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Abstract: CD155, also known as the poliovirus receptor, is an adhesion molecule often overexpressed
in tumors of different origins where it promotes cell migration and proliferation. In addition to
this pro-tumorigenic function, CD155 plays an immunomodulatory role during tumor progression
since it is a ligand for both the activating receptor DNAM-1 and the inhibitory receptor TIGIT,
expressed on cytotoxic innate and adaptative lymphocytes. DNAM-1 is a well-recognized receptor
involved in anti-tumor immune surveillance. However, in advanced tumor stages, TIGIT is up-
regulated and acts as an immune checkpoint receptor, counterbalancing DNAM-1-mediated cancer
cell clearance. Pre-clinical studies have proposed the direct targeting of CD155 on tumor cells as well
as the enhancement of DNAM-1-mediated anti-tumor functions as promising therapeutic approaches.
Moreover, immunotherapeutic use of anti-TIGIT blocking antibody alone or in combined therapy has
already been included in clinical trials. The aim of this review is to summarize all these potential
therapies, highlighting the still controversial role of CD155 during tumor progression.
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1. Introduction

CD155/Necl5 is a type I transmembrane glycoprotein that belongs to the Nectins
and Nectin-like (Necls) family of proteins, and it is also known as poliovirus receptor
(PVR) since it allows poliovirus entry [1]. As with other members of this family, CD155
mediates important cellular processes, playing a critical role in adhesion, contact inhibition,
migration, and proliferation [2,3].

Although CD155 is constitutively expressed at a low level in different tissues in-
cluding vascular endothelial cells, spinal cord motor neurons, dendritic cells (DC), and
macrophages [4–6], its overexpression correlates with poor prognosis in human malignan-
cies of different origins such as non-small cell lung cancer (NSCLC), pancreatic cancer,
sarcoma, melanoma, breast cancer, colorectal cancer, and multiple myeloma (MM) [7–15].
These observations suggest that CD155 expression may confer to tumor cell more aggres-
sive features. When expressed on tumor cells, CD155 can trigger proliferative signals and
favor tumor cell migration and metastasis [3,16,17].

CD155 also plays and immunoregulatory function. Indeed, it interacts with the
activating receptor DNAX-associated molecule-1 (DNAM-1) expressed on the surface of
cytotoxic T cells and natural killer (NK) cells, thus favoring tumor cell recognition and
elimination by innate and adaptive immune responses [2,18]. On the other hand, CD155
also binds checkpoint inhibitory receptors, including T cell immunoreceptor with Ig and
ITIM domains (TIGIT) and T cell-activated increased late expression (Tactile or CD96), thus
counteracting DNAM-1 action in the late phases of tumor progression [19].

Although the clinical significance of CD155 expression in cancer remains controversial,
this molecule represents a potential target of anti-tumor therapies. The scope of this review
is to summarize approaches that direct target CD155 either as receptor for Poliovirus to
address oncolytic virus action on cancerous cells or as a ligand for DNAM-1 and TIGIT
immune receptors to favor a more efficient anti-cancer immune response.
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2. The Complex Role of CD155 in Tumor Progression

CD155 is an adhesion molecule belonging to the IG superfamily of proteins with three
Ig domains in its extracellular domain, as depicted in Figure 1A [3,20]. It is expressed
at low levels in healthy tissue, but during malignant transformation, different signals
and transcriptional programs are responsible for CD155 up-regulation [21–23]. This up-
regulation may represent an advantage for cancer cells since CD155 contributes to tumor
growth and the acquisition of an invasive phenotype [16,17]. These data, together with
high CD155 expression in advanced clinical stage of human malignancies, mainly support
a role for CD155 as a pro-tumorigenic molecule [7–15]. However, CD155 also exerts an
anti-tumorigenic role regulating immune response to tumors thanks to its ability to interact
with immune receptors on cytotoxic lymphocytes [18,19].
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Figure 1. Schematic structure of human CD155 and its receptors. (A) Human CD155 is produced as
four splice variants that differ in the presence of the transmembrane domain (TM) and the length
of the C-terminal domain. This latter domain in hCD155α comprises an ITIM domain that initiates
inhibitory signals and a domain interacting with clathrin adaptor complex (CID). (B) CD155 receptors
include DNAM-1, TIGIT, and CD96 that harbor motifs of potential importance for signaling, as
described in the text. Activating domains are depicted in green, whereas inhibitory domains are
depicted in red.

The results discussed in the following subsections and paragraphs outline the
CD155 complex role in tumor initiation and progression, as well as its role in tumor
immune surveillance.

2.1. Regulation of CD155 Expression and Function in the Tumor Microenvironment

Accumulating evidence demonstrates that CD155 expression may be regulated at
transcriptional, post-transcriptional, and post-translational levels.

CD155 overexpression is regulated by signals implicated in tumor transformation,
including the activation of the Ras-Raf-MEK-ERK pathway either by Ras mutations or
fibroblast growth factor receptor stimulation [22]. Moreover, in MM, DNA damage has been
shown to up-regulate CD155 expression through a pathway involving ataxia telangiectasia
mutated (ATM) and Rad3-related (ATR) protein kinases [23–25].

Regarding the transcription factors involved, CD155 expression may be induced by
Gli that is activated by the Sonic Hedgehog pathway [21], as well as NF-κB activated by
different stimuli including Toll-like receptor ligands [26–29]. Recent studies demonstrate
that cytokines may play a role in the modulation of CD155 expression during tumor
transformation. Indeed, a role for T cell-derived IL-22 in the induction of murine CD155
expression on lung and breast cancer cells has been envisaged [30], while IL-8 derived from
bone marrow stromal cells regulates CD155 expression in human MM [28].

