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Evolutionary metabolomics of specialized metabolism
diversification in the genus Nicotiana highlights N-
acylnornicotine innovations
David Elser1, David Pflieger1, Claire Villette1, Baptiste Moegle2, Laurence Miesch2,
Emmanuel Gaquerel1*

Specialized metabolite (SM) diversification is a core process to plants’ adaptation to diverse ecological niches.
Here, we implemented a computational mass spectrometry–based metabolomics approach to exploring SM di-
versification in tissues of 20 species covering Nicotiana phylogenetics sections. Tomarkedly increasemetabolite
annotation, we created a large in silico fragmentation database, comprising >1million structures, and scripts for
connecting class prediction to consensus substructures. Together, the approach provides an unprecedented
cartography of SM diversity and section-specific innovations in this genus. As a case study and in combination
with nuclear magnetic resonance and mass spectrometry imaging, we explored the distribution of N-acylnorni-
cotines, alkaloids predicted to be specific to Repandae allopolyploids, and revealed their prevalence in the
genus, albeit at much lowermagnitude, as well as a greater structural diversity than previously thought. Togeth-
er, the data integration approaches provided here should act as a resource for future research in plant SM
evolution.
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INTRODUCTION
Plant metabolic profiles represent complex traits that reflect both
evolutionary and temporally dynamic adaptations to specific eco-
logical niches. Compared with their counterparts integrated into
broadly conserved central C metabolism pathways, specialized me-
tabolites (SMs) contribute to the largest fraction of intra- and inter-
specific variations in plant metabolic profiles. This plant
chemodiversity is predicted to account for somewhere on the
order of 100,000 to 1 million chemically unique structures, with
an estimated range of 5000 to 15,000 structures per plant species
(1). Many of these SMs act as chemical shields or as attractants in
plant biotic interactions. In this respect, a relatively recent paradigm
shift as part of ecological hypotheses such as the synergy (2) and
interaction diversity hypotheses (3) has been to consider SM struc-
tural diversity, and not solely the summation of individual metab-
olites, as a critical determinant of plants’ ecological interactions.
The latter perspective also revives the interest in the exploration
of SM diversity with modern analytical approaches and the use of
adequate statistical descriptors (4).

In analogy to phylogenomics approaches that have flourished as
a result of both the increasing release of annotated genomes and of
established comparative bioinformatics pipelines to analyze these
data, recent years have indeed seen a resurgence of plant family/
genus–specific comparative metabolomics analyses to guide func-
tional biochemical studies. For instance, comparative metabolomics
within the Rhamnaceae revealed that only the Ziziphoid clade of
this family has a functional triterpenoid biosynthetic pathway,
whereas the Rhamnoid clade predominantly developed diversity
in flavonoid glycosides (5). In a previous study, we implemented
a metabolomics-centered fragmentation rule–based pipeline to

annotate the diversity of 17-hydroxygeranyl linalool (17-HGL) di-
terpene glycosides within the Solanaceae family and revealed
intense chemotypic structural variations combined with a patchy
distribution of this compound class as it appeared restricted to
the Capsicum, Lycium, and Nicotiana genera (6). The latter “phylo-
metabolomics” information facilitated gene candidate selection for
functional biochemical studies in the 17-HGL diterpene glycoside
pathway (6). Similarly, comparative metabolomics across multiple
Solanaceae species was instrumental in guiding coexpression
studies for gene discovery for the steroidal glycoalkaloid pathway
emblematic of the Solanum genus (7).

Besides interspecific variations in SMs, another important di-
mension, unfortunately rarely integrated into taxonomic-scale me-
tabolomics studies, is the tissue/organ specialization of most SM
pathways. Exploring these tissue/organ-level variations and their
statistical correlation with gene expression data can be extremely
powerful in the process of SM biosynthetic gene discovery (8). An-
alyzing tissue-specific metabolomes is also critical to test ecological
theories of plant investments into metabolic defenses such as the
optimal defense theory that predicts greater metabolic defense ac-
cumulation in developmental stages/tissues with higher organis-
mic-level fitness contribution and/or greater predation rates (9).
Trichomes, in particular glandular ones covering most aerial
plant tissues, are notorious for their capacity to synthesize high
amounts of very specific SMs (10). Trichome SMs can be either
stored within trichome cells and glands or actively secreted, such
as for Solanaceae-specific polyacylated sugars, also referred to as
acylsugars and whose biochemistry has been thoroughly investigat-
ed in recent years (11). Calyces formed by the floral sepals and that
protect maturating reproductive organs are typically rich in SMs
whose biosynthesis can be dependent on trichomes present on
these tissues (12–14). SM profiles of roots, while much less system-
atically explored than shoot-based ones, can be as structurally
diverse as trichome-specific ones (15) and have recently become
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of major focus for our understanding of SM ecological functions for
plant-soil microorganisms’ interactions (16).

Most recent advances in computational metabolomics provide a
long-awaited framework to systematically explore the above-de-
scribed importance of the species × tissue SM variations (4).
These capacities to explore plant chemical spaces are further pro-
pelled by platforms such as, the MassIVE database (https://
massive.ucsd.edu/) reaching 12,000 metabolomics datasets in
2022. Despite the increasing amount of data that can be generated
from modern mass spectrometry (MS) instruments, the average an-
notation rate of most MS metabolomics studies remains at the order
of a few percent of deconvoluted MS/MS features (17). The number
of computational tools to address this challenge of transforming
spectral information into chemical knowledge is hence rapidly in-
creasing and can be divided into two main approaches. One set of
approaches relies on MS/MS spectral grouping, as embodied by the
game-changing development of molecular networking and of the
repertoire of network annotation/mining tools embedded within
the Global Natural Products Molecular Networking (GNPS) ecosys-
tem (18, 19). A second set of approaches relies on in silico fragmen-
tation and (sub)structure prediction from mass spectra.
Classification of spectra within ontologies of molecular families
can notably be achieved by CANOPUS, a deep neural network
method that is able to predict 2497 compound classes (20) and
that is embedded with the elemental formula prediction and struc-
ture annotation pipeline from SIRIUS (21). Alternatively, the
MS2LDA method allows the extraction of information derived
from shared substructures from spectral data via a Latent Dirichlet
Allocation algorithm borrowed from topic modeling (22). Recently
developed or upgraded computational tools such as CFM-ID (23),
molDiscovery (24), Metfrag (25), or QCxMS (26) (see the glossary
of computational metabolomics tools presented as Supplementary
Text) provide algorithmic means to predict MS/MS spectra from
structures. However, systematically prioritizing and/or merging
the highest confidence predictions from each of these tools
remains a challenge that is rarely tackled in most MS metabolomic
studies.

The genus Nicotiana L. combines several appealing features to
study SM pathway diversification. This genus, comprising 13 well
phylogenetically resolved sections for a total of at least 80 species,
is appearing in various morphological forms such as small herbs
to shrubs up to small trees, which often are viscid-glandular and
rarely glabrous (27, 28). Among the most studied species in this
genus are Nicotiana tabacum and Nicotiana rustica, which are tra-
ditionally grown for tobacco products; Nicotiana glauca, which has
been a focus of biofuel research studies (29); and Nicotiana ben-
thamiana, a very popular model organism in molecular biology
(30). The intense research on Nicotiana species is further reflected
into the very large set of reference transcriptome and genome re-
sources publicly available for species of this genus (31). As recently
reviewed (32), the phytochemistry of several species of this genus, in
particular that of the coyote tobacco Nicotiana attenuata, a flagship
model organism for the chemical ecology of plant-insect interac-
tions (33), has been extensively studied with notable focus on alka-
loids, mono/sesquiterpene volatiles, acylsugars, or 17-HGL
diterpene glycosides. Last, half of the species of the Nicotiana
genus are allopolyploids of different ages, and, for some of them,
the closest extant diploid progenitors have been mapped, thereby
providing a phylogenetics framework to study allopolyploidy-

mediated contributions to phenotypic trait evolution (34). Among
the Nicotiana SM innovations thought to have been shaped by
recent allopolyploidization events are N-acylnornicotines
(NANNs), derived from the N-acylation of nornicotine with long-
chain fatty acyl chains and which have been described as specific to
allopolyploid species of the section Repandae (35). This Nicotiana
section is about 4.5 million years old and has Nicotiana sylvestris as
its closest diploid maternal and Nicotiana obtusifolia as closest pa-
ternal progenitor. The 17 NANN structures originally described in
the Repandae species Nicotiana repanda, Nicotiana nesophila, and
Nicotiana stocktonii (36, 37), but not in Nicotiana nudicaulis, likely
act as gain-of-function antiherbivory defenses. Compared with the
Nicotiana widespread nicotine and nornicotine nonacylated alka-
loids, NANNs are highly effective against and evade the resistance
acquired for nicotine/nornicotine by the tobacco hornworm
Manduca sexta, a native herbivore (38). However, the evolution of
this defensive trait is largely underexplored, and detailed investiga-
tions on the NANN structural diversity within the genus Nicotiana
are missing.

Here, we implemented a comprehensive computational MS me-
tabolomics workflow to explore SM chemodiversity in various
tissues of 20 species representative of the main phylogenetic sec-
tions within the Nicotiana genus. By using a multi-inference deep
annotation approach that ultimately connects information theory
statistics, chemical class mapping, and substructure inferences, we
provide an unprecedented cartography of SM tissue-level distribu-
tion in this genus. The results of this study provide access to SM
annotations and tissue × species distribution data to guide future
biochemical studies and notably shed light on the unsuspected
structural diversity and evolutionary trajectory of the NANNs de-
fensive pathway within the Nicotiana genus.

