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Abstract: Objective: This study aimed to investigate the effect of exercise on depressive-like be-
havior induced by chronic unpredictable mild stress (CUMS) in rats and to explore the role of the
SIRT3/ROS/NLRP3 signaling pathway in this process. Methods: Twenty-nine male 8-week-old
Sprague Dawley rats were divided into a control group (CON) (nine rats) and a model group (twenty
rats). Thirteen chronic stress stimuli were randomly applied once or twice per day for 35 days to
induce depression in the model group rats. After the model was established, the model group rats
were randomly divided into the CUMS group (CUMS) and the aerobic exercise + CUMS group
(EX + CUMS). The EX + CUMS group received 8 weeks of aerobic exercise intervention for 6 days
per week. Behavioral assessments were performed using the sucrose preference test and forced
swimming test. The expression of SIRT3, NLRP3, IL-1β, and IL-18 in the hippocampus was detected
using RT-PCR. The ROS level in the hippocampus was detected using immunofluorescence. The
protein levels of SIRT3 and NLRP3 in the hippocampus were detected using western blotting. The
protein levels of IL-1β and IL-18 in the hippocampus were measured using ELISA. Results: After
5 weeks of chronic stress stimuli, the hippocampal function of rats in the CUMS model group was im-
paired, and their sucrose preference was reduced, while their forced swimming time was prolonged.
The expression of SIRT3 decreased, ROS increased, and the expression of NLRP3 and the levels of
IL-1β and IL-18 increased. Aerobic exercise increased the sucrose preference of rats, shortened their
immobility time, increased the expression of SIRT3, and reduced the levels of ROS, NLRP3, IL-1β,
and IL-18. Conclusion: Exercise can improve the depressive behavior of CUMS model rats, and
its mechanism may be related to the upregulation of SIRT3 in the hippocampus, which plays an
anti-inflammatory role.

Keywords: aerobic exercise; depression; CUMS; SIRT3; ROS

1. Introduction

Depression has long been recognized worldwide as an important cause of mental and
physical disability [1,2], and the WHO indicates that approximately 280 million people in
the world suffer from depression [3,4]. Symptoms of depression include loss of interest
and pleasure, sleep disturbances, fatigue or low energy, and suicide attempts [5]. Adverse
outcomes associated with depression include recurrence of depression; episodes of other
psychiatric disorders; and broader, long-term interpersonal, social, educational, and oc-
cupational dysfunction [6]. Recent studies have shown that depression cases worldwide
are increasing exponentially each year and are expected to become the leading cause of
burdened illness worldwide by 2030 [7].

At present, the pathogenesis of depression remains unclear, and researchers have
proposed several hypotheses, such as the reduction of monoamine neurotransmitter secre-
tion [8] and the weakening of synaptic transmission efficiency [9]; the dysfunction of the
hypothalamic–pituitary–adrenal cortex axis [10]; the interaction between stressful environ-
ments and genetic factors leading to neuroendocrine disorders; and the abnormal synaptic
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transmission, synaptic plasticity, and brain cortical and limbic system structural functional
loop abnormalities [11]. With the deepening of research, more and more evidence has
revealed that the neuroimmune system and inflammatory cytokines are involved in the
production of depressive symptoms. The cell theory suggests that stress stimuli or overac-
tive immune systems can produce inflammatory cytokines, which play an important role
in the pathogenesis of depression [12,13]. As one of the regions with relatively rich neural
circuit connections in the brain, the hippocampus is often associated with memory and
information storage functions, and recent studies have also found that it can participate
in the regulation of emotional and cognitive activities, especially in the pathogenesis of
depression. Therefore, in recent years, many studies on the pathogenesis of depression
have pointed to changes in hippocampal tissue [14]. As a result, anti-inflammatory therapy
that reduces hippocampal inflammatory response and improves hippocampal function has
become a new target for the prevention and treatment of depression.