Once transcribed, human CD155 mRNA can be alternatively spliced into different
isoforms, resulting in the presence of four proteins sharing the same extracellular domains
(Figure 1A) [31,32]: β and γ are soluble forms that lack the transmembrane domain and
were found in different body fluids such as blood, cerebrospinal fluid, and urine; α and δ

are transmembrane isoforms that contain different intracellular domains. In particular, the
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longest CD155α isoform possesses a unique intracellular domain that interacts with the
clathrin adaptor complex and an immunoreceptor tyrosine-based inhibition motif (ITIM)
responsible for signal transduction [33,34]. Whether different stressing stimuli regulate the
expression of diverse CD155 isoforms in cancerous cells remains unknown.

Post-translational modifications including ubiquitin and ubiquitin-like pathways regu-
late CD155 expression in tumor cells [35,36]. Indeed, although the involvement of ubiquitin
conjugation has not been formally demonstrated, CD155 is constitutively degraded in
hepatocellular carcinoma cells by the activation of the unfolded protein response [37]. In
MM cells, CD155 modification by the ubiquitin-like molecule SUMO promotes its intracel-
lular retention resulting in a reduction of CD155 surface expression and an impairment of
CD155-related functions including cytotoxic immune cell activation and MM adhesion to
bone marrow stromal cells [17,38].

CD155 expression on cancerous cells has the potential to contribute to progression
and spreading of the tumor thanks to the intrinsic ability of this molecule to induce
proliferative signals and promote migration [39,40]. CD155-deficient mice showed reduced
tumor burden in a model of colitis-induced colorectal cancer [41]. Accordingly, in human
colorectal cancer cell lines, CD155 expression provides a proliferative advantage to the
tumor while its knockdown shifts Bax/Bcl-2 balance towards pro-apoptotic signaling [42].

The molecular pathways underlying CD155-mediated proliferation are only partially
clarified, mainly through experiments performed using NIH3T3 cells: CD155 synergizes
with platelet-derived growth factor potentiating the Ras-Raf-MEK-ERK signaling path-
way [43]. Of note, in cells in which Ras is constitutively active, CD155 overexpression is
sufficient to promote cell proliferation. Conversely, CD155 knock-down results in cell cycle
arrest [44]. Notably, the intracellular ITIM domain is required for CD155-induced prolifera-
tive signals [44], suggesting that this function is exclusively exerted by the CD155α isoform.

Even though findings in vivo are scarce, several pieces of in vitro evidence highlight a
role for CD155 in regulating both cell–cell adhesion and cell migration. CD155 belongs to
the Nectins and Nectin-like molecules (Necl), a family of Ig-like adhesion molecules able to
bind to the extracellular matrix or to form homophilic and heterophilic interaction with
members of the same family, contributing to the organization of adherent junctions [20].
Differently from Nectin proteins, CD155 does not form homophilic interactions but can
bind to Nectin-3 [45,46] and vitronectin [47], thus mediating adhesion to neighboring
cells and extracellular matrix, respectively. Upon interaction with Nectin-3, CD155 is
rapidly internalized, allowing contact inhibition of cell movement and the formation of
tight junctions [48]. This continuous internalization is counterbalanced by a strong CD155
up-regulation occurring during tumor progression. CD155 up-regulation allows novel but
only partially defined interactions and favors cell migration. Of note, at the leading edge of
migrating cells, CD155 colocalization with αvβ3 integrin induces Rac and Cdc42 signaling
pathways that promote cytoskeleton reorganization and inhibition of focal adhesion [49].

Accordingly, CD155 expression enhances tumor spreading in primary gliomas, and
its over-expression in glioma cell lines reduces adhesion to vitronectin and induces cell
migration [50,51]. As demonstrated for proliferation, the CD155 ITIM domain appears
to be required for the initiation of intracellular signals that inhibits adhesion and favors
migration. Upon phosphorylation, this domain recruits the Src homology region 2 domain-
containing phosphatase (SHP-2) that, in turn, dephosphorylates focal adhesion kinase
(FAK) [34]. Although most of these results were not confirmed in vivo, CD155 expression
in several cancers correlates with their metastatic potential [7–15].

2.2. CD155: A Double-Edged Sword in Cancer Immune Surveillance

CD155 up-regulation on the surface of cancerous cells provides an alert signal to
both innate and adaptive immune cells. Indeed, CD155 is recognized by the activating
receptor DNAM-1 or CD226 (Figure 1B), an immunoglobulin adhesion molecule expressed
on most immune cells, including T cells, B cells, NK cells, and monocytes [18,52]. Mice
lacking DNAM-1 expression are more prone to develop chemical-induced tumors and to
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the progression of transplanted tumors [53,54], highlighting the importance of this receptor
in cancer immune surveillance. Interaction of DNAM-1 with its ligands, CD155 and CD112
(also known as Nectin-2), triggers activating signals able to co-stimulate NK and CD8+ T cell
cytotoxic function [52,55,56]. Thus, CD155 expression renders tumor cells a more sensitive
target of NK and CD8+ T cell elimination [57–61]. However, in advanced tumor stages,
different mechanisms may contribute to dampening the DNAM-1/CD155 activation axis.

High amounts of soluble CD155 isoforms were found in biological fluids of patients
with epithelial cancers and correlated with disease stages, representing a marker of poor
prognosis [62]. It is likely that these isoforms compete with membrane-bound CD155
for DNAM-1 binding, decreasing DNAM-1-dependent cytotoxicity and facilitating tumor
evasion from NK cell detection and elimination, as demonstrated in a murine melanoma
model [63].

Moreover, CD155 expressed on tumor cells triggers DNAM-1 internalization and
degradation in tumor infiltrating NK and T lymphocytes, promoting tumor metastatiza-
tion [30,64]. Receptor down-modulation has also been observed on circulating NK cells
of patients affected by different malignancies [60,65–67]. All together, these findings sug-
gest that loss of the DNAM-1-mediated co-stimulatory signal is a key event leading to
lymphocyte dysfunction in advanced tumor stages.