RESULTS
Collecting tissue-level and phylogenetically relevant
metabolomics data on Nicotiana SM diversity
To comprehensively explore tissue-level SM diversification in the
Nicotiana genus, we profiled the metabolome of leaves elicited or
not with methyl jasmonate (MeJA), concentrated leaf surface exu-
dates, complete root and of calyces (Fig. 1B) of 20 species covering
all of the main sections of this genus as well as diploid and allote-
traploid states (Fig. 1A and table S1). Besides phylogenetic position,
species selection further took into consideration the availability of
transcriptomics/genomics data as a platform for future functional
studies (31). Sampled tissues were selected on the basis of previous
studies of our group (8), indicating the high degree of tissue-level
specialization in SM distribution and, conversely, the importance
of concatenating multitissue profiles to increase SM coverage. In ad-
dition, we aimed via this pluri-tissue approach to exploring tissue-
level shifts in SM class prevalence across the focal species as a mech-
anism of organismic-level chemodiversification. Noteworthy,
amounts of leaf exudate material collected greatly differed among
the focal species, with Nicotiana setchellii (2.7 mg of exudate per
g of leaf fresh weight) andNicotiana glutinosa (2.5 mg/g) producing
the largest amounts of dried exudates collected from leaf washes
(fig. S1 and table S1). All methanolic extracts were analyzed using
a previously established UPLC-ESI+-QTOF MS (ultraperformance
liquid chromatography-positive mode electrospray ionization
quadrupole time-of-flight MS) method with optimized settings
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for massive MS/MS data collection (6). A total of 17,901 metabolite-
derived MS/MS spectra (hereafter referred to as features) were, after
a data redundancy and contaminant check using a custom script,
deconvoluted and considered for feature-based molecular network-
ing (FBMN) processing with settings that were optimized to handle
the species × tissue–exacerbated metabolic diversity in the dataset.
The resulting species × tissue MS/MS feature compendium served
as input for the data exploration workflow presented in Fig. 1D
(fig. S2).

To contrast patterns of feature diversity across species, we calcu-
lated, for each of the tissue types, α-diversity scores based on the
Shannon entropy (H ) from information theory (8) (Fig. 2A). A uni-
fying trend in these tissue-level analyses was that species’ profiles,
differed extremely in their α-diversity indices, up to threefold

counterspecies variations being detected depending on the tissue
type. Root samples were, from all examined plant samples, those
with consistently lower α-diversity scores (average H = 7.6), likely
indicative of the prevalence of only a few SM classes in these
samples for the analytical conditions considered in this study
(Fig. 1C). As expected, highest α-diversity scores were, on average,
detected for MeJA-elicited leaves (average H = 9.4) (fig. S3), fol-
lowed by uninduced leaves (average H = 9.3) and calyces (average
H = 9.0). The effect of the MeJA elicitation on feature diversity was
consistently more apparent at the level of detected features and very
variable among the focal species (fig. S3). We noted that these in-
terspecies variations in MeJA inducibility (indicative of the ampli-
tude of a “metabolome plasticity” to this treatment) were strongly
negatively correlated (Pearson correlation coefficient = −0.76, P =

Fig. 1. Experimental and data processing setups to explore species × tissue–specialized metabolism diversification in the Nicotiana genus. (A) Schematic Ni-
cotiana phylogenetic tree highlighting main genus sections and representative species selected for metabolomics analysis. Four allotretraploid sections, dashed lines
indicate sections containing closest extant diploid progenitors. Accessions and origins of the selected species are referred to in table S1. N. glutinosa* and N. glauca* are
considered as homoploid hybrids as summarized in (34). (B) Tissue sampled from 6 to 8-week-old plants of the selected 20 Nicotiana species. Fully elongated leaves were
considered for leaf-based samplings. Leaf exudates were prepared by acetonitrile-based leaf surface rinsing; MeJA-treated leaves were harvested 72 hours after treatment.
(C) Representative base peak chromatograms (BPCs) from the UPLC-ESI+-QTOF MS analysis of methanolic extracts of N. repanda roots, untreated leaves, and calyces. (D)
Data processing pipeline to construct a species × tissue MS/MS spectral matrix and for its deep structural annotation before metabolic class diversification analysis.
Architecture of the data processing pipeline and organization of the different output matrices as supplementary datasets are presented in fig. S2.
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Fig. 2. Species metabolome α-diversity and phylometabolomics relatedness. (A) Biplots depict the number of detected features and the information theory
Shannon α-diversity as an index of feature richness per tissue. Nicotiana phylogenetic sections are color-coded, and squares with black strokes are used for allopoplyploid
species. (B) Biplot visualizing the interspecies negative correlation between leaf metabolome MeJA inducibility (calculated from the Euclidean distance between MeJA-
induced and uninduced leaf profiles) and constitutive (uninduced leaf samples) α-diversity. PCC, Pearson correlation coefficient; DF, degree of freedom. (C) Phylometa-
bolomics tree computed from the molecular networking information. To analyze the relatedness of species’ metabolomes, we first computed interspecies Euclidean
distances based on the molecular networking information and used the resulting distance matrices for constructing a phylometabolomics tree based on the neighbor-
joining algorithm (bootstrap values derived from 999 iterations) (table S2). Trees were also constructed from the tissue-level data (fig. S4).
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1.04 × 10−4) with α-diversity scores of uninduced leaves (“constitu-
tive diversity”) (Fig. 2B). In addition, while we initially assumed that
the metabolic profiles of the exudates collected from uninduced
leaves would be restricted to a few prevalent SMs (thereby resulting
into in low α-diversity scores for this sample type), the relatively
high α-diversity scores detected in most species were consistent
with a far greater chemical diversity in those extracts. In clear con-
trast, Repandae species, with the exception of N. nudicaulis and the
hybrid N. sylvestris × N. repanda, exhibited much lower α-diversity
scores (H ranging from 3.5 to 3.7 compared with the averageH value
of 8.5 for the rest of the species) that were in line with the previously
reported overdominance of NANNs within their exudates (37).
When feasible based on the species sampling, we also compared
the α-diversity scores of allotetraploid species to those of closest
diploid progenitors. Independently of the tissue type considered,
we did not observe a tendency for higher α-diversity scores in allo-
polyploids as compared to those of closest diploid progeni-
tors (Fig. 2A).

To analyze the relatedness of species’ metabolomes, we further
computed interspecies metabolic distances based the molecular net-
working information and used the resulting distance matrices for
constructing phylometabolomics trees. Several studies had previ-
ously attempted to construct such phylometabolomics trees but
from single-tissue metabolome data. Here, we constructed trees
both from the tissue-level (fig. S4) and combined tissue data
(Fig. 2C). The resulting “all tissues” phylometabolomics tree cap-
tured patterns of metabolome relatedness that were frequently in
accordance with the species’ tree section-level grouping and related-
ness (Fig. 2C). Among other interesting insights, Repandae species’
metabolomes, with the exception of that of N. nudicaulis, appeared
much closely related at the all tissues metabolome level to that of the
Sylvestres section from which their maternal progenitor had been
associated with than to the Trigonophyllae section (paternal progen-
itor section) (Fig. 2C and table S2). This analysis could not be trans-
posed forN. tabacum andN. rustica allopolyploids for which one of
the closest diploid progenitors had unfortunately not been initially
included in the species selection.

Creating a cartography of Nicotiana SM class diversification
After highlighting counterspecies chemodiversity variations, we
then systematically characterized onto which SM classes they
mapped. In analogy to gene family inference and survey across
focal species as a first step in phylogenomics, we first used the
CANOPUS tool for ad hoc systematic compound class and chemical
ontology predictions. To combine FBMN and CANOPUS informa-
tion, we implemented a frequency-based molecular network–based
propagation of CANOPUS (NP-CANOPUS) predictions, resulting
into class predictions for 86.5% of the total features within the 1586
networks retrieved by FBMN. CANOPUS “superclass” and “most
specific class” intensity distributions integrating all tissue samples
of given species were encapsulated as treemaps and mapped onto
the species tree to provide a bird’s eye view on class expansions
and shrinkages (Fig. 3B). For the sake of simplicity, only a few of
the main tendencies are reported below; close-up views on particu-
lar “metabolic tiles” and tissue-specific treemaps are accessible in
data S1. Most clearly apparent was the highest proportion of
“lipids and lipid-like molecules” in all species, with a substantial
fraction of these lipids being, in many species, contributed by the
saccharolipid subclass commonly referred to as acylsugars in the

Solanaceae. Browsing these treemaps supported the presence of
high amounts of predicted diterpenes in N. tabacum, N. sylvestris,
and the cross between N. repanda × N. sylvestris—the latter hybrid
having been initially incorporated to test progenitor chemical trait
dominance. Among other trends, this analysis also pinpointed on
N. setchellii exhibiting the most diverse and abundant set of “phe-
nylpropanoid derivatives” from predicted 3-O-methylated flavo-
noids (connected to network #361), simple hydroxycinnamic
acids (network #990), up to coumarin glycosides (network #532).
Noteworthy, the performance of CANOPUS predictions was none-
theless hampered for SMs that contained substructures from inde-
pendent biosynthetic origins, thereby resulting into heterogeneous
CANOPUS ontologies. For instance, the large “amino acids and de-
rivatives” tile within the N. glauca treemap was mostly associated
with network #468, but the features embedded in this network
were manually curated as N-hydroxycinnamoyl-spermidine conju-
gates that are commonly encountered in leaves of Solanaceae species
as antiherbivore defenses (39). This limitation was also highlighted
by the fact that the high level of NANNs, which are emblematic of
the Repandae section, was not as easily noticeable on the corre-
sponding treemaps. Previously characterized NANNs were indeed
split into several classes as “organoheterocyclic compounds,” “ben-
zenoids,” and “organic nitrogen compounds” (data S1).

