intervals (65.0 ± 19.1) %

Relative spectral power for very low frequency (0.003–0.04 Hz), low frequency (0.04–
0.15 Hz), and High frequency (0.15–0.4 Hz)

**

EEG features (7 variables) Relative spectral power for Slow (0.5–1 Hz), Delta (1–4 Hz), Theta (4–8 Hz), Alpha 
(8–12 Hz), Sigma (12–15 Hz), Beta (15–30 Hz), and Gamma (30+Hz)

**

Dependent variable 

DSI (Number of adverse events per epoch) 2.47 ± 2.78

*
Due to the space limitations, we first calculate a composite score for each survey by taking the average of all separate questions and then report 

the average composite score across all participants.

**
Relative spectral power of different frequency sub-bands are percentages and sum to 100% across all the sub-bands.
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