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Abstract

While protein engineering, which iteratively optimizes protein fitness by screening the gigantic 

mutational space, is constrained by experimental capacity, various machine learning models 

have substantially expedited protein engineering. Three-dimensional protein structures promise 

further advantages, but their intricate geometric complexity hinders their applications in deep 

mutational screening. Persistent homology, an established algebraic topology tool for protein 

structural complexity reduction, fails to capture the homotopic shape evolution during the filtration 

of a given data. This work introduces a Topology-offered protein Fitness (TopFit) framework to 

complement protein sequence and structure embeddings. Equipped with an ensemble regression 

strategy, TopFit integrates the persistent spectral theory, a new topological Laplacian, and two 

auxiliary sequence embeddings to capture mutation-induced topological invariant, shape evolution, 

and sequence disparity in the protein fitness landscape. The performance of TopFit is assessed 

by 34 benchmark datasets with 128,634 variants, involving a vast variety of protein structure 

acquisition modalities and training set size variations.

1 Introduction

Protein engineering aims to design or discover proteins with desirable functions, such as 

improving the phenotype of living organisms, enhancing enzyme catalysis, and boosting 

antibody efficacy [1]. Traditional protein engineering approaches, including directed 

evolution [2] and rational design [3], resort to experimentally screening an astronomically 

large mutational space, which is both expensive and time-consuming. As a result, only 

a small fraction of the mutational space can be explored even with high-throughput 

screenings. Recently, data-driven machine learning models have been developed to reduce 

the cost and expedite the process of protein engineering by establishing the protein-to-fitness 

map (i.e., fitness landscape) from sparsely sampled experimental data [4, 5].
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The most successful machine learning models for the protein fitness landscape are based 

on protein sequences using self-supervised models. There are two major types of self-

supervised deep protein language models, i.e., local evolutionary ones and global ones. 

The former infers mutational effects by utilizing homologs from the multiple sequence 

alignment (MSA) [6] to model the mutational distribution of a target protein, such as Potts 

models [7], variational autoencoders (VAEs) [8, 9], and MSA Transformer [10]. Global 

evolutionary models learn from large sequence databases such as UniProt [11] to infer 

natural selection paths. Natural language processing (NLP) models have been adopted for 

extracting protein sequence information. For examples, tasks assessing protein embeddings 

(TAPE) [12] constructed three models, including Transformer, dilated residual network 

(ResNet), and long short-term memory (LSTM) architectures. Bepler [13] and UniRep [14] 

are two LSTM-based models. Recently, large-scale protein Transformer models trained 

on hundreds of millions of sequences exhibit advanced performance in modeling protein 

properties, such as evolutionary scale modeling (ESM) [15] and ProtTrans [16] models. In 

addition, the hybrid fine-tune approaches combining both local and evolutionary data can 

further improve the models. For examples, eUniRep is a fine-tuned LSTM-based UniRep 

model by learning from local MSAs [17]. The ESM model can be fine-tuned using either 

training data from downstream tasks [15] or local MSAs [18]. The Transformer-based 

Tranception score mutations via not only a global auto-regressive inference, but also a local 

retrieval inference utilizing MSAs [19]. One usage of evolutionary models is to generate 

the latent space representation for building downstream fitness regression model [4]. The 

other is to generate a probability density to evaluate the likelihood that a given mutation 

occurs [20]. Such a probability likelihood, referred to as evolutionary score or zero-shot 

prediction, predicts the relative fitness of protein variants of interest in an unsupervised 

approach without requirement of supervised label acquisition. The recent integration of local 

and global evolutionary models [21] and the combination between evolutionary score and 

sequence embedding [20] discovered the complementary roles of various sequence modeling 

approaches in building accurate fitness predictors.

Alternatively, three-dimensional (3D) structure or geometry-based models have also played 

an important role in predicting protein fitness landscape [22]. They offer somewhat more 

comprehensive and explicit descriptions of the biophysical properties of a protein and its 

fitness. With in-depth physical chemical knowledge, biophysical models such as FoldX [23] 

and Rosetta [24] are widely used to analyze protein fitness from its structure. However, the 

intricate structural complexity of biomolecules hinders the application of the first principle, 

such as quantum mechanics, to excessively deep mutational screening and thus, the most 

successful methods rely on their effective reduction of biomolecular structural complexity.

Topology concerns the invariant properties of a geometric object under continuous 

deformations (e.g., filtration). Topological data analysis (TDA) offers an effective 

abstraction of geometric and structural complexity [25, 26]. Persistent homology, a main 

workhorse of TDA, was integrated with machine learning models to reduce the structural 

complexity in drug designs [27], and protein-protein interactions [28]. Filtration of a 

given point cloud may induce both homotopic shape evolution and changes in topological 

invariants, which allow multiscale analysis from TDA. However, persistent homology 

only captures changes of topological invariants and is insensitive to the homotopic shape 

Qiu and Wei Page 2

Nat Comput Sci. Author manuscript; available in PMC 2023 August 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



evolution. The persistent spectral theory (PST), a multiscale topological Laplacian, was 

designed to overcome this drawback [29]. PST fully recovers the topological invariants in its 

harmonic spectra and captures the homotopic shape evolution of data during the multiscale 

analysis [29, 30]. Its advantages for drug design have been confirmed [31].

In this work, we introduce a PST-based topological machine learning model, called 

Topology-offered protein Fitness (TopFit), to navigate the protein fitness landscape. We 

demonstrate that the machine learning models with the PST embedding show substantial 

improvement over those with sequence-based approaches. On the other hand, the PST-based 

models require high-quality structures, whereas sequence-based models can deal with 

more general cases without resorting to 3D structures. These two approaches naturally 

complement each other in machine learning-assisted protein engineering. To further 

extend the potential of the topology-based methods, we combine 18 regression models 

into an ensemble regressor to ensure robust and accurate predictions over a variety of 

protein engineering scenarios, ranging from small training sets, imperfect structures, and 

varying experimental modalities, noisy data, etc. TopFit integrates complementary structure-

sequence embeddings and ensemble regressor to achieve better performance over existing 

methods on 34 deep mutational scanning (DMS) datasets.

2 Results

2.1 Overview of TopFit

TopFit infers fitness landscape, a function that maps proteins to their fitness, from a 

small number of labeled data. Our framework consists of two embedding modules, i.e., 

topological structure-based and residue sequence-based embeddings, and an ensemble 

regressor weighting many supervised learning models (Figure 1).

In topological structure-based embedding, PST [29] is employed to generate protein 

structure-based embedding. A structure optimization protocol generates and optimizes both 

wildtype and mutational structures (Methods). PST assesses the mutation-induced local 

structure changes near the mutational sites (Figure 1a). Mathematically, PST constructs 

a family of topological Laplacians via filtration, which delineates interatomic interacting 

patterns at various characteristic scales. The topological persistence [30] and homotopic 

shape evolution of the local structure during filtration can be assessed from harmonic and 

non-harmonic spectra of the Laplacians (i.e., zero- and non-zero-eigenvalues), respectively 

(Figure 1a). The site- and element-specific strategies are further introduced in assisting PST 

to capture critical relevant biological information, such as hydrogen bonds, electrostatics, 

hydrophobicity, etc. (Methods). PST embeddings are generated on each pair of atoms for 

both local wild-type and mutant structures, and they are concatenated for downstream 

supervised models (Methods).