Deep metabolome annotation empowered by a multi-
inference approach incorporating a 1 million natural
product in silico spectral database and consensus
substructure computations
The previous analysis indicated a critical need not only for broadly
increasing feature annotations beyond CANOPUS class predictions
but also for gaining structural insights into core (sub)structures un-
derlying molecular networks’ topology. As outlined in a recent
review (40), substructure annotation provides information about
functional groups, building blocks, or scaffolds within a chemical
structure. This level of information is complementary to compound
class prediction, most commonly addressing biosynthetic origin
and/or compound physicochemical properties. To propel substruc-
ture identification in our dataset, we first optimized a multi-infer-
ence annotation pipeline (figs. S2 and S5). Briefly, feature spectra
were first queried against an in-house Nicotiana attenuata SM
MS/MS database (entries resulting from the analysis of purified
SMs) and the GNPS library, the resulting hits being referred respec-
tively to as annotation levels 1 to 2 according to the Metabolomics
Standard Initiative nomenclature (41). Interrogation of these two
experimental spectral databases provided hits for 4% of the MS/
MS features (Fig. 3A). Level 3 of the annotation nomenclature re-
grouped class-based annotations mostly derived from manual in-
spection of network-level hits (5%). To circumvent limitations in
the chemical space covered by these two experimental databases,
we conducted spectral interrogations in parallel against in silico pre-
dicted MS/MS spectral libraries using both molDiscovery that pre-
dicts MS spectra of small molecules on the fly and scores their
probabilistic modeling (24) and a combination of CFM-ID and
MatchMS. To further expand the power of this approach beyond
the chemical space of the molDiscovery built-in library, we comput-
ed MS/MS spectra for the 429 natural products reported in a recent
Nicotiana phytochemistry review (32) and undertook the develop-
ment of an in silico spectral library for about 1.1 million natural
products (1M-NP, hereafter referred to as 1M-DB).
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A comprehensive description of the creation of the 1M-DB in
silico spectral library and of its architecture is reported in Supple-
mentary Text (see also figs. S6 and S7). The capacity of such in silico
spectrum–based approach to increasing the annotation coverage of
plant SM profiles has initially been exemplified in a pioneer study
by Allard et al. (42) but was restricted to chemical entries
(~220,000) retrieved from the copyrighted Dictionary of Natural
Products (http://dnp.chemnetbase.com). Here, we concatenated
chemical structures derived from several public natural product li-
braries (table S3), which resulted, after filtering out duplicated
InChI representations and CFM-ID–based computation of com-
posite MS/MS spectral predictions, into 1,066,512 unique MS/MS

spectra that covered a vast proportion of the natural product chem-
ical classification proposed by NPClassifier (43). As CFM-ID
version 4.0 computations returned slightly different MS/MS
spectra for enantiomers [see MS/MS spectra predicted
(+)−/(−)-shikonin and (+)−/(−)-thalidomide in fig. S8), stereoiso-
mers (enantiomers and diastereoisomers) were kept in the library.
Together, this important computational delivery of this study rep-
resents, to the best of our knowledge, the largest natural product–
derived in silico spectral library and is now available for spectral in-
terrogation as part of the GNPS ecosystem (see Data and Material
Availability).

Fig. 3. Cartography of Nicotiana species–level metabolic class and substructure distribution using a molecular network–propagated consensus substructure
approach. (A) Molecular networking of species × tissue–deconvoluted MS/MS features. The top 252 molecular networks were retrieved for a minimumMS/MS pairwise
cosine value of 0.7 and of six matching mass/charge ratio (m/z) signals. Node colors refer to network-propagated CANOPUS superclass predictions. Bars refer to the
relative proportions of individual MS/MS further annotated from the three levels of annotation confidence (see Materials and Methods) or with databases build from
in silico generated MS/MS spectra [see (C)]. HQ, high quality. (B) Treemap visualization of species-level superclass and most specific class distribution. Colors denote for
different NP-CANOPUS superclasses, with each individual uniformly colored rectangles depicting most specific classes hierarchically classified as part of a NP-CANOPUS
superclass. A close-up view on two superclasses (“organic acids and derivatives”/“phenylpropanoids and polyketides”) detected in N. glauca (Ngla) is presented. (C)
Network consensus structure (NCS) computations from hits obtained from the interrogation of in silico generated MS/MS spectra (fig. S10). Hits obtained for each
MS/MS feature–level database search within a network were compiled input to compute a consensus (sub)structure for each network. (D) NCS computed for
network #486 whose MS/MS features were classified in (A) as those of amino acids and derivatives. The library of feature/network/NP-CANOPUS/NCS associations is
reported in data S1, S3, and S4.
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The above-described multiquery approach of the 17,901 features
from our dataset retrieved annotations for 57% of these features,
with 9% hits for priority levels 1 to 3 (Fig. 3A). To maximize struc-
tural insights that could be gained from this deep annotation, we
lastly computed the top most common substructures [referred to
as network consensus structure (NCS)] based on feature annota-
tions for each of the FBMN molecular networks that did not
contain any level 1 to 2 annotations. Consensus structure computa-
tional prediction relies on an algorithmic approach that uses hits
obtained from in silico MS/MS spectral databases (see description
in Materials and Methods and “Code availability” section). The NCS
strategy is illustrated in Fig. 3 (C and D) with top NCS hits for
network #486 whose MS/MS features were initially classified as
amino acids and derivatives by CANOPUS. A complete overview
of the top NCS predictions is summarized in data S3. Together,
this unique combination of different computational approaches
generated a multimodal SM cartography that can be navigated
from CANOPUS-based ontology predictions down to sets of molec-
ular networks connected to a given class level and further down to
predicted shared substructures within these networks (data S3
and S4).

Exploring the chemical substructure basis of Nicotiana
section and species-level SM specialization
Next, we navigated the SM cartography to further dig into the in-
terspecies chemodiversity variations that were detected from the
species-level α-diversity (Fig. 2) and CANOPUS treemap analyses
(Fig. 3). To rigorously infer statistical associations between species
and particular CANOPUS superclass/most specific class predic-
tions, we used nonmetric multidimensional scaling (NMDS).
NMDS is a powerful ordination technique in information visualiza-
tion that is frequently used in ecology to spatially represent inter-
connections among species or communities based on a series of
univariate descriptors (44). The strength of this statistical approach
is that it allows to efficiently collapse the information from multiple
dimensions (here summed peak areas and connected CANOPUS
predictions) into a limited number of descriptors exhibiting high-
confidence statistical associations to species. Using NMDS, we com-
puted projections of species and CANOPUS predictions as intrinsic
variables and extracted strongest associations based on P < 0.05
(permutation tests) and minimal cosine scores for angular distances
between these two set of entities in NMDS projections (Fig. 4A and
data S2). A hierarchical clustering analysis of previously extracted
most significant associations resulted into four main clusters re-
ferred to as family clusters (FCs) (Fig. 4B). Distribution of these as-
sociations was not directly consistent with the species/section
phylogeny and thereby indicative of gains and losses in species/
section-level capacities for the abundant production of specific
SM core structures. FC1 regrouped predictions associated toO-acyl-
glycerol structures that appeared to be prevalent within species of
the section Suaveolentes and, to a lower extent, in the Petunoides,
Polydicliae, Paniculatae, and Rusticae. In accordance with the pro-
nounced expansion of this compound class in the Nicotiana genus
(11), acylsugar predictions enriched in FC2 exhibited widely dis-
tributed significant species associations throughout the genus.
These associations were remarkably absent for the section Repan-
dae, with the exception of N. nudicaulis. Strong associations with
predicted terpenoid structures caught our attention when inspect-
ing FC3. Most distinctive ones were detected for sections Nicotiana

and Sylvestres as well as for more distantly related sections Undula-
tae and Tomentosae. FC4 mostly captured associations with phenyl-
propanoid-derived substructures and alkaloids, the latter further
emphasizing on the richness of alkaloid metabolism in the Repan-
dae section.