An additional mechanism that hampers immune surveillance in the tumor microen-
vironment is the expression on tumor-infiltrating cytotoxic cells of several checkpoint
inhibitory receptors including cytotoxic T-lymphocyte antigen 4 (CTLA-4), programmed
death receptor-1 (PD-1), T cell-immunoglobulin- and mucin-domain-containing molecule 3
(TIM-3), lymphocyte activation gene 3 (LAG-3), TIGIT, and CD96, which are all responsible
for the acquisition of a dysfunctional phenotype [68,69]. To this regard, it is important
to underline that recent evidence demonstrate that DNAM-1-mediated signaling may be
dampened by the action of the checkpoint receptor PD-1. In particular, PD-1 is directly
responsible for the activation of Src homology region 2 (SHP2) phosphatase that dephos-
phorylates the DNAM-1 intracellular domain, preventing signal propagation [70,71].

Notably, both TIGIT and CD96 are significantly up-regulated on NK and T cells that
are chronically stimulated by tumor cells [72–75], and their expression is a hallmark of poor
prognosis and resistance to chemotherapy [76]. On NK cells, the sustained engagement of
activating receptors including NKG2D and NKp46 triggers TIGIT upregulation, decreasing
NK cell functionality [75,77]. Both in humans and mice, TIGIT and CD96 compete with
DNAM-1 for CD115 binding and bind to CD155 with higher affinity compared to DNAM-
1 [78–80]. The molecular structure of CD155 receptors is schematized in Figure 1B. They all
belong to the Ig superfamily since they contain a variable number of Ig domains in their
extracellular sequence. DNAM-1 contains an ITT domain in its cytoplasmic tail that is
responsible for the initiation of activating signals, whereas TIGIT and CD96 contain an ITIM
domain, and, upon CD155 recognition, they trigger inhibitory signals that counterbalance
DNAM-1-mediated activation [79,81,82]. In addition, human CD96 cytoplasmic tails also
present the activation motif YXXM [83].

Besides the competitive binding, TIGIT may inhibit DNAM-1 with additional different
mechanisms. It triggers inhibitory signals through its two cytoplasmic ITIM domains that,
upon CD155 binding, recruit the inositol phosphatase SHIP-1, inhibiting PI3K-mediated
signaling [78,84,85]. Moreover, TIGIT can directly bind to DNAM-1 in cis, limiting DNAM-1
ability to homodimerize and interfering with its co-stimulatory function in T cells [72].
TIGIT is also highly expressed on a subset of natural Tregs in both mice and humans and
drives the acquisition of the immune suppressive phenotype [86]. These results suggest
that TIGIT may suppress immune responses, promoting the differentiation of regulatory
T cells.

TIGIT can also indirectly inhibit T cell functions, altering DC maturation. Indeed,
upon TIGIT binding, CD155 promotes IL-10 secretion by DCs and prevents the production
of the proinflammatory cytokine IL-12 [87].
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Although CD96 was initially described as an adhesion molecule that facilitates the
interaction between human NK cells and their targets [88], mice lacking CD96 display an
increased NK cell functionality [82]. Moreover, the use of anti-CD96 blocking antibodies
results in an increased NK cell-mediated immune surveillance in different murine models
of metastatic cancers [89,90], highlighting an inhibitory role for this receptor on NK cells
in vivo. Accordingly, more recent evidence in humans demonstrates that CD96 expres-
sion correlates with NK cell exhaustion and poor prognosis in hepatocellular carcinoma
patients [74]. Regarding the role of CD96 in the regulation of T cell functionality, tumor
growth is better controlled by CD96-negative CD8+ T cells compared to CD96-positive
CD8+ T cells in murine models of colon cancer, melanoma, and fibrosarcoma [91]. How-
ever, CD96 can also function as a co-stimulatory molecule in CD8+ T cells since in vitro
stimulation activates signaling pathways, leading to T cell proliferation both in humans
and mice [92,93].

In conclusion, the role of CD96 in controlling NK and T cell activation is still debated.
Of note, despite the presence of an ITIM domain, the cytoplasmic tail of human CD96 also
contains a YXXM domain that confers to the molecule the potential to initiate activating
signals by recruiting the p85 subunit of PI3 kinase [83]. Moreover, unlike murine CD96,
the human receptor can be expressed in two splice variants that differ in the extracellular
domain and bind to CD155 with different affinities [94]. However, future work is still
necessary to understand whether the engagement of the two different human isoforms
results in different functional outcome and whether in cancer patients, CD96 can be targeted
to improve immune surveillance. Of note, a recent study in human tumor tissues revealed
a correlation between CD96 expression and immune infiltration. However, depending on
the histological tumor type, CD96 expression correlates with poorer prognosis or has a
protective effect, suggesting that this molecule can exert a complex function depending on
the tumor and the immune infiltration [95].

All together, these results highlight the importance of the CD155/TIGIT/CD96/DNAM-
1 axis in cancer immune surveillance outcome.

3. Current Anti-Cancer Strategies Targeting CD155 and Its Receptors

CD155 role in tumor progression is summarized in Figure 2. In the early tumor stage,
CD155 represents a danger signal that alerts the immune system against cell transformation
(Figure 2, left). However, CD155 up-regulation in transformed cells may represent an
intrinsic factor that facilitates tumor growth and spreading. On cancer cells, it works as
an adhesion molecule that modulates proliferation and increases cell migration. On the
other hand, in later tumor stages, DNAM-1 internalization and the concomitant increased
expression of inhibitory receptors renders immune cells unable to fight against cancer
(Figure 2, right). In particular, TIGIT and CD96 preferentially bind to CD155 and transduce
inhibitory signals that in turn suppresses DNAM-1-mediated cytotoxic function. Thus,
the high levels of both CD155 and TIGIT may contribute to create an immunosuppressive
environment, representing a mechanism of tumor evasion.