In sequence-based embedding, both protein sequences and evolutionary scores can be 

utilized (Figure 1b). We tested 9 sequence embedding methods and 5 evolutionary scores. 

Among them, the top-performing sequence embedding and evolutionary score are adopted in 

TopFit.
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Features from two embedding modules are concatenated and fed into the downstream 

ensemble regression to predict the protein fitness landscape. In particular, we combined 

PST embedding, one sequence-based embedding, and one evolutionary score to build 

TopFit. In protein engineering, the number of experimental labeled data is typically small 

(i.e., 101 ∼ 102) and accumulated at each round of screening. We utilize an ensemble 

regression model to provide a unified model with high accuracy and strong generalization 

for various sizes of training data. From a pool of multiple regressors, hyperparameters for 

individual regressors were first optimized by Bayesian optimization, and predictions from 

top N models were averaged (i.e., consensus) for fitness predictions [32]. Specifically, we 

employed 18 regressors of three major types: artificial neural networks (ANNs), kernel 

models and tree models (Figure 1c, Methods, and Supplementary Table 1). Since the 

evolutionary scores contain relatively higher-level features than embeddings do, we treated 

them differently in ANNs and ridge regression to enhance their weights over other features 

(Methods). When multiple structures (e.g., nuclear magnetic resonance (NMR) structure) 

are available for the same target protein, the ensemble regression can further average the 

predictions from individual structures to improve accuracy and robustness.

2.2 PST for delineating protein mutational atlas

Persistent homology [25, 26] has been widely applied to analyze the topology of point cloud 

data. However, it is not sensitive to homotopic shape evolution of data given by filtration. 

Recently, PST was proposed to reveal the homotopic shape evolution of data (Figure 2) [29]. 

Here we briefly introduce and compare these two topological methods.

Atoms in a protein structure are described as a set of point cloud (Figure 2a). Simplicial 

complex glues a set of interacting nodes, called simplexes (Figure 2b), to construct a shape 

realization of the point cloud. A simplicial complex can be built from the intersection pattern 

defined by fixed-radius balls centered at the sample points. Čech complex, Rips complex, 

and alpha complex are commonly used to construct simplicial complexes [25]. The filtration 

process creates a family of simplicial complexes by continuously growing radii of balls to 

establish a multiscale analysis (Figure 2c).

Persistent homology is a popular approach for analyzing the family of simplicial complexes 

obtained from filtration. For an individual simplicial complex, topological invariants, i.e., 

Betti numbers, are calculated as the rank of the homology group. In particular, Betti-0, 

Betti-1, and Betti-2 describe numbers of independent components, rings, and cavities, 

respectively. Persistent homology analyzes the family of simplicial complexes and tracks 

the persistence of topological invariants, visualized by persistent barcodes [25]. The number 

of k-th Betti bars at a fixed filtration parameter is the Betti-k for the corresponding simplicial 

complex (Figure 2d). Persistent homology only captures topological changes while failing 

to detect homotopic geometric changes. For example, two middle patterns in Figure 2c are 

topologically equivalent (i.e., no change in Figure 2d) but have different geometric shapes.

Alternatively, the topology of point cloud data can be described by combinatorial Laplacians 

[33], one kind of topological Laplacians. Loosely speaking, the 0-combinatorial Laplacian, 

L0, is a graph Laplacian that describes the pairwise interactions (i.e., edges, 1-simplexes) 

among vertices (0-simplexes) [34, 35]. The high-dimensional k-combinatorial Laplacian, Lk, 
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describes interactions among high-dimensional components (i.e., k-simplexes) upon their 

adjacency associated with lower- and higher-dimensional simplexes (Methods). According 

to the combinatorial Hodge theorem [36], the topological connectivity (or invariant) 

described by the combinatorial Laplacian is revealed by its kernel space or the harmonic 

spectra (i.e., zero eigenvalues), whereas the non-harmonic spectra, such as the Fiedler 

value (i.e., smallest non-zero eigenvalue), describes the so-called algebraic connectivity 

and homotopic shape information. Nonetheless, like homology, combinatorial Laplacian has 

limited descriptive power for complex data. We introduced PST to construct multiscale 

topological Laplacians [29]. Specifically, we used filtration to create a family of simplicial 

complexes at various scales and study their topological and geometric properties from a 

series of spectra of combinatorial Laplacians. PST not only recovers the full topological 

persistence of the persistent homology [30] but also deciphers the homotopic shape 

evolution of data. As shown in Figure 2e, the number of harmonic zero eigenvalues are 

always the same as the number of persistent barcodes in Figure 2d. And the non-harmonic 

spectra reveal both topological changes and the homotopic shape evolution when there were 

no topological changes (Figure 2e). PST comprehensively characterizes the geometry of an 

object from a family of frequencies manifesting evolving shapes induced by the filtration of 

data, which provides another illustration of the famous question: “Can one hear the shape of 

a drum?”, raised by Mark Kac [37].

2.3 Protein fitness benchmark overview

We compared the performance of machine learning models built on various featurization 

strategies. We benchmarked 2 topological structure-based embeddings, 9 sequence-based 

embeddings, and 5 evolutionary density scores on 34 benchmark deep DMS datasets across 

27 proteins. In addition, TopFit was benchmarked which integrates one PST embedding, one 

sequence-based embedding, and one evolutionary score in its concatenated feature library. 

Three-dimensional structures of the target protein at the domain of interest were obtained 

from PDB [22], or AlphaFold [38]. X-ray structures are selected with the highest priority. 

Otherwise, NMR, cryo-EM (EM) or AlphaFold (AF) structures are employed depending on 

their availability and quality (Methods). For each dataset, 20% of the available labeled data 

are randomly selected as the testing set in each run. The training set is randomly sampled 

within the remaining 80% data. We are particularly interested in small training data to mimic 

the circumstances in protein engineering. The fixed number of training data is picked as 

the multiples of 24 ranging from 24 to 240 to mimic the smallest 24-well experimental 

assay. Low-N is referred to extremely small 24 training data. In addition, we also tested 

80/20 train/test split and five-fold cross-validation to have direct comparisons with other 

methods. To ensure reproducibility, 20 independent repeats are performed for the fixed size 

of training data, and 10 independent repeats are performed for five-fold cross-validation or 

80/20 train/test split.

The computational predictions of mutational effects are typically employed to rank and 

prioritize candidate proteins for experimental screening in the next round. The primary goal 

is to assess the ranking quality of protein fitness. The Spearman rank correlation (ρ) [7, 8, 

39, 21, 20, 17, 18] and the normalized discounted cumulative gain (NDCG) [32, 40, 20] 

are two commonly used evaluating metrics in protein engineering (Methods). The Spearman 
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correlation evaluates the overall ranking on all data where the high- and low-fitness proteins 

contribute equally. In contrast, NDCG quantifies the ranking quality with a higher weight 

on the high-fitness proteins. This may be more useful for the greedy search in selecting top 

samples. Since the specific fitness is not available for the unsupervised evolutionary models, 

a high-quality evolutionary scores can either positively or negatively rank the fitness. Indeed, 

absolute values of these quantities are used to evaluate evolutionary scores.