Studies have shown that hippocampal neuronal injury is closely related to the nucleotide-
binding oligomerization domain-like protein 3 (NLRP3) inflammasome [15]. NLRP3 is an
important protein that mediates innate immunity in the human body and is a core compo-
nent of the inflammasome [16]. NLRP3 can be activated by recognizing specific molecular
patterns and binding to ligands, inducing the assembly of the NLRP3 inflammasome, and
promoting the maturation of downstream interleukin (IL)-1β and IL-18 precursors, leading
to impaired neuronal plasticity [17,18]. The NLRP3 inflammasome is regulated by reactive
oxygen species (ROS), which are key activators that directly or indirectly trigger NLRP3
inflammasome activation by acting on NF-κB [19,20]. SIRT3 is a mainly mitochondrial
NAD+-dependent deacetylase that maintains ROS homeostasis by targeting mitochondrial
enzymes such as superoxide dismutase 2 (SOD2) [21], which converts harmful superoxide
radicals into nontoxic oxygen or hydrogen peroxide [22,23].

Moderate aerobic exercise has been shown to improve the body’s anti-inflammatory
capacity. Studies have demonstrated that aerobic exercise plays an important role in various
neurodegenerative diseases, including Alzheimer’s disease, chronic cerebral ischemia, and
stroke, by exerting significant anti-inflammatory effects [24,25]. Research has also suggested
that both intermittent and continuous aerobic exercise can suppress the transduction of
the IKKβ/NF-κB inflammatory pathway to a certain extent, regulate the secretion of
inflammatory factors, and improve the body’s inflammatory response [26]. However, there
are few experimental studies that have investigated whether exercise can intervene and
regulate the pathological process of depression through the NLRP3 signaling pathway,
particularly the SIRT3/ROS/NLRP3 axis [27,28]. This study aims to explore the effects of
aerobic exercise on the expression of SIRT3 and its downstream pathways ROS/NLRP3
and the hippocampal inflammatory response in CUMS-induced depressed rats.

2. Materials and Methods
2.1. Experimental Materials

Healthy male SPF-level Sprague Dawley (SD) rats (animal production license number:
SCXK (Chuan) 2020-0030) were used as experimental subjects, totaling 29 rats at 8 weeks
old and weighing (224 ± 30) g, provided by Chengdu Dashuo Experimental Animal Co.,
Ltd. (Dashuo Co., Ltd. Chengdu, China). ELISA kits (Servicebio, Wuhan, China), RT-PCR
reagent kits (Servicebio, Wuhan, China), NanoDrop2000 ultramicro spectrophotometer
(Thermo, Waltham, MA, USA), fluorescent quantitative PCR instrument (BIORAD, critical,
Hercules, CA, USA), and RT6100 automatic ELISA instrument (Rayto, Shenzhen, China)
were used. The ethical approval process at our institution has been impacted by the COVID-
19 pandemic, resulting in the unavailability of the original ethical approval number for this
study. As an alternative arrangement, this research obtained approval from the Animal
Center of Shaanxi Normal University. All participants in the experiments underwent
relevant assessments organized by the Animal Center, and the protocols executed in this
study were endorsed in the Animal Center’s admission agreement (Protocol Number:
20210823-1). The execution of the chronic unpredictable mild stress protocol, exercise
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protocol, and anesthesia protocol during the study was supervised by the Animal Center.
All other animal care procedures were approved by the Animal Center of Shaanxi Normal
University and conducted in accordance with the regulations and general recommendations
outlined in the Chinese Laboratory Animal Management regulations.

2.2. Experimental Animal Treatment
2.2.1. Experimental Animal Grouping

After adapting to the environment for one week, the rats were randomly divided
into the following groups: blank control group with 9 rats (Control group, CON), chronic
unpredictable mild stress (CUMS) model control group with 10 rats (CUMS group, CUMS),
and exercise CUMS group with 10 rats (EX + CUMS).

2.2.2. Chronic Unpredictable Mild Stress (CUMS) Modeling Method

The chronic unpredictable mild stress method consisted of horizontal shaking, odor
interference, tilted cage, tail clipping, reversed day and night cycle, food and water depri-
vation, wet bedding, binding, overcrowding, ice water swimming, and darkness [29]. In
the day–night cycle reverse stimulus, the dark environment was realized with two layers
of blackout cloth and the illumination condition was realized with large LED lights. Most
of the stimulation takes place between 12 and 15 o’clock in the day. The 13 chronic stress
stimuli were randomly applied to the rats, 1–2 stimuli per day, for a total modeling time of
5 weeks to induce depression-like symptoms while preventing adaptation to the stimuli
(Table 1).