All together, these finding strongly support the rationale for the development of
therapeutic approaches targeting the CD155/DNAM-1/TIGIT axis, summarized in Figure 3
and discussed below.

3.1. Oncolytic Viruses Targeting CD155

Since CD155 represents the cellular receptor for poliovirus, a therapeutic approach
is based on the use of engineered polioviruses (Figure 3, left). Indeed, they are oncolytic
viruses with a natural tropism for CD155-expressing cells, and their selective replication
in tumor cells is the first requirement for therapeutic efficacy [96,97]. Moreover, CD155
is expressed at low levels on healthy tissues while is overexpressed on tumor cells, thus
minimizing side effects of oncolytic viruses.
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Figure 2. Model depicting CD155 roles during tumor progression. On the membrane of cancerous
cells, CD155 engagement initiates intracellular signals, leading to proliferation and migration, favor-
ing tumor growth and metastasis. However, in early phases of tumor transformation, CD155 also
plays an anti-tumorigenic role, alerting the immune system against cancer. Indeed, it is recognized
by DNAM-1 activating receptor expressed on NK and CD8+ T cells that mediates tumor cell killing
(left). In late phases, DNAM-1 down-modulation from the surface of cytotoxic cells and a concomi-
tant up-regulation of inhibitory CD155 receptors including TIGIT and CD96 contribute to dampen
anti-tumor immune responses (right).
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Figure 3. Therapeutic approaches targeting CD155 and its receptors. (Left): The direct targeting
of CD155-expressing tumors can be achieved using engineered oncolytic polioviruses that result
in tumor cell lysis. Dendritic cells (DCs) will capture apoptotic bodies, increasing their capability
to present tumor antigens. DCs also express CD155, and they can be directly infected by oncolytic
poliovirus. Infection induces type-I interferon production and increases tumor antigen presentation,
promoting tumor-specific CD8+ T cell priming. (Right): Anti-tumor immune response may be
boosted, potentiating DNAM-1 activation. To this aim, two therapeutic strategies have been exploited
to increase tumor cytotoxicity by Natural Killer (NK) and CD8+ T lymphocytes (right panel). One is
the use of blocking antibodies against the inhibitory receptors TIGIT and CD96 (ICI), allowing the
interaction between CD155 and DNAM-1 (upper part of the right panel). This treatment will also
prevent CD155 stimulation on DCs, allowing their canonical maturation. As an alternative approach,
DNAM-1 can be fused to potent activating cytoplasmic domains to engineer a chimeric antigen
receptor (DNAM-1/CAR) able to enhance effector functions of NK or CD8+ T cells in adoptive
transfer therapies (lower part of the right panel).
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Poliovirus oncolytic immunotherapy was initially developed as novel approach to
treat pediatric brain tumors, including glioblastoma. The first oncolytic virus developed to
exploit CD155 expression in glioblastoma was an engineered neuro-attenuated poliovirus
called PVSRIPO [98]. Since poliovirus infects epithelial cells of the gastrointestinal tract
and spinal cord motor neurons, causing poliomyelitis, this virus was attenuated, replacing
the internal ribosome entry site (IRES) with the IRES from the human rhinovirus to reduce
neurotoxicity [99]. However, the replication of this recombinant virus was observed also in
the kidney, where poliovirus normally does not replicate. Thus, a new recombinant PVS-
RIPO virus was constructed with the aim to prevent replication in healthy cells, preserving
the ability to lyse tumors, and its safety was confirmed in murine models [98]. Due to the
high expression of CD155 in glioma cells, oncolytic poliovirus therapy entered phase I
clinical trials. Intratumoral delivery of PVSRIPO in adult glioblastoma patients resulted
in durable responses observed both by clinical signs and radiographic observation [100].
More recently, intratumoral injection of this recombinant poliovirus resulted safe in re-
current pediatric high-grade glioma in phase I of experimentation [101], and it has also
been evaluated for treatment of pediatric neuroblastomas [102,103]. Moreover, preclinical
animal models demonstrate the possible application of these viruses in other kinds of solid
tumors, including breast and prostate cancers [104], as well as in human bone and soft
tissue sarcomas [105]. A phase I clinical trial with intratumoral injection of PVSRIPO was
also carried out in refractory melanoma patients, with a complete response in about 50% of
patients [106].

Another important feature of oncolytic viruses is that they are designed to be im-
munogenic. Indeed, upon PVSRIPO infection, the lysis of tumor cells releases damage-
and pattern-associated molecular patterns (DAMPs and PAMPs) recognized by innate
immune cells such as neutrophils and DCs, which might act either directly by promoting
transformed cell clearance [104] or indirectly through the activation of anti-tumor specific
T cells [103]. Since DCs express CD155, they can also be infected by PVSRIPO. However,
infection does not result in DC death but induces type I interferon production and increases
tumor antigen presentation, promoting tumor-specific CD8+ T cell priming [107,108]. The
role of DCs in oncolytic virotherapy is also depicted in Figure 3 (left). A role for tumor-
associated macrophages (TAM) has also been recently envisaged in fresh tissue specimens
derived from glioblastoma patients [109]. They are the main population in the tumor
microenvironment infected by the PVSRIPO virus and play a crucial role in the production
of cytokines initiating anti-tumor response.

In summary, preclinical studies demonstrate a potential success of oncolytic poliovirus-
based anti-tumor therapy.