2.4 Comparing PST embedding with sequence-based embedding

Here we compared various embeddings in building up machine learning models over 34 

datasets. Results evaluated by Spearman correlation were mainly reported in this section 

(Figure 3, Extended Data Figures 1–3). Similar results evaluated by NDCG were also 

provided (Extend Data Figures 1, 4, 5).

For topological structure-based embeddings, the PST embedding outperforms persistent 

homology embedding on nearly all datasets for any size of training data (Extended Data 

Figure 2). PST achieves a higher average Spearman correlation than persistent homology 

does (Figure 3a). This indicates the inclusion of non-harmonic spectra from PST provides 

critical homotopic shape information in learning fitness landscape.

Comparisons of sequence-based embeddings were discussed in Supplementary Note 1. 

Overall, ESM achieves the best average performance for large training data with over 168 

data, and eUniRep and TAPE LSTM achieve the best average performance for small training 

data. Comparisons of evolutionary scores were discussed in Supplementary Note 2. Overall, 

DeepSequence VAE [8] achieves the best average performance on 34 datasets (Figure 3a) 

and it ranks as the best model on a majority of datasets (21/34).

Comparing all embedding methods, the topological structure-based PST embedding 

achieves the best average Spearman correlation over 34 datasets for any size of training 

data. It outperforms the best sequence-based for training data size Ntrain = 24, 96, 168, and 

240 with average differences ∆ρ = 0.02, 0.02, 0.03, and 0.03, and p-values from one-sided 

Mann-Whitney U test 5 × 10−3, 2 × 10−5, 3 × 10−8, and 4 × 10−8, respectively. PST always 

ranks most frequently as the best model over 34 datasets (Figure 3b, Extended Data Figure 

3b). Categorized datasets by their taxonomy, PST shows improvement over sequence-based 

embeddings on eukaryote and prokaryote datasets, but no clear improvement is observed on 

human datasets (Supplementary Figure 1).

2.5 Impact of structural data quality on PST-based model

PST extracts explicit biochemical information from three-dimensional structures that is 

correlated to protein fitness. While sequence-based embeddings may provide less precise 

information by encoding them indirectly by learning from a large sequence database. It 

is important to understand the potential limitations of PST embedding. It is intuitive that 

the performance of the PST-based model may depend on the quality of structural data. 

Percentage of random coils in a target protein is a quantity for structural data quality, 

where the appearance of random coils, an unstable form of secondary structures, reduces the 

overall quality of the structure data. Whether PST embedding achieves the most accurate 

performance is correlated with the percentages of random coils (Figure 3c). Another 
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quantity for structure data quality is B-factor which quantifies the atomic displacement in 

X-ray structures, and it similarly affects PST performance (Extended Data Figure 6).

2.6 Impact of ensemble regression on model generalization

In protein engineering, labeled data are iteratively collected from experiments, resulting in 

tens or hundreds of training data. The ensemble regression by weighting top-performing 

models has the adaptivity to various sizes of training data in a single model. We discuss the 

advantages of ensemble strategy to enhance the model accuracy, robustness, adaptivity, and 

scalability.

The ensemble strategy improves model accuracy (Figure 3d). It outperforms ridge 

regression on 33/34 datasets with Ntrain = 240 (Supplementary Figure 4), while the only 

underperforming Calmodulin-1 dataset exhibits poor performance ρ < 0.15 for both methods 

(Extended Data Figure 2). The ensemble of single class of models show slightly lower 

Spearman correlation than the full ensemble model, except the low-N case (Figure 3d and 

Supplementary Figure 3).

We further performed analysis on the frequency of top-performing model occurrence in the 

ensemble to demonstrate the adaptivity and scalability of the ensemble regression. Kernel 

models with a relatively weak fitting ability may be more suitable for small training data 

to prevent overfitting. ANN models with powerful universal approximation ability may 

be more accurate with sufficient training data. The tree-based models avoid overfitting by 

selecting useful features from the tree hierarchy independent of training data size. As results, 

as the training data increases, kernel models have initial large and decreasing occurrence, 

ANN models have opposite observations to kernel models, and the occurrence of tree-based 

models remains stationary (Figure 3e and Extended Data Figure 7).

The ensemble strategy can also be used by averaging the predictions from multiple 

structures to enhance the robustness against the uncertainty from structure data. The 

ensemble treatment on multiple NMR models improves the predictions from single NMR 

model (Supplementary Figure 5). But the ensemble requires much higher computational 

costs, which are proportional to the number of structures.

2.7 TopFit for navigating fitness landscape

Among PST embedding, sequence-based embedding and evolutionary scores, we showed at 

least one strategy can provide accurate predictions regardless of the quality of structural data 

and the number of training data. TopFit combines these three complementary strategies in 

navigating the fitness landscape.

We first built TopFit using the PST embedding, aided with DeepSequence VAE evolutionary 

score and ESM embedding. With 240 training data, TopFit outperforms DeepSequence 

VAE score, ESM embedding, and PST embedding on the majority of datasets with median 

differences in Spearman correlation of ∆ρ = 0.087, 0.083, and 0.062, respectively (Figure 

4a–b). Similar observations were found for TopFit using PST embedding, aided with VAE 

score and eUniRep embedding (Extended Data Figure 8). The concatenated featurization 

endows TopFit advantages over other embedding strategies on most datasets regardless of 

Qiu and Wei Page 7

Nat Comput Sci. Author manuscript; available in PMC 2023 August 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



training data sizes (Extended Data Figures 9–10). An exception is that VAE is more accurate 

for the low-N case. Similarly, the concatenated features augmented with other evolutionary 

scores also achieve substantial improvement (Supplementary Figures 6–7).

Furthermore, we carried out an extrapolation task where the model trained on single-

mutation variants is used to navigate datasets including multiple-mutational variants for 

avGFP [41] and GB1 [42] datasets. Interestingly, we employed ridge regression due to its 

better performance than ensemble regression for extrapolation (Supplementary Figure 8). 

PST embedding achieves the best performance over other sequence-based embeddings in 

both datasets. TopFit further improves the performance robustness (Figure 4c). An exception 

was found on the GB1 where inclusion of poorly performing eUniRep embedding and VAE 

score underperforms PST embedding alone (Figure 4c).

Next, we compared TopFit with two existing regression models for fitness predictions 

(Figure 5). One is the augmented VAE model which is the best reported model combining 

sequence embedding and evolutionary score [20]. The other is the ECNet which combines 

both local and global evolutionary embeddings [21]. TopFit for comparisons uses PST 

embedding aided with VAE score and ESM embedding. Due to the high computational costs 

for the large training data size (i.e., 80/20 train/test split and five-fold cross validation), we 

only carry out TopFit on 27 single-mutation datasets using X-ray or AlphaFold structures. 

For low-N case, the augmented VAE model outperforms TopFit on 33/34 datasets by largely 

retaining accuracy from VAE. When more training data is available, TopFit becomes more 

accurate, where it outperforms the augmented VAE model in at least 19/34 datasets. For the 

80/20 train/test split, TopFit completely outperforms the augmented VAE model on 25/27 

datasets, and the average difference on Spearman for the rest of the two underperforming 

sets is relatively low (Supplementary Tables 4–5). Compared to ECNet, TopFit again 

shows the better performance on 25/27 datasets. Underperforming TopFit on Thiamin 

pyrophosphokinase dataset shows a relatively low average margin with ECNet ∆ρ = −0.012. 