A detailed interpretation of these species/section metabolic spec-
ificities requires a simplified access to the underlying MS/MS frag-
mentation schemes. The latter can typically be approached through
MS2LDA, an unsupervised method to extract common patterns of
mass fragments and neutral losses, referred to as mass motifs, from
collections of fragmentation spectra (22). From this analysis, we re-
tained 76 mass motifs that best depicted the structural diversity
within our dataset as confirmed by hierarchical clustering (resulting
in clusters of covarying mass motifs) and mapping of enriched
CANOPUS predictions for each mass motifs (motif-level propaga-
tion of CANOPUS predictions) (Fig. 5A and fig. S9). In analogy to
the critical role of conserved domain/motif inferences in protein
structure-activity studies, mass motif inference offers a dimension-
ality reduction perspective on recurrent fragmentation patterns
derived from particular substructures. This approach is, however,
often limited by the scarcity of structurally annotated mass motifs
in MS2LDA libraries. An asset of our approach is that it mutualizes
the previously described SM cartography to mine most interesting
mass motifs (Fig. 5B and data S5). As a proof of function of our ap-
proach, we notably confirmed the presence in motif cluster 1 (MC1)
of a mass motif (Strepsalini_110) that was characteristic of the O-
acylglycerols specific to Suaveolentes. MC1 also contained motif
#631 and motif #254 characteristic of steroidal glycoalkaloids that
were notably specific to Nicotiana plumbaginifolia. Motif #646,
present in the second cluster (MC2), captured the complete diver-
sity of 17-HGL diterpene glycosides, allowing to efficiently explore
the tissue specificity for this compound class. MC4 contained a
motif (motif #37) with fragments indicative of hydroxycinnamic
acid substructures derived from a network ofO-phenolic glycosides.
Similarly, by using inferences derived from these different compu-
tational approaches, we could also efficiently inspect motifs corre-
sponding to additional case studies such as N-hydroxycinnamoyl-
spermidine conjugates specific to N. glauca (MC5, motif #473); di-
and triterpenoids abundantly found in N. tabacum (MC5, e.g.,
motif #555 and #euphorbia_350); and mono-, sesqui-, and diter-
penes (MC5, motifs #558, #675, and #576, respectively) in sections
Nicotiana and Sylvestres as well asUndulatae (fig. S10). As previous-
ly implemented for molecular networks (Fig. 3), mass motifs can
also be used for consensus substructure computations [motif con-
sensus structure (MCS)], the latter providing a further mean to cir-
cumvent the scarcity mass motif annotation in MS2LDA libraries.
All 76 MCS computations, combined with CANOPUS predictions
and manual curation, are presented in data S6. Last, we provide,
using the diversification of leaf surface acylated sugars/glycerols as
a case study, a step-by-step illustration of how biological insights
could be gained from such an integration of molecular network
and substructure information–derived mass motifs, MCS and
NCS computations. To this end, three CANOPUS class predictions,
that of “alkyl glycosides,” “1-monoacylglycerols,” and “saccharoli-
pids,” which are broadly connected with acylated sugars/glycerols,
were queried for their species-level associations as well as corre-
sponding MCS and NCS computations (Fig. 6A). Figure 6B pro-
vides a closer perspective into the CANOPUS prediction for alkyl
glycosides (network #372 and mass motif #586), corresponding to
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(mono-/di-)acyl glucoses that dominate leaf exudates of Suaveo-
lentes and Rusticae species. The combined examination of the mul-
tiple computational outputs demonstrated that these compounds
co-occur at species level with above-mentioned acylglycerols,
while acylsucroses are more broadly distributed within the Nicotia-
na genus (Fig. 6C).

NANNs as case study for structural diversity expansion in
Repandae allopolyploids
In the following, we exemplify using the case study of NANNs on
how the Nicotiana genus SM cartography and connected annota-
tion resources can be exploited to gain (bio)chemical and evolution-
ary insights into specific SMs. NANNs have been described as leaf
exudate allopolyploidy–mediated innovations specific to the Repan-
dae section (35). In our data platform, NANNs’ structural diversity
was readily inferable from mass motif #433 (MC7) that included the
two main nornicotine substructure molecular fragments at mass/

charge ratio (m/z) of 132.0825 and at m/z 149.1075 (Fig. 7A). In-
spection of this motif retrieved a far greater structural diversity
than previously reported, with 102 of annotated NANNs, not
counting noncanonical NANN structures with three N (NANNs in-
tegrating an aminated fatty acyl chain) or three O atoms (dihy-
droxylated NANNs) or those built on an anatabine scaffold
instead of nornicotine (data S8). This NANN structural diversity
directly translated from variations at the fatty acyl moiety level,
with the presence of iso-/anteiso-branched or straight C1 to C18
chains, with or without hydroxyl groups. As their structure had
not been unambiguously identified in previous phytochemical
reports (35), the most abundant hydroxy NANNs were purified
and elucidated by nuclear magnetic resonance (NMR) to confirm
the unusual position of the hydroxy group at position 3 (fig. S11
and Supplementary Text).

Total NANN pools were extremely high in leaf exudates and in
trichome-rich calyces of the Repandae species but at barely

Fig. 4. NMDS revealsmain statistical trends ofNicotiana section and species-levelmetabolic specialization. (A) NMDSwas used to infer directionalities, followed by
the calculation of intrinsic variables to test for statistical significance [P value (999 permutations) lower or equal to 0.05], in the association between species and CANOPUS
superclass and most specific class predictions (CANOPUS; Fig. 3). All P values and cosine distances are summarized in data S2. (B) Heatmap representation (based on
cosine distances) of statistically significant associations between species and NP-CANOPUS predictions for “most-specific classes” (colored according to top-level “su-
perclasses”). A hierarchical clustering analysis was conducted to group similarly distributed CANOPUS predictions, thereby emphasizing on four highly distinctive clusters
referred to as metabolic FCs.
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Fig. 5. A minimal set of MS motifs captures substructure diversity in Nicotiana chemotypes. (A) Hierarchical clustering analysis (HCA) based on the species-level
motif count (Z score–normalized) of top 76 mass motifs inferred by unsupervised decomposition of overall MS spectra via the text-mining program MS2LDA. Species ×
tissuemotif countsmatrices can be explored within data S5. MCs extracted from the HCA approach refer to clusters of tightly covaryingMSmotifs. A principal component
(PC) analysis (two first PCs) based on species-level MS motif relative intensity and loadings exerted on sample PC coordinates by each MS motifs, highlighted the strong
resolving power for species grouping of theseMCs (fig. S9). (B) Strategy for MSmotif–guided exploration of substructure enrichment in particular molecular networks. MS
motifs are selected on the basis of their peculiar species/section-level distribution, annotated using MS fragmentation curation and connected molecular network are
lastly visualized. Node colors denote for the species-overall feature relative abundance in the analyzed tissues. Rectangles report network and MS motif IDs, and their
colors refer toMC. A representative high-confidence predicted structure per network (connected to the double circled node) is presentedwith annotation of theMSmotif
main fragments. Additional examples are presented as part of fig. S10. Overall MS motif data are reported in data S6 and S7.
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detectable levels in N. nudicaulis (Fig. 7B). Most unexpectedly, our
data mining revealed that roots harbored a previously unexplored
diversity of NANNs, albeit at almost two orders of magnitude
lower than in leaves, and with very different chemotypes
(Fig. 7B). In this respect, cross-tissue comparisons of fatty acyl moi-
eties among NANN chemotypes indicated a general tendency
toward shorter chain NANN (most notably C8-nornicotine and
formyl-[C1]-nornicotine) accumulation in root tissues (fig. S12).
A closer inspection of previously noted noncanonical NANNs cap-
tured by this exploratory approach led to the formulation of struc-
tural assignments for four structures harboring a second intrachain
hydroxyl group and four additional ones bearing a third N atom as
part of an intrachain amine group (Fig. 8A). These noncanonical
NANNs were purified, but because of insufficient yields, their struc-
ture could not be further interpreted by NMR. In agreement with
the presence of a third N prone to be positively charged, these non-
canonical NANNs mainly appeared in the form of their [M+2H]2+
and exhibited higher polarity than regular ones. Features corre-
sponding to these noncanonical NANNs shared with canonical
ones the mass motif #433 associated with the nornicotine backbone

fragmentation but were located in different molecular networks
(Fig. 8A) that were specific to the Repandae section (fig. S13).
These Repandae noncanonical NANNs were further analyzed by ul-
trahigh-resolution matrix-assisted laser desorption/ionization
(MALDI) MS imaging experiments conducted from leaf cross sec-
tions of N. nesophila. These analyses supported their uniform dis-
tribution within the leaf lamina, the corresponding MS imaging
(MSI) images overlapping with those of well-known lamina-distrib-
uted SMs such as chlorogenic acid and not specifically on the leaf
surfaces as for canonical NANNs (Fig. 8B and fig. S14).

Assessing NANNs evolutionary diversification
Our data strongly challenged the previous view that NANN biosyn-
thetic capacity strictly arose as part of the allopolyploidy event at the
base of the Repandae and that, hence, NANNs could be considered
as a transgressive metabolic trait to this section. Figure 7 shows that
the NANNs’ diversity pervades the different Nicotiana sections,
albeit at extremely low levels in all the species examined additionally
to the Repandae section. Obviously, complete leaf extracts of N. ne-
sophila (H = 3.25, 53 NANNs) and N. repanda (H = 3.17, 49