3.2. DNAM-1 Chimeric-Receptor-Based Therapies

One of the most promising therapies that revolutionized anticancer treatment is the
adoptive transfer of patient-derived, ex vivo engineered T cells. These cells are designed
to express a chimeric antigen receptor (CAR) that specifically recognizes tumor antigens.
CARs usually contain an extracellular antibody-derived variable fragment (scFV) and an
intracellular domain designed to drive activating signals, typically the intracellular domain
of TCR/CD3 ζ-chain with the addition of co-stimulatory domains. This specific target-
ing boosts the ability of the T lymphocyte to kill tumor cells and has shown remarkable
improvement of prognosis in several clinical trials, with the best results obtained in hema-
tological malignancies [110]. Therefore, the development of new approaches improving
this therapy in solid tumors is imperative.

Due to the high CD155 expression in different cancers, the use of DNAM-1 extra-
cellular domain to target CD155-expressing tumors has been exploited (Figure 3, right).
Since DNAM-1 is also involved in transendothelial migration [111], the expression of this
receptor may enhance extravasation and trafficking in the tumor microenvironment of
the engineered T cells. The DNAM-1 extracellular domain fused to the intracellular TCR
ζ-chain-transducing domain was used to engineer T cells in a murine model of melanoma.
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This construct elicited high levels of cytotoxicity in vitro and reduced tumor growth in a
murine melanoma model in vivo. However, for unknown reasons, cytokine production
was low and not enhanced by the introduction of co-stimulatory motives [112].

Besides engineered T cells, the possibility to use NK cells for adoptive transfer therapy
has been more recently exploited. The advantages of NK cell-based therapy are the lower
costs and the possibility to use allogenic cells that, compared to autologous ones, have
shown higher safety due to low risk of proliferation upon transfer. Moreover, since both NK
and T cells derived from cancer patients are often dysfunctional, the use of allogenic cells
allows for the overcoming of this limitation [113]. Preclinical studies have demonstrated
the enhanced ability of NK cells to lyse neuroblastoma cell lines upon transfection with
a CAR receptor based on the extracellular domain of DNAM-1 fused to the TCR ζ-chain-
transducing domain [114]. This finding suggests that DNAM-1 may be employed in both
NK and T cell-based adoptive transfer also for the treatment of solid tumors.

3.3. Monoclonal Antibodies Targeting CD155 Inhibitory Receptors

One of the typical hallmarks of the tumor microenvironment is the up-regulation of
inhibitory receptors including CTLA-4, TIM-3, PD1, LAG-3, and TIGIT on the surface of
cytotoxic lymphocytes. Upon T cell activation, most of these receptors are physiologically
up-regulated and play a key role in the maintaining of self-tolerance. However, in the
tumor microenvironment, their overexpression renders immune cell functionally unable to
fight cancer [68,69]. Thus, the employment of monoclonal antibodies (mAbs) able to block
the activity of the checkpoint inhibitory receptors, namely immune checkpoint inhibitors
(ICI), offers great potential for tumor control. Several ICI, including anti-CTLA-4 [115] and
anti-PD-1 [116] antibodies, have already been approved and have shown promising results.
Moreover, the possibility to use therapeutic antibodies raised against the ligands of these
checkpoint receptors has also been exploited with antibodies targeting PD-L1, the ligand for
PD-1 expressed on tumor cells [117,118]. However, since some patients display resistance
to these therapies, the identification of new therapeutic targets is critical [68]. Therefore,
the TIGIT/CD155 axis raised great interest as a novel target for ICI treatments (Figure 3,
right) [81]. A first paper demonstrating enhanced killing of tumor cells upon TIGIT
inhibition employed a polyclonal anti-TIGIT antibody in vitro [79]. More recently, several
human ex vivo studies and the use of in vivo murine models have demonstrated the efficacy
of anti-TIGIT treatment. In particular, the reversion of T cell exhaustion accompanied by
a subsequent improvement in immune surveillance and tumor rejection was observed
upon treatment with anti-TIGIT mAbs in combination with other ICI [72,119,120]. For
instance, the simultaneous inhibition of TIGIT and PD-L1 synergized to enhance tumor-
infiltrating CD8+ T lymphocyte functions and promoted the rejection of transplanted
tumors both in a colon cancer xenograft mouse model and in a syngeneic murine model of
breast carcinoma [72]. TIGIT is also co-expressed with PD-1 in circulating CD8+ T cells of
metastatic melanoma cells, and their concomitant blockade enhances tumor-specific T cell
proliferation, cytokine production, and degranulation [119]. More recently, the use of the
anti-TIGIT blocking antibody tiragolumab, together with PD-1, blocking in colorectal cancer,
turned out to be an efficient therapy able to restore the functionality of tumor-infiltrating
CD8+ T cells [120].

Regarding NK cells, the selective TIGIT blockade was sufficient to impair tumor
growth [73], demonstrating a pivotal role for NK cell-mediated tumor rejection upon anti-
TIGIT therapies. Several mAbs targeting TIGIT interaction with CD155 are currently in
clinical trials and have displayed promising results in NSCLC, melanoma, and other solid
tumors (Table 1).

One of the first compounds that has been entered clinical trials is tiragolumab. It is a
fully human IgG1/kappa monoclonal antibody that blocks TIGIT/CD155 binding, and it
was used in combination with atezolizumab (anti-PD-L1 mAb) in recurrent or metastatic
NSCLC. Of note, the combined use revealed a better response compared to PD-1/PD-1L
inhibition alone. This trial completed the phase II of experimentation, while phase III is
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currently ongoing. An improvement of progression-free survival compared with placebo
plus atezolizumab has already been shown [121]. Vibostolimab is a humanized IgG1
mAb, and it represents another anti-TIGIT compound currently in phase II of clinical trials
in patients with advanced NSCLC and melanoma in combination with anti-PD-1 pem-
brolizumab [122], while domvanalimab is another humanized IgG1 anti-TIGIT antibody
that in preclinical studies improved T cell functionality when used alone or in combinations
with PD-1 blockade. It is currently in phase II of clinical trial in NSCLC and phase III for
metastatic NSCLC [123].