The other underperforming dataset is Levoglucosan kinase with a relatively large average 

margin ∆ρ = −0.048 (Supplementary Tables 4–5). Interestingly, TopFit outperforms ECNet 

on a dataset generated from identical experiments using a similar but stabilized protein 

(i.e., Levoglucosan kinase (stabilized)). A trade-off between thermal stability and catalytic 

efficiency was discovered [43], and the unstablized dataset is more difficult to be predicted 

for all methods (Extended Data Figure 2). The quality of structure data is more sensitive 

to thermal stability than sequence data which leading to the outperformance of TopFit over 

ECNet on the stablized set and underperformance on the unstablized set.

3 Discussions

Protein structures are intricate, diverse, variable, and adaptive to the interactive environment 

and thus are elusive to an appropriate theoretical description in deep mutational screening. 

PST improves persistent homology in offering ultimate abstraction of geometric and 

structural complexity of proteins. Our PST embedding for dimension 0 have relatively 

high dimension to provide the most critical information with basic connectivity between 

vertices. For dimensions 1 and 2, our PST embedding are relatively crude to retain essential 

information and keep the feature dimension low under the element- and site-specific 
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strategies. The low-dimensional features can better accommodate with machine learning 

models in avoiding overfitting issues for small training data size, as well as reducing 

computational costs. Although the stable representations such as persistent landscape 

[44] and the persistent image [45] for persistent homology, and a potential informative 

representation of non-harmonic persistent spectra may provide more enrich information, 

they typically generate a large number of features (Supplementary Note 6). How to 

handle potential overfitting from these representations in biomolecular systems remains an 

interesting issue. The extraordinary performance of PST in predicting protein fitness opens a 

door for its further applications in a vast variety of interactive biomolecular systems, such as 

drug discovery, antibody design, molecular recognition, etc.

The quality of protein structures largely affects the performance of the PST-based model. 

Recently, AlphaFold structures have become a viable alternative to experimental structural 

data. The AlphaFold structure achieves similar accuracy with single NMR structure, 

while the ensemble techniques using multiple NMR structures improved the performance 

(Supplementary Figure 5). The combination of structure- and sequenced-based embeddings 

gives rise to robust predictions even for low-quality structures. In addition, structure and 

sequence data contain complementary information. PST delineates the specific geometry 

and topology of a mutation, while sequence-based featurization captures the rules of 

evolution from a huge library of sequences. This complementarity is valuable and 

generalizable to a wide variety of other biomolecular problems.

The ensemble of regressors has better generalizability by inheriting advantages from various 

classes of models. With larger training data, the deeper and wider neural networks or more 

sophisticated deep learning architectures such as attention layers [21] and convolution layers 

[32] may further improve the performance. The random split of training and testing sets 

mainly discussed in this work may be more important for late stage of protein engineering 

with sufficient training data. However, the initial stage may require the model generalization 

for extrapolations. One extrapolation task is to predict multiple-mutations from single-

mutation data. A more effective supervised model is under discussion (Supplementary 

Figure 8). Another extrapolation task is to predict mutations at unseen sites. TopFit promises 

limited improvement over evolutionary scores (Supplementary Figure 9–13; Supplementary 

Note 5). In general, predicting out-of-distribution data may violate the nature of supervised 

models, and how to build a more accurate supervised model for this task is interesting. 

Nonetheless, the unsupervised evolutionary scores may be more effective for extrapolation 

at the early protein engineering stage with insufficient training data (i.e. low-N case). In 

practice, the calibration of the balance between exploitation and exploration is essential 

for protein engineering. The commonly used supervised models including TopFit are only 

designed for exploitation. Models such as Gaussian process [46] and hierarchical subspace 

searching strategy [40, 47] may couple with TopFit mixture features to balance this trade-

off.

TopFit provides a general framework to build supervised protein fitness models by 

combining PST structural features with sequence-based features. Arbitrary sequence-based 

embedding and evolutionary scores can be used. TopFit can be continuously improved by 

the quickly evolving state-of-art sequence-based models. In this work, we mainly tested 
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TopFit with single type of score, especially, DeepSequence VAE. Tranception score may 

be more powerful than VAE for datasets with low MSA depths or viral protein datasets 

[19]. The equipment of any evolutionary score can largely enhance model generalization 

and accuracy (Supplementary Figure 6). Interestingly, inclusion of multiple scores can 

promise further improvement (Supplementary Note 3 and Supplementary Figure 7). Even 

more, one may combine multiple structure data for ensemble predictions for improvement 

(Supplementary Figure 5). However, all these approaches grant additional computational 

costs. The combined features tested in this work provide the minimal models that combine 

models built on distinct data resources such as local homologous sequences, large-scale 

sequence data, and three-dimensional structure data.

4 Methods

Datasets

For all DMS datasets, we followed the convention in EVmutation [7] and DeepSequence [8] 

to exclude data with mutational positions not covered by MSA.

The complete GB1 dataset includes almost all single (1045 mutants) and all double 

mutations (535917 mutants) at 55 positions [42]. In this work, we used all single mutations 

and double mutations with high epistasis selected in a previous work (its Supplementary 

Table 2) [48]. The MSA of GB1 covers the last 54 residues, and mutations that include the 

positions outside MSA are excluded. As a result, the GB1 dataset used in this work includes 

2457 mutations.

The avGFP dataset [41] includes 54025 mutations. We followed previous works by picking 

up mutations at positions that have more than 30% gaps in MSA to focus on regions with 

sufficient evolutionary data [20, 17]. Positions 15–150 were selected out of 237 positions, 

resulting in 7775 mutants with numbers of mutations between 1 and 9.

Other 32 datasets were selected from DeepSequence [8]. We searched available three-

dimensional structural data from UniProt [11] and PDB database [22] for each dataset. If a 

PDB entry largely covers the mutational domain, the PDB structure and the corresponding 

dataset would be selected. The full list of datasets can be found in Supplementary Data 1.

Multiple sequence alignments

Multiple sequence alignments search the homologous sequences of the wild-type sequence 

in each DMS dataset. For the 32 DeepSequence datasets, we adopted the MSAs used in 

the original work [8]. MSAs of avGFP were obtained from [20]. The MSAs for GB1 

were generated by EvCoupling server [6] by searching against the UniRep100 database 

with bitscore 0.4, resulting in 387 sequences that cover 54/55 positions. We also explored 

different bitscores for GB1 in the MSA search, but larger bitscore leads to fewer sequences 

and smaller bitscore fail to cover 70% positions of the wild-type sequence.

Sequence-based models

Multiple sequence-based evolutionary models were used in this work to generate sequence 

embeddings or evolutionary scores.
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Constant embedding.—Two constant embeddings, one-hot and Georgiev, were used 

in this work. The one-hot embedding is an uninformative categorical strategy without 

biochemical information. We consider 20 canonical amino acids and a sequence of length 

L is encoded as a 20L vector. Georgiev embedding [49] provides a 19-dimensional 

representation for over 500 physicochemical quantities of amino acid in the AAIndex 

database [50]. A sequence is encoded as a 19L vector.