Table 1. Chronic Unpredictable Mild Stress Modeling Method.

Week 1 Week 2 Week 3 Week 4 Week 5

Day 1 Horizontal shaking
odor interference

Reversed day and
night cycle

Horizontal shaking
odor interference

Reversed day and
night cycle

Horizontal shaking
odor interference

Day 2 Tilted cage
Tail clipping Wet bedding Tilted cage

Tail clipping
Wet bedding
Single cage

Tilted cage
Tail clipping

Day 3 Reversed day and
night cycle

Horizontal shaking
odor interference Wet bedding Horizontal shaking

odor interference
Reversed day and

night cycle
Day 4 water deprivation Food deprivation water deprivation Food deprivation water deprivation

Day 5 Overcrowding
Ice water swimming

Tilted cage
Tail clipping Darkness Tilted cage

Tail clipping
Overcrowding

Ice water swimming

Day 6 Wet bedding
Noise stimulation

Ice water
swimming

Binding
Ice water

swimming

Ice water
swimming

Wet bedding
Binding

Day 7 Food and water
deprivation

Food and water
deprivation

Food and water
deprivation

Food and water
deprivation

Food and water
deprivation

2.2.3. Exercise Program

After 5 weeks of CUMS modeling, the EX + CUMS rats were subjected to an adaptive
treadmill exercise program with a 0-degree slope, 15 m/min, 60 min/day, 6 days/week of
moderate intensity for 8 weeks (Figure 1).

2.3. Neurobehavioral Assessment

Neurobehavioral testing for the final three groups was conducted after the exercise
intervention was completed. However, neurobehavioral testing was also performed at
the very beginning of the experiment to exclude rats with significantly abnormal baseline
levels (e.g., most rats had sucrose preference indices higher than 95%, with abnormal rats
typically in the 60–80% range). Neurobehavioral testing was also performed after the
CUMS modeling to exclude the CUMS rats with high sucrose preference indices and high
water struggle times. Since neither test was a comparison of three groups, the data are not
presented.
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2.3.1. Sucrose Preference Test

Used to determine the state of pleasure deficiency in animals. Prior to the experiment,
rats were trained to adapt to 3% sugar-containing drinking water for 2 days. Before testing,
all rats were deprived of water overnight (water deprivation time of over 12 h). Each rat was
placed with a preweighed pure water bottle and a 2% sucrose water bottle. After 1 h, the
relative positions of the two bottles were switched. The amount of sucrose and pure water
consumed by the rats within 2 h was recorded, and the sucrose preference rate was calcu-
lated as sucrose consumption/(sucrose consumption + pure water consumption) × 100%
for each individual rat.

2.3.2. Forced Swimming Test

Rats were placed in a circular transparent water tank with a diameter of 25 cm and
a water depth of 30 cm containing warm water (25 ± 1 ◦C). The rats were recorded for
immobility using a high-definition camera for 6 min, and the immobility time during the
last 4 min of the test was recorded [30]. In addition, because there were similar swimming
stimuli in the CUMS modeling, the forced swimming experiment was not pretested.

2.4. Tissue and Sample Collection

After the neurobehavioral assessments, for each group of 29 rats, pentobarbital sodium
(dose: 50 mg/kg) was injected into the abdominal cavity for anesthesia, followed by cardiac
blood collection and decapitation on ice to remove the scalp and fur. The skull was opened
along the sagittal suture from the foramen magnum; the brain cortex was exposed by gently
prying with glass forceps, and the hippocampus was exposed. The hippocampus was
then separated from the surrounding brain tissue and used for ELISA detection, total RNA
extraction, and ROS fluorescent staining. Three rats were randomly selected from each
group and the hippocampus was removed using the same method described above, frozen
at −80 ◦C, and used for western blot analysis of protein content.