Fig. 6. An illustration of how to combine multilevel computational metabolomics outputs to assess leaf surface acylated sugars/glycerol diversification. (A)
Workflow to interrogate species-level molecular network relative intensity (Fig. 3 and data S1), significant associations with NP-CANOPUS predictions for most-specific
classes (Fig. 4 and data S2), and mass motif distributions (Fig. 5 and data S5) to unravel SM diversification patterns. Three NP-CANOPUS most-specific classes exhibiting
significant species-level associations are initial selected for further examination: alkyl glycosides (1), 1-monoacylglycerols (2), and saccharolipids (3). A detailed exami-
nation of these, supported by the computational workflow, indicates that metabolites of the corresponding molecular networks relate to diacylglycerols, monoacylgly-
cerols, and acylsucroses. As an example, NP-CANOPUS alkyl glycosides, which close association with the Suaveolentes and Rusticae sections, are overrepresented by
network #372 [exemplified in (B)] and MS2LDA mass motif #372. The latter motif combines diagnostic fragments of a C8 acyl group (fragment_127.1125) and
glucose with a C8-acyl group that lost two ─OH groups (fragment_271.1525). (B) Molecular network #372 and predicted consensus substructures. The predicted con-
sensus substructures for this network are alkyl chains with varying lengths. Consistently, associated consensus substructures (MCS) of mass motif #586 also display alkyl
chains with varying lengths. Complete NCS and MCS data are accessible in data S3 and S6, respectively. Features of this network are specifically enriched within the leaf
surface exudates (yellow). The proposed structure of the mass feature atm/z 433.2799 (bold circles) as a diacylated glucose derivative is highlighted with its explainable
fragmentations above. (C) Distribution at the Nicotiana section level of main surface acylated sugars/glycerols as inferred from the computational workflow. ++, high
abundance of the compound class; +/−, moderate abundance. Color keys for the different heatmaps in (A) are as implemented in the cited figures.
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NANNs) exhibited the overall greatest NANN α-diversity values
(fig. S15). Of all leaf exudate samples examined, the NANN α-diver-
sity calculated for hybrid N. repanda × sylvestris (H = 3.03, 18
NANNs) was the highest, which reflected a balanced distribution
among NANN relative intensities in this sample. By clear contrast,
lowest NANN α-diversity values were detected for leaf exudates of
N. repanda (H = 0.42, 24 NANNs), N. stocktonii (H = 0.39, 22
NANNs), and N. nesophila (H = 0.54, 24 NANNs), which further
indicated, besides the high NANN biosynthetic capacity in these
species, their exacerbated specialization toward C14-OH-nornico-
tine exudation. In this respect, while the NANN chemotypes of
the leaf exudates of almost all of the focal species were characterized
by the dominance of this particular NANN, N. rustica and N. setch-
ellii were noticeable exceptions, being dominated by C16-nornico-
tine (Fig. 7C) and N. glutinosa for its exclusive accumulation of
formyl-nornicotine. As previously noted (Fig. 7B), roots of almost
all species harbored a rich diversity of NANN, particularly exacer-
bated in N obtusifolia (H = 2.26, 8 NANNs), predicted as one of the
closest diploid progenitors to the Repandae section.

Together, a most parsimonious explanation to the evolution of
the NANN pathway was that it predates Repandae formation
(Fig. 9). Such an evolutionary scenario appeared to be supported
in all tissue-level ancestral state reconstruction (ASR) analyses
carried out based on a matK-based species tree and with total
NANN levels expressed as discrete states (Fig. 9A). The ASR

analysis computed from total root NANNs in combination with
tissue-level NANN chemotypes further suggested that the last
common ancestor to the examined species had a consequent root-
based NANN accumulation capacity. In this respect, in allNicotiana
species, root-level NANN chemotypes consistently contrasted from
shoot-level ones by their important proportion of C8-acylated and
minor levels of shorter fatty acyl chain NANNs (Fig. 9B). While
other species such as the allotetraploid N. rustica exude moderate
amounts of NANNs on their calyx surfaces (Fig. 7B), suggesting in-
dependent evolutionary events in the amplification of NANN pro-
duction, the extremely high amounts of NANN exudation on both
leaf and calyx surfaces constitute a character specific to the Repan-
dae section (with the exception of N. nudicaulis).

DISCUSSION
Lineage-specific reconfigurations in rapidly evolving sectors of a
plant specialized metabolism can be difficult to assess solely from
genomics/transcriptomics data. This stresses the obvious fact that
the power of genomics-driven evolutionary inferences on plant
SM pathways critically relies on the chemical classification of me-
tabolites part of these metabolic sectors and on the phylogenetics
contextualization of this information. To tackle this issue, the
open-source computational metabolomics approaches presented
here are propelled by a broadly transposable multi-inference

Fig. 7. Navigating MS motifs pinpoints on a diversity of NANNs that dominate leaf surfaces of Nicotiana section Repandae species. (A) Main molecular networks
extracted connected to MSmotif 433 (MC7; Fig. 5A) characterized by a strong relative abundance in Repandae species. NMR-elucidated NANN structure (see further NMR-
elucidated NANNs in fig. S11), with fragment annotations captured by the NANN MS motif, for the MS/MS feature represented by the double circled node. Node colors
denote for the species-overall feature relative abundance in the analyzed tissues. (B) Total NANN pools (relative to maximum in N. nesophila exudates) as inferred from
MS/MS features of MSmotif 433 (data S8). (C) Species-level NANN elemental formula distribution (Z score–normalized) and indication of the acyl chain length and of its 3-
hydroxylation.
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annotation approach that maximizes the coverage of substructure
predictions, thereby resulting into an unprecedented cartography
of SM diversity in the Nicotiana genus linking species-level SM
prevalence to particular substructures. With this workflow, we
notably shed light on the structural diversity and phylogenetics dis-
tribution of NANNs, a gain-of-function defensive innovation pre-
viously thought to have evolved with Repandae allopolyploids
speciation (38).

A major challenge in MS metabolomics remains to reach broad
structural annotation (“deep metabolome annotation”) and sub-
structure discovery beyond chemical class predictions and the

dereplication of previously identified SMs, which is the most fre-
quent outcome of molecular networking–based data exploration.
In particular, with the use of heterogeneous computational annota-
tion tools and that of querying highly diverse experimental and in
silico MS/MS database comes the inherent difficulty of systemically
prioritizing and/or merging the minimal set of most reliable anno-
tations collected from these inferences. MolNetEnhancer has been
developed to more efficiently combine outputs from molecular net-
working, MS2LDA as well as in silico and chemical classification
tools (45). However, substructure discovery from MolNetEnhancer
outputs is strongly hampered by the scarcity of annotated motifs in

Fig. 8. Characterization of noncanonical leaf lamina NANNs specific to the Repandae. (A) Molecular networks and fragmentation characterization of 3N-containing
and dihydroxylated NANN specific to the Repandae (fig. S13). Node colors denote for the species-overall feature relative abundance in the analyzed tissues. (B) MALDI MS
images depicting spatially resolved relative abundance of selected metabolites in a leaf cross section of N. nesophila. Insert in the first image corresponds to the optical
image of the matrix-embedded leaf cut used for MALDI MSI. The two first images correspond to the MSI data for two 3N-containing NANNs: m/z 346.2853 (±3 ppm,
C21H35N3O, [M+H]

+) andm/z 362.2802 (±3 ppm, C21H35N3O2, [M+H]
+) exhibiting a quasi-uniform distribution within the complete leaf section and comparable to that of

chlorogenic acid (third image, m/z 355.1026 ± 3 ppm). Selected MSI data are presented for additional N. nesophila metabolites in fig. S14.
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the Mass2Motifs database embedded into MS2LDA and by the fact
that many of these correspond to relatively unspecific fragmenta-
tions (e.g., water, methyl, and hexose losses). Only 24 of the 76
mass motifs retained for further analysis had partial annotation
hints in the MS2LDA Mass2Motifs database (data S5). To
improve substructure discovery and annotation, we implemented
two complementary approaches. On the one hand, we propagated
CANOPUS predictions at mass motif level (MP-CANOPUS) by
computing frequencies in “superclass/subclass/most specific
class,” and combined this information with mass motif coregulation
analysis (Fig. 5). The second approach implemented for substruc-
ture analysis involved advanced maximum common substructure
calculations to integrate annotations from multiple tools on a
network (NCS) or motif level (MCS). Overall, we obtained 349
NCS or 303 MCS predictions for the whole dataset (data S3 and
S6). Maximum common substructure computation for substructure
prediction had been used in one of our previous studies to cluster

candidate structures obtained by the MetFrag searches among cor-
egulated herbivory-induced metabolites (46) and is also one of the
processing steps within the Network Annotation Propagation tool
of the GNPS web platform (47). Together, we advocate that the
NCS/MCS approach implemented here has three main advantages:
(i) It is an efficient mean of summarizing common substructure
within the diversity of outputs from database queries as SMILES
strings, (ii) it can used as input to reveal substructures statistically
associated with intense chemodiversification in a given species, and
(iii) it provides structural guidance during the manual interpreta-
tion of mass motifs or molecular network. In this respect, our
study led to the curation of 76 mass motifs (data S5). Such an
effort is important to empower supervised search of mass motifs,
which is already possible in MS2LDA and which will be greatly fa-
cilitated with the recent release of the MS2QUERY tool (48).

A very important delivery of our work is the development and
public sharing of the 1M-DB which is, to the best of our knowledge,