ESM Transformer—The ESM-1b Transformer [15] is a transformer model [51, 52] that 

learns 250 million sequences using a masked filling procedure. Its architecture contains 34 

layers with 650 million parameters.

The ESM Transformer was used to generate sequence embedding. At each layer, the ESM 

model encodes a sequence with length L into a matrix with dimensions 1280 × L by 

excluding the start and terminal tokens. In this work, we took the sequence representation 

from the final (34-th) layer and average over the axis for sequence length, resulting in a 

1280-component vector.

The ESM transformer was also used to generate evolutionary score to predict fitness. 

Specifically, the difference in conditional log-likelihoods between the mutated amino acids 

and the wild-type amino acids is taken as the evolutionary score. Given a sequence with 

length L, s = s1s2 · · · sL, the masked filling model generates probability distributions for 

amino acids at masked positions. For a masked i-th position residue si, the distribution 

is given by a conditional probability P (si|s(−i)), where s(−i) is the remaining sequence 

excluding the masked i-th position. To reduce the computational cost, the pseudo-log-

likelihoods (PLLs) estimate the exact log-likelihood of a given sequence:

PLL(s) = ∑
i = 1

L
logP si ∣ s( − i) . (1)

The evolutionary score is approximated by the difference of PLLs between wild-type (w) 

and mutant (m) sequences:

PLL(m) − PLL(w) = ∑
i = 1

L
logP mi ∣ m( − i) − logP wi ∣ w( − i)

≈ ∑
i ∈ V ,

V = i ∣ mi ≠ wi

logP mi ∣ m( − i) − logP wi ∣ w( − i) (2)

The evolutionary score can be approximated by the second line in the above equation by 

summing up the difference between mutant and wild-type pseudo-log-likelihoods at mutated 

positions since the PLLs at non-mutated positions have similar values. We conducted this 

approximation followed the previous work [20, 32] to save computational cost.

UniRep and eUniRep.—UniRep [14] is the mLSTM model [53] learns from 27 million 

sequences from UniRef50 data. To adapt the UniRep to specific protein families, the 
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“evo-tuning” procedure is introduced to fine-tune the models using evolutionary sequences 

(i.e. homologous sequences from MSA). The resulting eUniRep [17] model includes more 

specific information for the target sequence.

These mLSTM models can generate a sequence embedding by encoding a sequence into a 

1900 × L matrix using the final hidden layer. The sequence embedding with 1900 dimension 

is obtained by average over the sequence length axis.

In addition, the evolutionary score can be generated. The mLSTM models can also be 

viewed as sequence distribution. The evolutionary score is also given by the log-likelihood. 

Given the first i amino acids of a sequence, the conditional probabilities of the next amino 

acid P (si+1|s1 · · · si) is parametrized by the mLSTM model. The sequence probability is 

given by

P (s) = ∏
i = 1

L
P si + 1 ∣ s1⋯si . (3)

The log likelihood is then taken as the evolutionary score.

In the fine-tune procedure, we followed the protocols and hyperparameters used in the 

previous work [17, 20]. The evolutionary sequences from MSA were split into 80% training 

set and 20% validation set during the fine-tuning. The learning rate is taken as 1 × 10−5 and 

the number of epochs is 10,000. We performed the fine-tuned procedure if the fine-tuned 

model is not performed by previous work [20].

TAPE embedding.—The TAPE models contain multiple pretrained protein language 

models to generate sequence embeddings [12]. Three models were created by TAPE, 

including ResNet [54], Transformer [51, 52], and LSTM [53] models. Two existing 

LSTM-based models, UniRep [14] and Bepler [13], were also implemented. The sequence 

embeddings generated from the latent space representation have dimensions 256, 512, 2048, 

100, and 1900 for ResNet, Transformer, LSTM, Bepler, and UniRep, respectively. Both 

TAPE and the original UniRep implemented the UniRep model. In this work, we only used 

the one from the original implementation.

DeepSequence VAE evolutionary score.—DeepSequence VAE [8] is a variational 

autoencoder model that learns sequence distribution from MSA. Since the log-likelihood 

is intractable, the evidence lower bound (ELBO) is used to estimate the sequence 

log-likelihood to predict the sequence mutational effect. Followed by the original 

DeepSequence, we trained five VAE models with different random seeds and generated 

400 ELBO samples for each model, and the average of all 2000 ELBO samples is used. 

In this work, we only performed DeepSequence on avGFP, GB1, and two BRCA1 datasets. 

Other VAE scores were obtained from data provided in DeepSequence [8].

Tranception evolutionary score.—Tranception [19] is an advanced self-supervised 

transformer-based protein language model with 700 millions parameters that promotes 
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specialization across attention heads for enhanced protein modeling. The pre-trained model 

rank mutations using PLLs followed by the protocol in ESM score (Eq. (5)). Tranception 

employs a special bi-directional scoring to have improvement over the unidirectional 

scoring used in traditional Transformer-based model. It uses training data augmented by 

all sequences and their reverse. The evolutionary score from autoregressive inference mode, 

log PA(s), is obtained by averaging PLL scores for sequences in both forward and reverse 

order. In addition to the global autoregressive score, Tranception further proposed a local 

evolutionary score, retrieval inference, that is based on the empirical distribution of amino 

acids in MSAs. It calculates a local log likelihood, log PR(s), from retrieval inference 

for sequence s. Tranception score includes both global and local scores via a weighted 

geometric average in probability space:

logP (s) = (1 − α)logPA(s) + αlogPR(s), (4)

where α is the retrieval inference weight, and we used α = 0.6 which was reported as the 

optimal value for the validation data. The Tranception work has calculated scores for 32 

datasets used in our work. We calculated the scores for the two BRCA1 datasets for RING 

domain by using the MSAs obtained from the description above.

EVE evolutionary score.—Evolutionary model of variant effect (EVE) is a Bayesian 

variational autoencoder model that is self-trained on MSAs to learn the sequence 

distribution. The ELBO is used to estimate sequence log-likelihood to predict sequence 

mutational effect. We adopted the ensemble EVE scores from Tranception work [19] for 32 

datasets. The scores for the remaining two BRCA1 datasets for RING domain were adopted 

from EVE work [9].

Structural data preparation

The raw wild-type structure data is obtained from the PDB database [22] or AlphaFold [38]. 

VMD removes the water and selects the target chain in the corresponding DMS dataset 

[55]. Jackal package [56], a protein structure modeling tool, is used to optimize wild-type 

structures and generate mutant structures. The force parameter CHARMM22 is used in this 

work. Missing hydrogen atoms of the raw structure data are added using profix function in 

Jackal [56]:

./profix -fix 0 $pdbfile

where $pdbfile is the file name of the structure data. The raw structure data may have a few 

mutations away from the wild-type sequence. The wild-type structure is generated from the 

raw structure via mutations using scap with fixed backbone:

./scap -ini 20 -min 4 $mutant_list $pdbfile

where $mutant list is the document for mutation information. Then the structure is optimized 

with 20 rounds of side-chain conformations minimization using scap in Jackal [56]:
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./scap -ini 20 -min 4 $pdbfile

From the wild-type structure, each mutant structure in the dataset is obtained from using 

scap with fixed backbone, and further optimized by conformation minimization.