2.5. ELISA

After thawing, the hippocampal tissue was homogenized on ice using an electric
homogenizer, and the supernatant was collected after low-temperature centrifugation at
2500 r/min for 15 min. Standard samples were diluted and added strictly according to the
ELISA kit instructions (Servicebio, Wuhan, China), and the processes of incubation, wash-
ing, enzyme addition, color development, and termination were carried out in sequence.
The OD values of IL-1β and IL-18 in the hippocampal tissue of each rat were measured at
450 nm wavelength using an enzyme-linked immunosorbent assay (ELISA) reader after
calibration, and the concentrations of each factor in the sample were calculated using the
standard curve.
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2.6. Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR)

First, the electric homogenizer was used to homogenize the sample in Trizol, followed
by centrifugation and 10 min of incubation at room temperature for sufficient lysis. Total
RNA was extracted by strictly following the instructions of the kit and adding the reagents
step by step, followed by centrifugation. The concentration and purity of the extracted
total RNA were measured using a Q5000 ultraviolet spectrophotometer. Total RNA was
reverse transcribed into cDNA and PCR amplification was performed using SYBR PCR
mixture according to the product manual. The data was analyzed using the 2−∆∆Ct method
for relative quantification. The relevant primer design was conducted by Wuhan Saierwei
Co., Ltd., Wuhan, China, as shown in the table.

2.7. Immuno-Fluorescent Staining for Reactive Oxygen Species (ROS)

The content of ROS in the hippocampus was detected using the fluorescent probe
dihydroethidium (DHE). Hippocampal tissue stored at −80 ◦C was sliced into 5 µm sections
using a cryostat. The DHE staining solution was added and incubated at room temperature
for 15 min. Then, the slides were washed three times with PBS (pH = 7.4) while shaking
for 5 min each time. After incubating with DAPI staining solution for 10 min at room
temperature, the slides were washed three more times with PBS while shaking and then
covered with coverslips. The slides were observed under a fluorescent microscope and
photographed. The Image J software (version: 1.53k) was used for semiquantitative analysis
of the red fluorescent-positive ROS staining area.

2.8. Western Blotting

Hippocampal tissue was taken out, minced, ground, and lysed. The hippocampal
tissue was centrifuged at 12,000× g and 4 ◦C for 5 min, and the supernatant was collected.
The protein concentration was determined using a microplate reader, and 100 µg of protein
sample was loaded into a 5% SDS-polyacrylamide gel, followed by transfer onto a 0.45 µm
pore size nitrocellulose membrane (NC membrane). The membrane was then blocked with
3% (w/v) skim milk in TBST buffer at 4 ◦C for 2 h. IL-1β and IL-18 were diluted 1:1000 with
TBST buffer and incubated overnight. The membrane was washed five times with TBST
for 5 min each time and incubated with antirabbit IgG secondary antibody conjugated
with the detection reagent (diluted 1:2000–5000) at room temperature for 1 h. β-actin was
used as an internal control. The gel imaging system was used for exposure and imaging
of the film. The results were compared using the gray value ratios of SIRT3/β-actin and
NLRP3/β-actin.

2.9. Statistical Analysis

Statistical analysis was performed using Graphpad8.0.2 software, and the data were
expressed as mean ± standard deviation (M ± SD). After testing the homogeneity of
variance for all data, one-way ANOVA variance analysis was performed, followed by
post-hoc analysis using Tukey’s multiple comparison test. A significance level of p < 0.05
was considered as statistically significant.

3. Results
3.1. The Effects of Aerobic Exercise on Neurobehavioral Performance in CUMS-Induced
Depressed Rats

Neurobehavioral assessment results showed that compared to the CON group the
sucrose preference index significantly decreased and forced swimming time significantly
increased in the CUMS group and EX + CUMS group rats (p < 0.05). After 8 weeks of aerobic
exercise training, the sucrose preference index significantly increased and struggling time
in water significantly decreased in the EX + CUMS group rats (p < 0.05) (Table 2).
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Table 2. The effects of aerobic exercise on neurobehavioral performance in CUMS-induced depressed
rats.

Groups n SP (%) FSI (s)

CON 9 88.94 ± 1.79 49.45 ± 25.46
CUMS 10 72.41 ± 2.20 * 139.60 ± 31.62 *
EX + CUMS 10 87.09 ± 4.58 # 73.20 ± 45.08 #
F 175.923 32.106
P 0.000 0.000

Note: SP refers to sucrose preference; FSI refers to forced swimming immobility; * Compared with CON group,
p < 0.05; # Compared with CUMS group, p < 0.05.