Fig. 9. ASR and structural diversity analysis indicate that NANNs predate Repandae speciation and a major root-to-shoot compositional shift. (A) Total root
NANN pools of the focal species were transposed as relative scaling into an ordered trait (total states colored from white to dark brown) and used as input for ASR using
the MBASR software with default settings. The species tree was constructed from matK as described in (73). Bubble plots on the right part of the figure depict relative
NANN fatty acyl chain distribution with indication of fatty acyl chain carbon number (fig. S12); for total NANN pools, see Fig. 7B. Bubble size denotes for relative acyl chain
level within the NANN pool of a species and per tissue. Color-filled bubbles refer to hydroxylated NANNs. (B) Main biological insights gained from the present compu-
tational metabolomics workflow on the NANN evolutionary diversification. Acquisition of the NANN biosynthetic capacity predates Repandae allopolyploid formation,
but nornicotine N-acyltransferases responsible for the NANN structural diversity remain to be identified (a). While other species such as the allotetraploid N. rustica exude
moderate amounts of NANNs on their calyx surfaces (c), suggesting independent evolutionary events in the amplification of NANNproduction, markedly high amounts of
NANN production constitute a character specific to the Repandae section (with the exception of N. nudicaulis) (b). In all Nicotiana species, root-level NANN chemotype
consistently contrasts from shoot-level ones by their important proportion of C8-acylated and minor levels of shorter fatty acyl chain NANNs. Relative NANN pools and
distribution presented in the bar chart and circular diagrams are from N. repanda. FA, fatty acid chain.
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the largest in silico spectral database. This approach resulted into
fivefold more hits (annotation of 57% of the total features) than ex-
perimental spectral database interrogation alone. Data of the 1M-
DB can currently be accessed and interrogated from the GNPS plat-
form. The size of this dataset can represent a challenge for
MatchMS-based queries, which can nonetheless be locally imple-
mented with reasonable computing capacity with the parallelized
script (see the “Code availability” section) provided with our
study. It is therefore foreseeable that the efficiency of the interroga-
tion of the 1M-DB will strongly benefit from up-to-date optimiza-
tion of MatchMS parallelization as part of future version releases.
Multiple tools have been developed in recent years to produce hy-
pothetical MS/MS spectra (23–26, 49). A more recent development
in this area is that of QCxMS, a computational tool that generate
high-quality fragmentation spectra from molecules based on molec-
ular dynamics calculations (26). This program is currently too
much computationally demanding and could not be transposed
to the scale of this study, besides the computation of MS/MS predic-
tions for the 429 structures of the Jassbi database and using a limited
number of fragmentation trajectories (Zenodo link: https://doi.org/
10.5281/zenodo.8123590). One promising direction for improving
the confidence of such in silico fragmentation–based annotation is
exemplified by the recently developed COSMIC workflow that in-
corporates a confidence score consisting of kernel density P value
estimation from a decoy library and a support vector machine algo-
rithm (50). With the increasing quality of MS/MS predictions, one
interesting perspective could be to extract mass motifs from them
and thus directly infer fragment substructures produced from
known structure in silico decomposition.

In terms of structural information, the SM metabolic cartogra-
phy generated in this study goes far beyond to a recently published
chemotypic classification of the Nicotiana genus that mostly con-
sisted in the dereplication of primary metabolites such as steroids
and only a few SMs (51). In our opinion, this data platform and
our SM cartography provide complementary views on the metabol-
ic diversity of this genus. Noteworthy, the aforementioned study did
solely focus on leaf metabolomes, while ours and previous studies
(8) unambiguously indicated the importance of “screening” multi-
ple tissues to capture a broader SM diversity picture. In this respect,
we demonstrated that expanding the analysis at the multitissue level
(by combing tissue-level molecular network information) resulted
into a phylometabolomics tree that captured shared SM biosyn-
thetic potential among closely related species with more resolution
(Fig. 2). Beyond simple presence/absence of SM classes, which has
been a traditional focus of chemotaxonomic studies, the fact that
structural diversity can nowadays be more efficiently accessed
with computational MS metabolomics opens research avenues for
understanding the evolution of SM, as implemented in a recent
survey of the SM synapomorphies and homoplasies in the Malpigh-
iaceae family (52). Information theory Shannon statistics trans-
posed to MS feature analysis or individual metabolites can also
provide an efficient means of contrasting metabolic diversity
among the metabolic profiles to examine evolutionary ecology the-
ories and contextualize those at relevant taxonomic scales (53). By
using α-diversity analysis, we confirmed that roots exhibit, under
our analytical conditions, the most specific metabolomes, a
pattern that had been previously detected in a study focusing on
N. attenuata as the sole model species (8). α-Diversity scores
further varied in-between species, thereby indicating variations in

constitutive SM biosynthetic capacities and/or constitutive versus
stress-induced investments into SM production. In this respect,
we further observed that these interspecies variations in MeJA in-
ducibility were negatively correlated with α-diversity scores consti-
tutive leaf metabolome (Fig. 2B). This trend is reminiscent of the
interspecies patterns detected from the comparative analysis of
early herbivory-induced transcriptomes for six Nicotiana species
(54) and may reflect physiological trade-offs between constitutive
versus inducible metabolic diversity maintenance.

Many interesting biochemical insights worth to be pursuing by
gene function studies were extracted from the SM cartography pro-
duced from this study. Our analysis notably detected the presence of
mono-O-acylglycerols (classified under the CANOPUS most specif-
ic class 1-monoacylglycerols) specifically on the leaf surfaces of the
section Suaveolentes and at lower abundances in the Rusticae.
Besides its well-known housekeeping function in the synthesis of
di- and tri-O-acylglycerols via the action of glycerol 3-phosphate
acyltransferase enzymes (55), the latter compound class has been
poorly investigated regarding its presence on plant aerial surfaces.
Main reports on the possible defense-related functions of this com-
pound class derive from studies on their presence as abundant
surface metabolites on the calyx of several Scrophulariaceae
species (56) and from a unique report for the Nicotiana genus de-
scribing these compounds as efficient chemical glues against small
insects on the leaf surfaces of N. benthamiana (57). The prevalence
of this compound class in the Suaveolentes section, particularly in
N. benthamiana, could point to an interesting case study to func-
tionally examine the biochemistry and evolution of this pathway
and compare it with that of the thoroughly investigated and struc-
turally reminiscent acylsugars (11). Our analysis also revealed subtle
tissue-level chemotypic variations within O-acylsugar networks.
Apart from confirming previously detected strong cross-species
variations in structural diversity, inspections of these networks
also indicated that some of these acylsugars are present at low
levels in roots (fig. S10). This could further illuminate recent
work on the predicted role of these SMs in plant-soil microbiome
interactions (15). We further exemplify how multilevel computa-
tional inferences retrieved from our approach can be combined to
provide additional insights on the evolutionary diversification of
acylsugars/glycerols within the Nicotiana genus (Fig. 6). In this
case study, (mono-/di-)acyl glucoses inferred from our approach
appeared present at high levels in the Suaveolentes and Rusticae sec-
tions, a distribution contrasting with that of well-characterized acyl-
sucroses. Acyl glucoses have been previously reported from N.
benthamiana and Nicotiana miersii (57, 58) but are most well char-
acterized from wild tomato Solanum pennellii, in which their bio-
synthesis has been linked to the activity of a specific invertase
enzyme (59). These compounds have also been described in
Datura species, and functional genomics work further indicated
signatures of convergent evolution of the underlying biosynthetic
pathway in the Solanum and Datura genera (60). It would be of
great interest to study which regulatory mechanisms contribute to
the species-level co-occurrence of this compound class with mono-
acylglycerols, as well as the biosynthetic underpinnings to this com-
pound class in Nicotiana, since its distinctive distribution could be
shaped by reconfigurations of invertase activity in trichomes (59).

Our SM cartography also provided species × tissue resolution on
terpene-related classes’ distribution previously examined in Nicoti-
ana studies that targeted trichome-based cembrene diterpene (61)
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and 17-HGL-DTG (6). Our study revealed for these two classes of
diterpenes, pronounced expansions of structural diversity and sig-
nificant associations with the Nicotiana, Sylvestres, Undulatae, To-
mentosae, and Trigonophyllae (17-HGL-DTG) sections that include
species in which emblematic structures of these compound classes
had been originally detected (6). An unexpected result was the de-
tection, at large levels inN. plumbaginifolia and to a minor extent in
N. glutinosa, of steroidal glycoalkaloids, emblematic of the Solanum
genus, and whose presence is considered as erratic in other Solana-
ceae genera. Within the structurally rich network of steroidal glyco-
alkaloids identified in our study, the dereplication of solaplumbin
m/z 722.4479, ([M+H]+, C39H64NO11) is supported by old phyto-
chemistry reports (62). This unexplored patchy distribution of ster-
oidal glycoalkaloids within the Solanaceae provides exciting
foundations for future evolutionary biochemistry studies. Consis-
tent with the exploratory power of the presented approach, we
further detected a largely uninvestigated network of root-enriched
glucoside derivatives of nicotine and possible nicotine biosynthetic
intermediates (fig. S16).

An interesting perspective is to decipher metabolic reconfigura-
tions that are associated with allopolyploidy events within the Nico-
tiana genus. The present study design does not allow, because of the
absence of certain diploid progenitor species (Nicotiana tomentosi-
formis in the case of N. tabacum and Nicotiana undulata in the case
of N. rustica), to systematically compare metabolic distances
between allotetraploid metabolomes and those of closest diploid
progenitors (table S2). Taking into account this limitation,
However, note that we did not observe a tendency for greater α-di-
versity scores, calculated from whole metabolome data, in allotetra-
ploid species as compared to diploid species. This further indicates
the importance of analyzing allopolyploidy-mediated metabolic
modulations at the compound class level. Results of these analyses
could be reminiscent of the complex reconfigurations detected in a
previous study assessing floral morphological and associated meta-
bolic trait variations in Nicotiana allotetraploids (34). Because of
their previously reported absence in Repandae closest diploid pro-
genitors (N. sylvestris and N. obtusifolia), NANNs have often been
considered as “transgressive” metabolic traits derived from the Re-
pandae allopolyploidization. In our study, we annotated 102
NANNs, including six first elucidations by NMR and found
NANN-related structures built from anatabine as a backbone, as
well as the presence of leaf lamina–based NANNs restricted to Re-
pandae that contain uncommon aminated fatty acyl moieties.
Above all, our study indicates that the NANN biosynthetic capacity
predates the Repandae section formation. However, a main innova-
tion of Repandae species is their capacity to accumulate very high
level of canonical NANNs on their surfaces and N3-containing
NANNs in their leaf laminas (Fig. 8). These data provide rigorous
support to old literature that reports anecdotal evidence (63, 64) for
low amounts of short (−formyl, −acetyl) and middle (C4 to C8)
chain length NANNs present in otherNicotiana species (65).N. ob-
tusifolia, considered as a closest extant female progenitor to Repan-
dae, is one of the Nicotiana species that accumulates the largest
nornicotine-to-nicotine ratio in its leaves (66). Another interesting
observation to pursue is that N. sylvestris, the closest extant male
progenitor to Repandae, is thought to have contributed to several
allopolyploidization events in the genus Nicotiana, many of which
being able to accumulate greater NANN amounts than the other
species tested in this study. Hence, our data, as presented in the

summary model of Fig. 9B, suggest a more complex than previously
thought evolution of the NANN pathway.