For both wild-type and mutant structures, the local structure are extracted by VMD [55] for 

the preparation of site-specific analysis. Specifically, atoms belong to mutational sites and 

atoms near the mutational sites within distance of 13 Å are selected.

Simplicial complex and chain complex

Graph is a representation for a point cloud consisting of vertices and edges for modeling 

pairwise interactions, such as atoms and bonds in molecules. Simplicial complex, the 

generalization of graph, constructs more enriched shapes to include high dimensional 

objects. A simplicial complex is composed of simplexes up to certain dimensions. A 

k-simplex, σk, is a convex hull of k +1 affinely independent points v0, v1, v2, · · ·, vk:

σk: = v0, v1, v2, ⋯, vk = ∑
i = 0

k
λivi ∑

i = 0

k
λi = 1; λi ∈ [0, 1], ∀i . (5)

In Euclidean space, 0-simplex is a point, 1-simplex is an edge, 2-simplex is a triangle, and 

3-simplex is a tetrahedron. The k-simplex can describe abstract simplex for k > 3.

A subset of the k + 1 vertices of a k-simplex, σk, with m + 1 vertices forming a convex hull 

in a lower dimension and is called an m-face of the k-simplex σm, denoted as σm ⊂ σk. A 

simplicial complex K is a finite collection of simplexes satisfying two conditions:

1. Any face of a simplex in K is also in K.

2. The intersection of any two simplexes in K is either empty or a shared face.

The interactions between two simplexes can be described by adjacency. For example, 

in graph theory, two vertices (0-simplexes) are adjacent if they share a common edge 

(1-simplex). Adjacency for k-simplexes with k > 0 includes both upper and lower adjacency. 

Two distinct k-simplexes, σ1 and σ2, in K are upper adjacent, denoted σ1 ∼U σ2, if both are 

faces of a (k + 1)-simplex in K, called a common upper simplex. Two distinct k-simplexes, 

σ1 and σ2, in K are lower adjacent, denoted σ1 ∼L σ2, if they share a common (k − 

1)-simplex as their face, called a common lower simplex. Either common upper simplex 

or common lower simplex is unique for two upper or lower adjacent simplexes. The upper 

degree of a k-simplex, degU (σk), is the number of (k + 1)-simplexes in K of which σk 

is a face; the lower degree of a k-simplex, degL(σk), is the number of nonempty (k − 

1)-simplexes in K that are faces of σk, which is always k + 1. The degree of k-simplex (k > 
0) is defined as the sum of its upper and lower degree

deg σk = degU σk + degL σk = degU σk + k + 1. (6)
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For k = 0, the degree of a vertex is:

deg σ0 = degU σ0 . (7)

A simplex has orientation determined by the ordering of its vertices, except 0-simplex. 

For example, clockwise and anticlockwise orderings of three vertices determine the two 

orientation of a triangle. Two simplexes, σ1 and σ2, defined on the same vertices are 

similarly oriented if their orderings of vertices differ from an even number of permutations, 

otherwise, they are dissimilarly oriented.

Algebraic topology provides a tool to calculate simplicial complex. A k-chain is a formal 

sum of oriented k-simplexes in K with coefficients on ℤ. The set of all k-chains of simplicial 

complex K together with the addition operation on ℤ constructs a free Abelian group Ck(K), 

called chain group. To link chain groups from different dimensions, the k-boundary operator, 

∂k : Ck(K) → Ck−1(K), maps a k-chain in the form of a linear combination of k-simplexes 

to the same linear combination of the boundaries of the k-simplexes. For a simple example 

where the hain has one oriented k-simplex spanned by k + 1 vertices as defined in Eq. (5), its 

boundary operator is defined as the formal sum of its all (k − 1)-faces:

∂kσk = ∑
i = 0

k
( − 1)iσi

k − 1 = ∑
i = 0

k
( − 1)i v0, ⋯, v i, ⋯, vk , (8)

where σi
k − 1 = v0, ⋯, v i, ⋯, vk  is the (k − 1)-simplex with its vertex vi being removed. The 

most important topological property is that a boundary has no boundary: ∂k−1∂k = ∅.

A sequence of chain groups connected by boundary operators defines the chain complex:

…∂n + 1Cn(K) ∂n Cn − 1(K)∂n − 1… ∂1 C0(K) ∂0 0 . (9)

When n exceeds the dimension of K, Cn(K) is an empty vector space and the corresponding 

boundary operator is a zero map.

Combinatorial Laplacian.

For k-boundary operator ∂k : Ck → Ck−1 in K, let Bk be the matrix representation of 

this operator relative to the standard bases for Ck and Ck−1 in K. Bk ∈ ℤM × N is the 

matrix representation of boundary operator under the standard bases σi
k

i = 1
N  and σj

k − 1
j = 1
M

of Ck and Ck–1. Associated with the boundary operator ∂k, the adjoint boundary operator is 

∂k
* :Ck − 1 Ck, where its matrix representation is the transpose of the matrix, BT , with respect 

to the same ordered bases to the boundary operator.

The k-combinatorial Laplacian, a topological Laplacian, is a linear operator 

Δk:Ck(K) Ck(K)
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Δk: = ∂k + 1 ∂k + 1
* + ∂k

* ∂k, (10)

and its matrix representation, Lk, is given by

Lk = Bk + 1Bk + 1
T + Bk

TBk . (11)

In particular, the 0-combinatorial Laplacian (i.e. graph Laplacian) is given as follows since 

∂0 is an zero map:

L0 = B1B1
T . (12)

The elements of k-combinatorial Laplaicn matrices are

Lk i, j =

deg σi
k ,  if i = j

1,  if i ≠ j, σi
k ≁U σj

k and σi
k

Lσj
k with similar orientation 

−1,  if i ≠ j, σi
k ≁U σj

k and σi
k

Lσj
k with dissimilar orientation 

0,  if i ≠ j,  either σi
k

Uσj
k or σi

k ≁L σj
k .

(13)

For k = 0, the graph Laplacian matrix L0 is

L0 i, j =
deg σi

0 ,  if i = j
−1,  if i ≠ j, σi

0
Uσj

0

0,  otherwise .
(14)

The multiplicity of zero spectra of Lk gives the Betti-k number, according to combinatorial 

Hodge theorem [36]:

βk = dim Lk − rank Lk = null Lk . (15)

The Betti numbers describe topological invariants. Specifically, β0, β1, and β2 may be 

regarded as the numbers of independent components, rings, and cavities, respectively.