Table 1. List of anti-TIGIT antibodies currently in clinical trials, according to the official website
www.clinicaltrial.gov (accessed on 9 August 2023).

Therapeutic Agent Tumor Clinical Phase Identification Number

Tiragolumab NSCLC III NCT04294810

Vibostolimab NSCLC
Melanoma

I/II
I/II

NCT04165070
NCT04305041

Domvanalimab NSCLC
Metastatic NSLC

II
III

NCT04262856
NCT04736173

Etigilimab Metastatic solid tumors I/II NCT04761198

Ociperlimab

Cervical cancer
NSCLC

Esophageal Squamous Cell
Carcinoma

II
III
II

NCT04693234
NCT04746924
NCT04732494

EOS-448 Advanced cancers I NCT04335253

BMS-986207 Multiple Myeloma
Solid tumors I/II NCT04150965

NCT02913313

ASP8374 Solid tumors I NCT03260322

COM902 Advanced cancers I NCT04354246

IBI939 NSCLC I NCT04672369

Other anti-TIGIT blocking antibodies include etigilimab, which was employed in
combination with the anti-PD-1 nivolumab in metastatic solid tumors and is currently in
phase II of clinical trials [124]; the humanized IgG1 ociperlimab, which is in phase II or III
in different solid tumors in combination with PD-1 blocking; and EOS-448, BMS-986207,
ASP8374, COM902, and IBI939, which entered phase I of clinical trials more recently [123].

Moreover, in a preclinical murine model of lung cancer, TIGIT blockade can increase
the efficacy of adoptive transfer therapies with engineered T cells [125], suggesting that,
besides anti-PD-1 or PD-L1, the specific TIGIT targeting may be combined to other anti-
cancer therapies.

Regarding CD96, even though its role in humans remains controversial, preclinical
studies demonstrate that the use of mAbs blocking CD96 interaction with CD155 may
be exploited in anti-cancer therapy. Indeed, an increase in the efficacy of anti-PD-1 in
combination therapy with anti-CD96 blocking mAbs have been observed in murine and
human cancers [89,90,126,127]. However, future studies are needed to assess the potential
role of CD96 as a target for cancer immunotherapy. Therefore, CD96-associated clinical
trials in cancer patients are still lacking.

4. Concluding Remarks and Future Perspectives

CD155 has raised increasing interest in last years, and it is now considered a target for
cancer therapies, comparable to PD-L1.

Although approaches that block CD155 interaction with the inhibitory receptor TIGIT
have already obtained remarkable results in clinical trials, an open question is whether a

www.clinicaltrial.gov
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direct target of CD155 can efficiently reduce tumor burden in vivo. For instance, the devel-
opment of anti-CD155 antibodies that inhibit the intrinsic pro-tumoral function of CD155,
but not its interaction with DNAM-1, may limit tumor growth and metastasis. Promising
results have been obtained using an anti-CD155 antibody to limit tumor metastasis in
osteosarcoma by blocking CD155-induced signal transduction [11].

Moreover, a deeper understanding of how CD155 expression and function are reg-
ulated in tumor cells may open the possibility to target selective player(s)/pathway(s)
involved in tumor cell proliferative and migrating ability. To this regard, a recent study
demonstrated that FAK kinase inhibition blocks CD155-induced signaling [128]. It would
also be interesting to learn more about the posttranslational regulation of CD155. For exam-
ple, understanding whether CD155 phosphorylation and/or SUMOylation differentially
affect CD155 α and δ isoforms in terms of expression and function may shed light on new
targets for tumor control.

An additional issue would be to elucidate how CD155 regulates immune responses
by interacting with DNAM-1, CD96, and TIGIT. An open question is whether CD155
interaction with DNAM-1 is more important in early tumor development rather than in
more advanced and metastatic stages. One possibility could be to target pathways that
regulate CD155 expression only at later stages.

Finally, a still unexplored therapeutic strategy may be a combined use of oncolytic
polio virotherapy and checkpoint inhibition to evaluate whether they may have a synergis-
tic effect.

In conclusion, future studies are needed to explore new therapeutic strategies aimed
to boost immune response against CD155 positive cancers.

Author Contributions: R.P. and R.M. wrote the manuscript and prepared the figures. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by grants of the Italian Association for Cancer Research
(AIRC IG-24955) and Istituto Pasteur Italia—Fondazione Cenci Bolognetti (2020-366).

Acknowledgments: We apologize to all our colleagues whose important work could not be cited
directly. Most of these references can be found in the review articles cited in the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mendelsohn, C.L.; Wimmer, E.; Racaniello, V.R. Cellular receptor for poliovirus: Molecular cloning, nucleotide sequence, and

expression of a new member of the immunoglobulin superfamily. Cell 1989, 56, 855–865. [CrossRef] [PubMed]
2. Fuchs, A.; Colonna, M. The role of NK cell recognition of nectin and nectin-like proteins in tumor immunosurveillance. Semin.

Cancer Biol. 2006, 16, 359–366. [CrossRef]
3. O’Donnell, J.S.; Madore, J.; Li, X.Y.; Smyth, M.J. Tumor intrinsic and extrinsic immune functions of CD155. Semin. Cancer Biol.