3.2. The Effects of Aerobic Exercise on ROS Levels in CUMS-Induced Depressed Rats

Immunofluorescence staining results showed that compared to the CON group, ROS
levels in the hippocampus of the CUMS group rats significantly increased (p < 0.05). After
aerobic exercise intervention, ROS levels in the hippocampus tissue of the EX + CUMS
group rats were significantly suppressed, and the difference between the EX + CUMS group
and CUMS group was statistically significant (p < 0.05) (Figure 2).
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Figure 2. The effects of aerobic exercise on ROS levels in CUMS-induced depressed rats. Note:
(A) indicates CON group, (B) indicates CUMS group, and (C) indicates EX + CUMS group. * Indicates
that the difference between the two groups is significant.

3.3. The Effects of Aerobic Exercise on mRNA Expression in CUMS-Induced Depressed Rats

Compared to the CON group, chronic stress stimulation increased the mRNA ex-
pression of NLRP3, IL-1β, and IL-18 and decreased the mRNA expression of SIRT3 in the
hippocampus tissue of rats. Aerobic exercise was able to inhibit the mRNA expression of
NLRP3, IL-1β, and IL-18 and enhance the mRNA expression of SIRT3 (Figure 3).

3.4. The Effects of Aerobic Exercise on Protein Expression in the Hippocampus Tissue of
CUMS-Induced Depressed Rats

Compared to the CON group, chronic stress stimulation increased the protein content
of NLRP3 and decreased the protein content of SIRT3 in the hippocampus tissue of rats
(p < 0.05). Aerobic exercise attenuates NLRP3 protein overexpression in depressed rats
(p < 0.05) (Figure 4).
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3.5. The Effects of Aerobic Exercise on Inflammatory Cytokine Levels in the Hippocampus Tissue of
CUMS-Induced Depressed Rats

Compared to the CON group, the levels of inflammatory cytokines in the hippocam-
pus tissue of CUMS group rats significantly increased (p < 0.05). After aerobic exercise
intervention, the levels of IL-1β and IL-18 inflammatory cytokines in the hippocampus
tissue of rats was significantly suppressed, and the difference between the EX + CUMS
group and CUMS group was statistically significant (p < 0.05) (Figure 5).
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4. Discussion

This study found that exercise can promote SIRT3 expression and exert antioxidant
and anti-inflammatory effects to improve depression-like behavior. Specifically, exercise
can increase SIRT3 levels in the hippocampal tissue, reduce the production of ROS, and thus
lower the level of cellular oxidative stress to exert antioxidant effects. In addition, SIRT3 can
also regulate the inflammatory response and reduce the expression of inflammatory factors
to exert anti-inflammatory effects. Therefore, the results of this study further support
the view that exercise improves depression by upregulating SIRT3 expression to exert
anti-inflammatory effects.

As a member of the mitochondrial protein deacetylase family, SIRT3 has been exten-
sively studied for its roles in cell metabolism and inflammation. The results of this study
indicate that aerobic exercise upregulates the expression of SIRT3, which is consistent with
previous research findings. Many studies have shown that aerobic exercise can increase
the expression level of SIRT3. Several studies found that aerobic exercise significantly
increases the expression of SIRT3 in mouse heart [31] and skeletal muscle [32], and this
increase is related to the improvement of mitochondrial function. Another study found that
long-term high-intensity interval training can enhance SIRT3 protein expression in human
skeletal muscle [33]. This study confirms that exercise can upregulate SIRT3 expression in
the hippocampal tissue of depressed rats. The impact of exercise on SIRT3 expression may
be influenced by the form and duration of exercise, as well as the subject’s state. Studies
have shown that different types of exercise have varying effects on the expression level of
SIRT3, with running and swimming having a more significant effect on SIRT3 expression
than static load training [34,35]. It is worth noting that although most studies support
the idea that exercise can increase SIRT3 expression, there are also some studies that have
reached the opposite conclusion. For example, two studies found that exercise does not
increase SIRT3 expression in muscle tissue in fasting people or for those who only engage in
short-term exercise [36,37]. Overall, most studies support the idea that exercise can increase
SIRT3 expression, and the mechanism behind this may be related to the mitochondrial
biogenesis and improvement of mitochondrial function induced by exercise.