Persistent spectral theory (PST)

The PST is facilitated by filtration, which introduces a multiscale analysis of the point 

cloud. The filtration is a family of simplicial complexes, Kt t ∈ ℝ+, parameterized by a single 

parameter t (i.e., the radius of ball in Figure 2c) and ordered by inclusion. There are several 

properties of the family of simplicial complexes:

1. For two values of parameters tʹ < tʺ, we have Kt′ ⊆ Kt″.

2. There are only finite number of shape changes in the filtration. And we can find 

at most n filtration parameters such that
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∅ ⊂
≠

Kt0 ⊂
≠

Kt1 ⊂
≠

⋯ ⊂
≠

Ktn = K, (16)

where K is the largest simplicial complex can be obtained from the filtration. Suppose ti 
is the smallest filtration parameter where we observe the i-th shape changes. Then for any 

filtration parameter t, the simplicial complex is corresponding to one simplicial complex in 

Eq. (16):

Kt =
Kti,  if t ∈ ti − 1, ti , i ≤ n,
Ktn,  if t ∈ tn, ∞ . (17)

There are various simplicial complex that can be used to construct the filtration, such as 

Rips complex, Čech complex, and Alpha complex. For example, the Rips complex of K with 

radius t consists of all simplexes with diameter at most 2t:

V (t) = σ ⊆ K ∣ diam (σ) ≤ 2t . (18)

In the filtration, a family of chain complexes can be constructed:

⋯
∂k + 2

t

∂k + 2
t ∗

Ck + 1
t ∂k + 1

t

∂k + 1
t *

Ck
t ∂k

t

∂k
t ∗

⋯
∂1

t

∂1
t ∗

C0
t ∂0

t

∂0
t ∗

0
t ∈ ℝ+

(19)

where Ck
t = Ck Kt  is the chain group for subcomplex Kt, and its k-boundary operator is 

∂k
t :Ck Kt Ck − 1 Kt . The family of any k-dimensional chain complexes Ck

t
t ∈ ℝ+ has similar 

two properties for the simplicial complexes Kt t ∈ ℝ+ in filtration.

The homotopic shape changes with a small increment of filtration parameter may be subject 

to noise from the data. The persistence may be considered to enhance the robustness when 

calculating the Laplacian. First, we define the p-persistent chain group ℂk
t, p ⊆ Ck

t + p whose 

boundary is in Ck − 1
t :

ℂk
t, p = α ∈ Ck

t + p ∂k
t + p(α) ∈ Ck − 1

t , (20)

where ∂k
t + p :Ck

t + p Ck − 1
t + p is the k-boundary operator for chain group Ck

t + p. Then we can define 

a p-persistent boundary operator, ∂k
t, p, as the restriction of ∂k

t + p on the p-persistent chain group 

ℂk
t, p:

∂k
t, p = ∂k

t + p
ℂk

t, p:ℂk
t, p Ck − 1

t . (21)

Then PST defines a family of p-persistent k-combinatorial Laplacian operators 

Δk
t, p:Ck Kt Ck Kt  [29] which is defined as

Δk
t, p = ∂k + 1

t, p ∂k + 1
t, p * + ∂k

t *∂k
t . (22)
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We denote Bk + 1
t, p  and Bk

t  as the matrix representations for boundary operators ∂k + 1
t, p  and ∂k

t , 

respectively. Then the Laplacian matrix for Δk
t, p is

Lk
t, p = Bk + 1

t, p Bk + 1
t, p T + Bk

t TBk
t . (23)

Since the Laplacian matrix, Lk
t, p, is positive-semidefinite, its spectra are all real and non-

negative

Sk
t, p = Spectra Lk

t, p = λ1 k
t, p, λ2 k

t, p, ⋯, λN k
t, p , (24)

where N is the dimension of a standard basis for Ck
t , and Lk

t, p has dimension N ×N. The 

k-persistent Betti number βk
t, p can be obtained from the multiplicity of harmonic spectra of 

Lk
t, p:

βk
t, p = dim Lk

t, p − rank Lk
t, p = null Lk

t, p = # i λi k
t, p ∈ Sk

t, p,  and  λi k
t, p = 0 . (25)

In addition, the rest of the spectra, i.e., the non-harmonic part, capture additional geometric 

information. The family of spectra of the persistent Laplacians reveals the homotopic shape 

evolution (Figure 2e).

Site- and element-specific PST for protein mutation embedding

The site- and element-specific strategies are used to generate PST embedding to study 

mutation-induced structural changes. The site-specific strategy focuses on mutational sites 

to reduce computational complexity. The element-specific strategy considers the pairwise 

interactions between two atomic groups to encode appropriate physical and chemical 

interactions in embedding. For examples, hydrogen bonds can be inferred from the spectra 

of oxygen-nitrogen persistent Laplacians whereas hydrophobicity can be extracted from 

carbon-carbon pairs.

Specifically, the atoms in a protein are classified into various subsets:

1. Am: atoms in the mutation site.

2. Amn(r): atoms in the neighborhood of the mutation site within a cut-off distance, 

r.

3. Aele(E): atoms in the system with element type, E.

An atomic group combines the atoms within ( A1  and near the mutational sites A2 ):

A1 = Am ∩ Aele E1 ,
A2 = Amn ∩ Aele E2 , (26)

where element types E1 and E2 can be C, N, O, and all heavy atoms. Nine single atomic 

pairs are constructed where A1 and A2 pick one of heavy elements in {C, N, O} each time. 

And a heavy atomic pair is constructed where both A1 and A2 represent all heavy elements 

{C, N, O}.
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PST analyzes the union of atoms A1 ∪ A2 to embed critical biophysical atomic interactions. 

The Euclidean distance De or a bipartite distance Dmod is used. The bipartite distance 

excludes interactions between the atoms from the same set:

Dmod ai, aj = ∞,  if ai, aj ∈ A1,  or ai, aj ∈ A2,
De ai, aj ,  otherwise . (27)

For 0-dimension, filtration using Rips complex with Dmod distance is used. The 0-

dimensional PST features are generated at fixed scales. Specifically, 0-persistent Laplacian 

features are generated at 10 fixed filtration parameters: 2Å, 3Å,· · ·, 11Å. The short scales 

below 2Å are excluded as bond-breaking events are irrelevant to the protein fitness of our 

interest. For each Laplacian, we count the number of harmonic spectra and calculate 5 

statistical values of non-harmonic spectra: minimum, maximum, mean, standard deviation, 

and sum. A 60-dimensional vector is generated. This type of features is calculated on 9 

atomic pairs. For multiple mutational sites, the features are summed up over mutational 

sites. Finally, the dimension of 0-dimensional PST features for a protein is 540.

For 1- or 2-dimension, filtration using alpha complex with De distance is used. The local 

protein structure has a small number of atoms that can generate a limited number of high-

dimensional simplexes, leading to negligible shape changes. As a result, we only extracted 

features from harmonic spectra of persistent Laplacians coding topological invariants for 

the high-dimensional interactions. The persistence of the harmonic spectra is represented by 

the persistent barcode (Figure 2) and implemented by GUDHI [57]. The topological feature 

vectors are generated from the statistics of bar lengths, births, and deaths. First, bars with 

lengths lower than 0.1 Å are excluded since they do not have a clear physical interpretation. 

The remaining bars are used to construct the featurization vector with: 1) sum, maximum, 

and mean for lengths of bars; 2) minimum and maximum for the birth values of bars; and 

3) minimum and maximum for the death values of bars. Each set of point clouds leads to 

a 7-dimensional vector. These features are calculated on 9 single atomic pairs and 1 heavy 

atomic pair. The dimension of 1- and 2-dimensional PST feature vectors for a protein is 

140. Overall, the dimension of PST embedding is 2040 by concatenating features at different 

dimensions for wild-type, mutant, and their difference.