In particular, a cornerstone biochemical perspective to this work
will be the identification of the NANN biosynthetic N-acyltransfer-
ase(s), which is predicted to be abundant in Repandae trichomes
from our data and from previous phytochemical analyses on
crude trichome fractions (35–37, 67). Building on the strategy suc-
cessfully used for the characterization of BAHD (named after the
first four biochemically characterized acyltransferases BEAT,
AHCT, HCBT, DAT) enzymes responsible for the diversity of tri-
chomes acylsugars in Solanaceae species (11), comparative tran-
scriptomics analyses are currently ongoing to pinpoint on
candidate nornicotine N-acyltransferases. Previous studies on acyl-
sugar biosynthesis further indicated that intra- and interspecific
variations in acylsugar chemotypes are controlled by subtle modu-
lations of BAHD gene expression and enzyme acyl acceptor affinity
(11). The identification of nornicotine N-acyltransferase(s) will
pave the way for mechanistic investigations on the evolutionary di-
versification of NANNs in the Nicotiana genus and on specificities
underpinning trichome-level flux capacity amplification in the Re-
pandae and to a much more moderate extent in N. rustica.

Last, our tissue cartography revealed a largely unexplored reper-
toire of NANNs in the roots of all examined species with an impor-
tant proportion of C8-acylated and minor levels of shorter fatty acyl
chain compounds (Fig. 9B). These data and ASR analyses are in
favor of shorter chain NANN production in roots being a most an-
cestral trait in this metabolic class. In the context of the above-men-
tioned future biochemical investigations, the latter interpretation
would be consistent with the fact that the accumulation of canonical
NANNs onto aerial surfaces involves trichome-based N-acyltrans-
ferase enzymes with greater affinity for long-chain fatty acyl–coen-
zyme A as compared to those present in roots.

In conclusion, the fully open data and broad range of data inte-
gration approaches and provided here present an unprecedented re-
source to revive SM analysis in the Nicotiana genus and contribute
to the establishment of phylometabolomics as an instrumental
bottom-up approach to guiding future evolutionary biochemis-
try studies.

MATERIALS AND METHODS
Plant material, growth conditions, and treatment
Nicotiana species with their origin and associated accession
numbers are summarized in table S1. Seeds of all Nicotiana
species were directly germinated on soil, with the exception of N.
attenuata, for which smoke-induced seed germination was estab-
lished as described previously (8). For all species, glasshouse
growth conditions were as described previously (8). Six- to eight-
week-old elongated plants were used for all metabolomics analyses.
To analyze the regulatory function of jasmonate signaling on me-
tabolomics-inferred specialized metabolism classes, petioles of
two elongated plants were treated with either 20 μl of lanolin
paste containing 150 μg of MeJA (Lan + MeJA) or with 20 μl of
pure lanolin (Lan) according to Heiling et al. (6). Leaf samples
were harvested 72 hours after treatment, flash-frozen in liquid nitro-
gen, and stored at −80 °C until use.
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Metabolite extraction procedures for UPLC-QTOF MS
Leaf, root, and calyx metabolites were extracted for UPLC-QTOF
MS analysis as previously described (6). Briefly, for leaf samples,
12 discs per plant (~100 mg of fresh-weight tissue) were flash-
frozen in liquid nitrogen immediately after harvest and stored at
−80 °C until use. The latter frozen leaf samples were ground in a
Tissue Lyzer II for 3 min at 30 Hz, and metabolites were extracted
by addition of 1 ml of 80% methanol and 1 hour of shaking at 1000
rpm at 4 °C and further kept with a gentle agitation overnight at 4°C.
Samples were lastly centrifuged for 10 min at 14,000g, and the re-
sulting supernatants were transferred into glass vials. Root samples
referred to the complete root system of about 8-week-old plants.
After soil removal, roots were rinsed in water, gently dried with
paper towels, and flash-frozen in liquid nitrogen. Root samples
were homogenized in a Tissue Lyzer II for 4 min at 30 Hz. Metab-
olite extraction was conducted as above described from 200 to 400
mg of root material (primary, secondary, and tertiary roots). Flower
calyces were collected from about 8-week-old plants and processed
for metabolite extraction using above leaf metabolite extraction
conditions. To obtain leaf exudates enriched into semipolar to
apolar surface metabolites, fully elongated leaves were briefly
rinsed with acetonitrile. These exudates were filtered on filter
paper and completely dried under reduced pressure. Dried residues
were then redissolved in methanol, and total metabolite concentra-
tion was adjusted to 1 mg/ml, except for N. repanda, N. stocktonii,
and N. nesophila exudates that were diluted to 0.001 and 0.1 mg/ml
(see table S1) to avoid detector saturation, due to the high levels of
NANNs in these samples. Peaks areas were corrected by corre-
sponding dilution factors.

UPLC-QTOF MS chromatographic conditions
Methanolic extracts were analyzed using ultrahigh-pressure liquid
chromatography coupled to high-resolution MS on an UltiMate
3000 system (Thermo Fisher Scientific) coupled to an Impact II
(Bruker) QTOF spectrometer. Chromatographic separation was
performed on an Acquity UPLC BEH C18 column (2.1 × 100
mm, 1.7 μm; Waters) equipped with an Acquity UPLC BEH C18
precolumn (2.1 × 5 mm, 1.7 μm; Waters) and using a gradient of
solvents A (water, 0.1% acetonitrile, and 0.05% formic acid) and
B (acetonitrile and 0.05% formic acid). Chromatography was
carried out at 35°C with a flux of 0.4 ml/min, starting with 10% B
for 3 min and reaching successively 20% B at 12 min, 35% B at 17
min, 40% B at 23 min, 45% B at 25 min, 50% B at 30 min, and 95% B
at 40 min, holding 95% for 5 min and coming back to the initial
condition of 10% B in 3 min. These chromatographic conditions
(total running time of 48 min) were previously optimized for the
comparative metabolomics of methanolic extracts of Solanaceae
species in one of our previous studies (6). Samples were kept at
4°C during the sequence of injections, and 5 μl per sample was in-
jected in full-loop mode with a washing step after sample injection
involving 150 μl of the wash solution (water:methanol, 80:20, v/v).

Conditions for data-dependent acquisition MS/MS data
collection during UPLC-QTOF MS analysis
The Impact II QTOF instrument was equipped with an ESI source
and operated in positive ionization mode on a 50- to 1500-Da mass
range with a spectrum rate of 5 Hz and by further using the
AutoMS/MS fragmentation mode. The end plate offset was set at
500 V, capillary voltage at 4500 V, nebulizer at 2 bar, dry gas at 10

liters/min, and dry temperature at 200°C. The transfer time was set
at 60 to 70 μs and MS/MS collision energy at 80 to 120% with a
timing of 50 to 50% for both parameters. The MS/MS cycle time
was set to 2 s; absolute threshold was set to 31 counts per second
(cts); active exclusion was used with an exclusion threshold at
three spectra, released after 1 min; and an ion was reconsidered as
precursor for the fragmentation if the ratio current intensity/previ-
ous intensity was higher than 5. MS/MS collision energy was set ac-
cording to the mass from 25 V for a mass of 100 Da to 50 V for a
mass of 1500 Da. The MS/MS spectrum acquisition rate was further
optimized, from 3 to 7 Hz, according to the intensity of the observed
mass. A calibration segment was included at the beginning of the
runs allowing the injection of a calibration solution from 0.05 to
0.25 min. The calibration solution used was a fresh mix of 50 ml
isopropanol:water (50:50, v/v), 500 μl of 1 M NaOH, 75 μl of
acetic acid, and 25 μl of formic acid. The spectrometer was calibrat-
ed on the [M+H]+ form of reference ions (57 masses from m/z
22.9892 to m/z 990.9196) in high precision calibration mode with
an SD below 1 part per million (ppm) before injections, and recal-
ibration of each raw data was performed after injection using the
calibration segment.

Ultrahigh-resolution MS imaging data acquisition and
processing
Freshly collected rosette leaves of N. nesophila were embedded into
M-1 embedding matrix (Thermo Fisher Scientific) and frozen
before cutting. Cuts were done on a transverse plane at 25 μm in
thickness and −15°C using a cryotome FSE. Sections were deposited
on indium-tin-oxide–coated slides and sprayed with a-cyano-4-hy-
droxycinnamic acid (HCCA) matrix at 10 mg/ml in 70% acetoni-
trile (ACN) and 0.1% trifluoroacetic acid using the HTX M5
sprayer. Nozzle temperature was set at 75°C, flow rate at 0.120 ml/
min, velocity at 1200 mm/min, pressure at 10 psi, gas flow rate at 3
liters/min, and nozzle height at 40 mm. Four passes were applied
with a track spacing of 3 mm and a HH pattern.