2020, 65, 189–196. [CrossRef] [PubMed]
4. Iwasaki, A.; Welker, R.; Mueller, S.; Linehan, M.; Nomoto, A.; Wimmer, E. Immunofluorescence analysis of poliovirus receptor

expression in Peyer’s patches of humans, primates, and CD155 transgenic mice: Implications for poliovirus infection. J. Infect. Dis.
2002, 186, 585–592. [CrossRef]

5. Maier, M.K.; Seth, S.; Czeloth, N.; Qiu, Q.; Ravens, I.; Kremmer, E.; Ebel, M.; Müller, W.; Pabst, O.; Förster, R.; et al. The adhesion
receptor CD155 determines the magnitude of humoral immune responses against orally ingested antigens. Eur. J. Immunol. 2007,
37, 2214–2225. [CrossRef]

6. Escalante, N.K.; von Rossum, A.; Lee, M.; Choy, J.C. CD155 on human vascular endothelial cells attenuates the acquisition of
effector functions in CD8 T cells. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 1177–1184. [CrossRef]

7. Nakai, R.; Maniwa, Y.; Tanaka, Y.; Nishio, W.; Yoshimura, M.; Okita, Y.; Ohbayashi, C.; Satoh, N.; Ogita, H.; Takai, Y.; et al.
Overexpression of Necl-5 correlates with unfavorable prognosis in patients with lung adenocarcinoma. Cancer Sci. 2010, 101,
1326–1330. [CrossRef] [PubMed]

8. Bevelacqua, V.; Bevelacqua, Y.; Candido, S.; Skarmoutsou, E.; Amoroso, A.; Guarneri, C.; Strazzanti, A.; Gangemi, P.; Mazzarino,
M.C.; D’Amico, F.; et al. Nectin like-5 overexpression correlates with the malignant phenotype in cutaneous melanoma. Oncotarget
2012, 3, 882–892. [CrossRef] [PubMed]

9. Atsumi, S.; Matsumine, A.; Toyoda, H.; Niimi, R.; Iino, T.; Sudo, A. Prognostic significance of CD155 mRNA expression in soft
tissue sarcomas. Oncol. Lett. 2013, 5, 1771–1776. [CrossRef]

https://doi.org/10.1016/0092-8674(89)90690-9
https://www.ncbi.nlm.nih.gov/pubmed/2538245
https://doi.org/10.1016/j.semcancer.2006.07.002
https://doi.org/10.1016/j.semcancer.2019.11.013
https://www.ncbi.nlm.nih.gov/pubmed/31883911
https://doi.org/10.1086/342682
https://doi.org/10.1002/eji.200737072
https://doi.org/10.1161/ATVBAHA.111.224162
https://doi.org/10.1111/j.1349-7006.2010.01530.x
https://www.ncbi.nlm.nih.gov/pubmed/20331633
https://doi.org/10.18632/oncotarget.594
https://www.ncbi.nlm.nih.gov/pubmed/22929570
https://doi.org/10.3892/ol.2013.1280


Int. J. Mol. Sci. 2023, 24, 12958 11 of 16

10. Nishiwada, S.; Sho, M.; Yasuda, S.; Shimada, K.; Yamato, I.; Akahori, T.; Kinoshita, S.; Nagai, M.; Konishi, N.; Nakajima, Y.
Clinical significance of CD155 expression in human pancreatic cancer. Anticancer Res. 2015, 35, 2287–2297, Erratum in Anticancer
Res. 2015, 35, 4371.

11. Zhuo, B.; Li, Y.; Gu, F.; Li, Z.; Sun, Q.; Shi, Y.; Shen, Y.; Zhang, F.; Wang, R.; Wang, X. Overexpression of CD155 relates to metastasis
and invasion in osteosarcoma. Oncol. Lett. 2018, 15, 7312–7318. [CrossRef] [PubMed]

12. Li, Y.C.; Zhou, Q.; Song, Q.K.; Wang, R.B.; Lyu, S.; Guan, X.; Zhao, Y.J.; Wu, J.P. Overexpression of an Immune Checkpoint
(CD155) in Breast Cancer Associated with Prognostic Significance and Exhausted Tumor-Infiltrating Lymphocytes: A Cohort
Study. J. Immunol. Res. 2020, 2020, 3948928. [CrossRef] [PubMed]

13. Murakami, D.; Matsuda, K.; Iwamoto, H.; Mitani, Y.; Mizumoto, Y.; Nakamura, Y.; Matsuzaki, I.; Iwamoto, R.; Takahashi, Y.;
Kojima, F.; et al. Prognostic value of CD155/TIGIT expression in patients with colorectal cancer. PLoS ONE 2022, 17, e0265908.
[CrossRef]

14. Lee, B.H.; Kim, J.H.; Kang, K.W.; Lee, S.R.; Park, Y.; Sung, H.J.; Kim, B.S. PVR (CD155) Expression as a Potential Prognostic
Marker in Multiple Myeloma. Biomedicines 2022, 10, 1099. [CrossRef] [PubMed]

15. Boissière-Michot, F.; Chateau, M.C.; Thézenas, S.; Guiu, S.; Bobrie, A.; Jacot, W. Correlation of the TIGIT-PVR immune checkpoint
axis with clinicopathological features in triple-negative breast cancer. Front. Immunol. 2022, 13, 1058424. [CrossRef] [PubMed]
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118. Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al.
Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833.
[CrossRef] [PubMed]

119. Chauvin, J.M.; Pagliano, O.; Fourcade, J.; Sun, Z.; Wang, H.; Sander, C.; Kirkwood, J.M.; Chen, T.H.; Maurer, M.; Korman,
A.J.; et al. TIGIT and PD-1 impair tumor antigen-specific CD8+ T cells in melanoma patients. J. Clin. Investig. 2015, 125, 2046–2058.
[CrossRef]

120. Thibaudin, M.; Limagne, E.; Hampe, L.; Ballot, E.; Truntzer, C.; Ghiringhelli, F. Targeting PD-L1 and TIGIT could restore
intratumoral CD8 T cell function in human colorectal cancer. Cancer Immunol. Immunother. 2022, 71, 2549–2563. [CrossRef]
[PubMed]

121. Cho, B.C.; Abreu, D.R.; Hussein, M.; Cobo, M.; Patel, A.J.; Secen, N.; Lee, K.H.; Massuti, B.; Hiret, S.; Yang, J.C.H.; et al.
Tiragolumab plus atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1-selected non-small-cell
lung cancer (CITYSCAPE): Primary and follow-up analyses of a randomised, double-blind, phase 2 study. Lancet Oncol. 2022,
23, 781–792. [CrossRef] [PubMed]