The results of this study also indicate that SIRT3 has a regulatory effect on ROS and
NLRP3 inflammasomes. It was found that upregulation of SIRT3 can inhibit ROS produc-
tion and regulate the activation and inflammatory response of NLRP3 inflammasomes,
thereby exerting anti-inflammatory effects. This is consistent with previous research find-
ings [38]. Other studies have also confirmed the regulatory effects of SIRT3 on ROS and
NLRP3. Song et al. showed that downregulation of SIRT3 leads to an increase in ROS
production, triggering mitochondrial oxidative stress and cell apoptosis, as well as an
increase in the activation of NLRP3 and expression of inflammatory cytokines [39]. In
contrast, Xia et al. demonstrated that upregulation of SIRT3 can suppress the activation
of NLRP3 inflammasomes and the expression of inflammatory cytokines by regulating
mitochondrial membrane potential to reduce ROS production [28]. These research results
are consistent with the findings of this study, indicating that SIRT3 can regulate the acti-
vation and inflammatory response of ROS and NLRP3 inflammasomes through various
mechanisms. However, SIRT3 may interact with other signaling pathways to regulate
cellular inflammation. In the future, further studies are needed to elucidate the mechanism
of action of SIRT3 and its role in diseases such as depression, in order to better understand
its biological functions and provide a basis for the development of relevant therapeutic
strategies.

The pathogenesis of depression is not fully understood. In recent years, increasing
evidence suggests that inflammatory responses play an important role in the occurrence
and development of depression [40]. The results of this study indicate that inflammation
factors, such as ROS and NLRP3, play an important role in depression. ROS is a type of free
radical that can bind with molecules such as cell membranes, DNA, and proteins causing
oxidative damage and resulting in inflammatory reactions [41]. NLRP3 is a protein in the
inflammasome that induces inflammatory responses and is involved in the occurrence and
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development of various diseases [16]. This study shows that inflammation factors such
as ROS and NLRP3 are significantly upregulated in the hippocampal tissue of depressive
mice, indicating that they play an important role in the occurrence and development of
depression. Studies have shown that the lack of anti-inflammatory factors is closely related
to the occurrence and development of depression [42,43]. Therefore, inhibiting inflam-
matory responses and promoting anti-inflammatory responses are important strategies
for treating depression. Exercise, as a non-pharmacological treatment method, has been
widely studied for its anti-inflammatory effects [44]. Exercise can inhibit inflammatory
responses and promote anti-inflammatory responses through various pathways, and mul-
tiple signaling pathways are involved in regulating anti-inflammatory effects, such as
NF-κB and JAK/STAT [45,46]. NF-κB is a transcription factor that is widely regarded as
the main regulator of inflammatory responses. The JAK-STAT pathway is an important
signaling pathway, and some antidepressants can also exert their effects by regulating the
JAK-STAT pathway [47]. Other important proteins involved in the signaling pathways of
hippocampal inflammation include MAPK and SIRT1 [48,49]. This study confirms that
SIRT3 in the SIRT family also has anti-depressive effects, mainly by inhibiting the activation
of ROS and NLRP3 inflammasomes and exerting anti-inflammatory effects. The survival
and death of neurons, and the occurrence and progression of neuroinflammatory responses
are regulated by multiple signaling pathways, and many unresolved questions remain
regarding the roles of these proteins and signaling pathways, requiring further research.

This study also has certain limitations. Firstly, it was conducted only in animal models,
and more research is needed to confirm the reproducibility and applicability of these
findings in humans. This study mainly focused on the SIRT3/ROS/NLRP3 signaling
pathway in the hippocampus, but other signaling pathways may also be involved in the
formation of depression-like behavior, such as the NF-κB signaling pathway which is
closely related to NLRP3 and requires further investigation [50]. In addition, differences in
exercise type and intensity may affect its impact on SIRT3 in the hippocampus, therefore
more research is needed to determine the most effective exercise method.

5. Conclusions

This study found that exercise can increase SIRT3 in the hippocampus, reduce ROS
production, regulate inflammatory responses, and lower the expression of inflammatory
factors, thus exerting an antidepressant effect. Therefore, the results of this study further
support the view that exercise ameliorates depressive-like symptoms and regulates some
proteins up or downregulated by CUMS. In the future, further studies are needed to
investigate the mechanism of SIRT3 and its role in diseases such as depression, in order
to better understand its biological function and provide a basis for developing related
therapeutic strategies.
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