Samples were analyzed with a Burker SolariX 7 T Fourier trans-
form ion cyclotron mass spectrometer at resolving power R =
120,000 at m/z = 400. Acquisition was performed in positive ion
mode on a 100 to 500 m/z mass range, with an accumulation of
0.020 s, the transfer optics time-of-flight set at 0.600 ms, frequency
at 6 Hz, and radio frequency amplitude at 350 Vpp. The MALDI
plate offset was set at 100 V, deflector plate at 200 V, laser power
at 20%, laser shots at 100, and frequency at 1000 Hz with a small
laser focus. The instrument was calibrated by multipoint correction
using the peaks of the HCCA matrix (m/z = 379.0924, 399.0377,
401.0744, and 417.0483). The regions of interest were determined
in FlexImaging with a raster width of 50 μm. Images of the ions
of interest ± 3 ppm were displayed in MSiReader v1.03 (68). The
data were submitted to METASPACE and are available at https://
metaspace2020.eu/project/nicotiana_msi-2022.

Feature-based molecular networking of UPLC-QTOF
MS data
Raw data were converted to the .mzML format using MSConvert
(version 3.0.21112-b41ef0ad4) (69). The resulting data files were
then processed with the Batch Mode (see “Code availability”
section, script S10) of MZMine 2.53 (70) and exported for FBMN
analysis in the GNPS environment (18, 19) and for spectral analyses
in Sirius. The resulting .mgf and .csv files were further filtered to
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exclude redundant nonbiologically informative MS/MS features
using developed Python scripts S11 and S12 (see “Code availability”
section). The m/z signals that appear >5 times (±3 ppm) with a re-
tention time coefficient of variation greater than 10% were discard-
ed. This filtering step excluded 11,580 features (of a total of 29,481
retrieved from the MZMine-based processing), a vast majority of
those corresponded to redundant features detected at high level in
solvent blanks. Last, FBMN was performed using the modified
cosine as spectral similarity metric and with standard settings
(version release_28.2, except lower precursor and fragment toler-
ance of 0.005 Da). Output of the FBMN analysis is available on
GNPS at the following link: https://gnps.ucsd.edu/ProteoSAFe/
status.jsp?task=cf822b6c7c914206941bb0b6007e7eb0.

MS/MS elemental formula and compound class predictions
with Sirius
Sirius (version 4.8.2) was used to predict elemental formulas for
MS/MS precursors and for the deep neural network–based com-
pound class prediction as part of the CANOPUS pipeline (20, 21).
Sirius commands are summarized as part of script S13 (see “Code
availability” section). Elemental formulas by Sirius were further
processed with scripts S14 and S15 (see “Code availability”
section) to restore feature IDs and calculate the degree of unsatura-
tion of these formulas. A main strength of CANOPUS-based class
prediction is that it does not involve the interrogations of spectral
libraries with fragmentation spectra, thereby allowing class predic-
tion of MS/MS features for which no database hit is retrieved and
circumventing the possible issue of error propagation when false
class prediction is obtained by FBMN network-level propagation
from feature-derived database hits. MS/MS feature-level ontologies
were retrieved from CANOPUS predictions as well as FBMN
network-propagated superclass, subclass, and most specific class
ontologies. The latter ontology propagation was implemented
using script S19.

Mass motif inference by MS2LDA
Mass motifs were inferred using standard settings of MS2LDA
(version release_23.1) (22), submitted through the GNPS workflow
(available at https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=
6f325f462e1145bfb465c679c2ee17d6). A total of 609 motifs were as-
signed including already existing motifs from motifdb. To explore
mass motifs assignments on a species level, a binary mass motif
matrix for all tissues was created by setting features above peak
area of 10,000 to the value of 1 and those below to 0 (script S17).
The resulting matrix was combined, and presence was summed
per tissue and then set again into a binary matrix. Following this
binary transposition of motif distributions, feature presence per
motif was determined per species, resulting in a motif count table
(script S18). This set of mass motif counts (after filtering and
manual curation 76 motifs) was then normalized by motif ID and
clustered by hierarchical clustering using the Ward clustering
method implemented in MetaboAnalyst (71).

MS/MS annotation based on spectral database
interrogations
We implemented a three-pronged approach to annotating MS/MS
from the interrogation of experimental and in silico fragmentation
databases, similar as proposed in Sumner et al. (41). Level 1 in our
priority assignment of annotations corresponded to hits retrieved

from experimental spectral databases and/or NMR structural con-
firmation. Highest priority within level 1 of annotated spectra (level
1a) was given to hits confirmed by NMR in this work. Level 1b an-
notations correspond to hits from spectral alignments (and corre-
spondence of precursor m/z values) using a local MatchMS (score
above 0.65 and >6 matching peaks) implementation (script S8, see
“Code availability” section) with the modified cosine score, from an
in house high-resolution experimental MS/MS spectra database of
N. attenuata SMs and/or manual inspection of spectra. Level 2 cor-
responded in our annotation approach to hits retrieved, with the
cosine score from high-resolution MS/MS spectra of the GNPS da-
tabase. Level 3 annotations were considered for hits from align-
ments with in silico MS/MS spectra or in the case of network
propagation of hits from the experimental databases, both after
manual inspection. Jobs for the recently developed molDiscovery
approach (version 1.0.0) (24) were submitted through GNPS with
both the molDiscovery built-in library and the Jassbi compound da-
tabase created as part of this study. The Jassbi compound database
(429 structures) was compiled from structures extracted from a
recent Nicotiana phytochemistry review (32). In silico MS/MS
spectra for the Jassbi compound database were also produced
with the fragmentation tool CFM-predict 4.0 (23) (script S5, see
“Code availability” section) database searching was performed
with MatchMS (72) (script S9).

Consensus substructure and molecular network
chemical classes
We implemented an algorithmic approach to deal with the high
number of annotations retrieved from the various in silico MS/
MS spectral databases. To this end, we used annotations retrieved
form Sirius (confidence score above 0.65), 1M-DB searched with
modified cosine (score above 0.5 and 5 matching peaks), 1M-DB
searched with spec2vec (score above 0.5), Jassbi-CFM (score
above 0.5 and 5 matching peaks), and Jassbi-molDiscovery. These
annotations were retrieved at the molecular network or at the
MS2LDA mass motif level to calculate consensus substructures
for a given network (NCS) or mass motif (MCS). Main steps in-
volved in consensus substructure calculations involved the follow-
ing commands (scripts S16 and S19, see “Code availability” section):
(i) fragment structures, (ii) get the most common fragments, (iii)
select the top 50 and only keep the ones with >12 atoms, (iv)
cluster by structural similarity, (v) sort by cluster size, (vi) calculate
the maximum common substructure within the cluster, and (vii)
retrieve the top 4 results.

To harness the vast amount of structural information classified
by molecular networking, we selected the top 252 networks sorted
by only picking networks containing >10 nodes. The peak areas
within these networks were summed with script S24. Peak areas
were normalized (Excel’s STANDARDIZE function) by cluster
ID, and the maximum on tissue level per species was kept. The
propagated CANOPUS classes were grouped their peak areas
summed (script S28), and the resulting data were used to create
per species treemaps in Excel. A summary of the top 252 molecular
networks, their calculated consensus substructures, and their prop-
agated CANOPUS classes can be found in data S3. In addition, data
S4 and S7 allow the navigation of this multilevel information at mass
motif and network levels.
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Computing MS/MS-informed phylometabolomics
species trees
To create MS/MS similarity-based species, referred to in Results as
phylometabolomic trees, we used the data compiled as mentioned
above (script S24) (Fig. 2A) or the data from the motif count (script
S18) (fig. S9) to calculate the Euclidean pairwise distances between
species’ metabolomes (script S20). The resulting matrix was then
used to plot trees in R with the APE package using the neighbor-
joining algorithm and bootstrapping 999 with iterations
(script S21).

ASR for the relative occurrence of NANNs
We adapted the concept of ASR classically used for the evolutionary
analysis of quantitative phenotypic traits for the exploration of
NANNs’ relative occurrence. To this end, we first constructed a
phylogenetic tree of the focal Nicotiana species–based sequences
of thematK gene obtained from a previous study (73), the sequence
ofNicotiana maritmawas used to account forNicotianawuttkei po-
sition within the species tree due to unavailable genome data for the
latter species. Laskowska and Berbec (74) previously suggested the
very close relationship between the latter two species and reported
their successful hybridization in the wild. Nicotiana setchelli matK
gene sequence was obtained from the assembly of transcriptomics
data publicly available for National Center for Biotechnology Infor-
mation Sequence Read Archive accession SRR2106530. The species
tree was constructed using NGPhylogeny.fr (75) with default one
click options and the PhyML maximum likelihood method. For
ASR, feature intensities accounting for the species and tissue-wide
NANN diversity were retrieved using the above-described mass
motif characterization approach. ASR was performed with the
MBASR package (76) (script S25) on peak areas of the root that
have been transformed into an ordered trait of five categories
(Fig. 9 and fig. S1).

α-Diversity analysis and CANOPUS class distance
computation
The α-diversity was calculated for each species based on Shannon
entropy (script S29) using the scikit-bio package and sample fea-
tures as operational taxonomical units. The top 252 networks as
mentioned previously were selected their raw peak areas summed
on the basis of propagated CANOPUS classes (script S28) and
then converted to integers; networks without class annotations
were discarded. The vegan packagewas used to perform NMDS, fol-
lowed by the calculation of intrinsic variables (CANOPUS classes)
with 999 permutations (script S30). The resulting vectors were used
to calculate the per species cosine distances (script S31).

Code availability
All scripts used in this study are available on Zenodo, https://doi.
org/10.5281/zenodo.8123590, and at the following GitHub reposi-
tory: https://github.com/volvox292/Nicotiana_metabolomics.
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