122. Niu, J.; Maurice-Dror, C.; Lee, D.H.; Kim, D.W.; Nagrial, A.; Voskoboynik, M.; Chung, H.C.; Mileham, K.; Vaishampayan, U.;
Rasco, D.; et al. First-in-human phase 1 study of the anti-TIGIT antibody vibostolimab as monotherapy or with pembrolizumab
for advanced solid tumors, including non-small-cell lung cancer. Ann. Oncol. 2022, 33, 169–180. [CrossRef] [PubMed]

123. Florou, V.; Garrido-Laguna, I. Clinical Development of Anti-TIGIT Antibodies for Immunotherapy of Cancer. Curr. Oncol. Rep.
2022, 24, 1107–1112. [CrossRef]

https://www.ncbi.nlm.nih.gov/pubmed/21109928
https://doi.org/10.18632/oncotarget.12975
https://doi.org/10.3892/ijo.2012.1514
https://doi.org/10.1136/jitc-2020-002203
https://doi.org/10.1126/scitranslmed.aan4220
https://doi.org/10.1038/s41467-019-13939-z
https://doi.org/10.1038/s41467-021-22088-1
https://www.ncbi.nlm.nih.gov/pubmed/33767151
https://doi.org/10.3390/cells12121606
https://doi.org/10.1084/jem.20032206
https://doi.org/10.1007/s00262-014-1648-2
https://www.ncbi.nlm.nih.gov/pubmed/25549845
https://doi.org/10.3389/fimmu.2023.1166038
https://www.ncbi.nlm.nih.gov/pubmed/37205115
https://doi.org/10.3389/fimmu.2022.886319
https://doi.org/10.1126/science.271.5256.1734
https://www.ncbi.nlm.nih.gov/pubmed/8596936
https://doi.org/10.1084/jem.192.7.1027
https://www.ncbi.nlm.nih.gov/pubmed/11015443
https://doi.org/10.1056/NEJMoa1003466
https://doi.org/10.1056/NEJMoa1606774
https://www.ncbi.nlm.nih.gov/pubmed/27718847
https://doi.org/10.1172/JCI80445
https://doi.org/10.1007/s00262-022-03182-9
https://www.ncbi.nlm.nih.gov/pubmed/35292828
https://doi.org/10.1016/S1470-2045(22)00226-1
https://www.ncbi.nlm.nih.gov/pubmed/35576957
https://doi.org/10.1016/j.annonc.2021.11.002
https://www.ncbi.nlm.nih.gov/pubmed/34800678
https://doi.org/10.1007/s11912-022-01281-5


Int. J. Mol. Sci. 2023, 24, 12958 16 of 16

124. Mettu, N.B.; Ulahannan, S.V.; Bendell, J.C.; Garrido-Laguna, I.; Strickler, J.H.; Moore, K.N.; Stagg, R.; Kapoun, A.M.; Faoro, L.;
Sharma, S. A Phase 1a/b Open-Label, Dose-Escalation Study of Etigilimab Alone or in Combination with Nivolumab in Patients
with Locally Advanced or Metastatic Solid Tumors. Clin. Cancer Res. 2022, 28, 882–892. [CrossRef] [PubMed]

125. Martinez, M.; Kim, S.; St Jean, N.; O’Brien, S.; Lian, L.; Sun, J.; Verona, R.I.; Moon, E. Addition of anti-TIM3 or anti-TIGIT
Antibodies to anti-PD1 Blockade Augments Human T cell Adoptive Cell Transfer. Oncoimmunology 2021, 10, 1873607. [CrossRef]

126. Brooks, J.; Fleischmann-Mundt, B.; Woller, N.; Niemann, J.; Ribback, S.; Peters, K.; Demir, I.E.; Armbrecht, N.; Ceyhan, G.O.;
Manns, M.P.; et al. Perioperative, Spatiotemporally Coordinated Activation of T and NK Cells Prevents Recurrence of Pancreatic
Cancer. Cancer Res. 2018, 78, 475–488. [CrossRef]

127. Wang, Y.; Wang, C.; Qiu, J.; Qu, X.; Peng, J.; Lu, C.; Zhang, M.; Zhang, M.; Qi, X.; Li, G.; et al. Targeting CD96 overcomes PD-1
blockade resistance by enhancing CD8+ TIL function in cervical cancer. J. Immunother. Cancer 2022, 10, e003667. [CrossRef]

128. Ozmadenci, D.; Shankara Narayanan, J.S.; Andrew, J.; Ojalill, M.; Barrie, A.M.; Jiang, S.; Iyer, S.; Chen, X.L.; Rose, M.; Estrada,
V.; et al. Tumor FAK orchestrates immunosuppression in ovarian cancer via the CD155/TIGIT axis. Proc. Natl. Acad. Sci. USA
2022, 119, e2117065119. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1158/1078-0432.CCR-21-2780
https://www.ncbi.nlm.nih.gov/pubmed/34844977
https://doi.org/10.1080/2162402X.2021.1873607
https://doi.org/10.1158/0008-5472.CAN-17-2415
https://doi.org/10.1136/jitc-2021-003667
https://doi.org/10.1073/pnas.2117065119

	Introduction 
	The Complex Role of CD155 in Tumor Progression 
	Regulation of CD155 Expression and Function in the Tumor Microenvironment 
	CD155: A Double-Edged Sword in Cancer Immune Surveillance 

	Current Anti-Cancer Strategies Targeting CD155 and Its Receptors 
	Oncolytic Viruses Targeting CD155 
	DNAM-1 Chimeric-Receptor-Based Therapies 
	Monoclonal Antibodies Targeting CD155 Inhibitory Receptors 

	Concluding Remarks and Future Perspectives 
	References