In additional to the featurization described above, we also tested different representations 

of PST and persistent homology features. The persistent landscape is a popular vector 

representation for persistent homology at dimension 1 and 2. It is implemented by GUDHI 

in this work [57]. We use 3 landscapes and resolution 10 for each point cloud, and 

it results in a 30-dimensional vector. Using the same strategy describe for dimensions 

1 and 2, we generated features at 10 point clouds using the element- and site-specific 

strategies. The persistent landscape features are calculated for wildtype, mutant, and their 

difference for both dimensions 1 and 2, which results in a 1800-dimensional vector for each 

mutational entry. We also consider the non-harmonic spectra for p-persistent Laplacians 

at dimensions 1 and 2. They are calculated at 10 fixed filtration parameters: 2Å, 3Å,· 

· ·, 11 Åusing HERMES package [58]. Five statistical values of non-harmonic spectra: 

minimum, maximum, mean, standard deviation, and sum, are used for vectorization. It 
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results in a 50-dimensional vector for each point cloud. With the same strategy using in 

persistent landscape, this approach results in a 3000-dimensional vector. These two types of 

featurizations are not used in the main results. They are discussed in Supplementary Note 6.

Persistent homology (PH)

Similar to PST, persistent homology presents a multiscale analysis via filtration. Persistent 

homology uses homology groups to describe the persistence of topological invariants. As a 

result, persistent homology only provides the harmonic spectral information of PST.

The site- and element-specific persistent homology features are generated similar to those of 

PST. They use identical filtration construction. For the 0-dimension, the filtration parameter 

is discretized into bins with length 1Å in the range of [2, 11], namely, [2, 3), [3, 4), · · ·, [10, 

11)Å. For each bin, we count the numbers of persistent bars, resulting in a 9-dimensional 

vector for each point cloud. This type of features is calculated on 9 single atomic pairs. 

Indeed, the dimension of 0-dimensional persistent homology features for a protein is 81. 

For 1- or 2-dimension, the identical featurization from the statistics of persistent bars in 

PST is used. Persistent homology embedding combines features at different dimensions as 

described above and concatenated for wild-type, mutant, and their difference, resulting in a 

663-dimensional vector.

Ensemble regression

Following by the previous work in machine learning-assisted protein engineering [32], we 

employed multiple regressors to build the ensemble regression. Features are first normalized 

by StandardScaler() in scikit-learn packages [59]. Each regressor is evaluated on training 

data by five-fold cross-validation using the root mean square error (RMSE). The Bayesian 

optimization is performed to find the best-performing hyperparameters for each regressor 

[60]. Then, top N models are picked up based on the RMSE metric. The ensemble regression 

averages the predictions from top N regressors to predict the fitness. There are 18 regressors 

including 3 artificial neural networks (ANNs), 10 kernel models, and 5 tree-based models 

(Figure 1c).

These 18 models were all used in ensemble regression for the small fixed-size training data 

(i.e., from 24 to 240), and top N = 3 models were selected and averaged. For the ensemble 

of the single type of regressors, kernel, tree, or ANN, N = 3 is also used. For 80/20 train/test 

data split or five-fold cross-validation, we only ensemble 3 tree-based models and 2 ANN 

models for adaption to large training data, and all N = 5 models are averaged to enhance 

the generalization of the model. In addition, the ANN architectures were made wider and 

deeper to fit with large training data. Lists of models, default and optimization ranges of 

hyperparameters can be found in Supplementary Tables 1–3.

Kernel-based models—We employed multiple kernel-based models. These types of 

models have great generalization ability to the small size of training data, especially for 

the linear models. Models implemented by scikit-learn packages [59], including ridge 

regression, kernel regression, Bayesian ridge regression, linear support vector regression, 

Bayesian ARD regression, cross-validated Lasso, SGDRegressor, k-nearest neighbors 
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regressor, and ElasticNet. In addition, we also included a boosting linear model in XGBoost 

[61].

Particularly, for ridge regression and kernel regression, we followed the strategy used in 

augmented models [20] to make the evolutionary score practically unregularized (using 

regularization coefficient 10−8). Otherwise, features are concatenated and treated equally in 

the model.

Tree-based models—The tree models can rank and keep important features. Their great 

fitting and generalization ability lead to robust and accurate performance for any size of 

training data. In utilizing the tree-based models, we treat all features equally. The important 

features such as evolutionary scores would be recognized by the tree models and contribute 

more to predictions. In this work, we employed four scikit-learn models [59]: decision 

tree, gradient boosting tree regressor, random forest regressor, bagging regressor, and one 

XGBoost tree model [61].

ANN models—The ANN models have universal approximation ability to learn data. 

Particularly, with large size of training data, ANN models show higher accuracy and 

generalizability than other machine learning models. We employed deep and wide neural 

network architectures to build ANN models [62]. The structure- and sequence-based 

embeddings are concatenated and fed into a series of hidden fully connected layers. Since 

embeddings provide relatively lower-level features than evolutionary scores, embedding 

features are fed-forward by several hidden layers, and evolutionary score concatenates with 

the last hidden layers, and the entire last layer is fed-forward to the output layer.

Each hidden layer except for the final layer sequentially combines a fully connected layer, 

“ReLu” activation function, a batch normalization layer, and a dropout layer. At the final 

hidden layer, the hidden units are concatenated with the evolutionary score, and a batch 

normalization layer and a fully connected layer are sequentially used to obtain the output. 

We took the Adam optimizer with maximal epochs num epochs. An early stopping criterion 

is used where the training will be stopped if no decrease of tol is observed for training errors 

over patience epochs.

For fixed and small sizes of training data 24, 96, 168, and 240, three ANN models have one, 

two, and three hidden layers. For 80/20 split or five-fold cross-validation, the ANN models 

include more neurons at each layer, and the three ANN models have one, three, and five 

hidden layers. Specific hyperparameters can be found in Supplementary Table 3.

Secondary structure predictions

Secondary structures were predicted by the dictionary of protein secondary structures 

(DSSP) [63]. Secondary structures are assigned based on hydrogen bonding patterns. We 

performed DSSP on wild-type protein for each dataset. DSSP classifies amino acids in 

a protein into 8 categories: 3-turn helix (G), 4-turn helix (H), 5-turn helix (I), extended 

strand in parallel and/or anti-parallel β-sheet conformation (E), residue in isolated β-bridge 

(B), bend (S), and coil (C). The experiments usually have low accuracy in measuring the 

structure of coils and the errors will propagate to the entire structure. We then classify these 
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8 categories into two types: coil and non-coil. And these two types of secondary structures 

can largely indicate the potential accuracy of the structure data.

B-factors

The B-factor provides a direct measurement of the structural flexibility experiment. 

The B-factor, sometimes called the Debye–Waller factor, temperature factor, or atomic 

displacement parameter, is used in protein crystallography to describe the attenuation of 

X-ray or neutron scattering caused by thermal motion. In each X-ray structure, the B-factor 

is provided for each atom. In this work, we extracted B-factor at alpha carbons to represent 

the quality of each amino acid. Then we have a vector of B-factor with the same length 

with number of amino acids in a protein. Since high B-factor indicates low experimental 

accuracy, the third quartile (Q3), presented in this work, indicates the accuracy of those 

residues with relatively high B-factor, consequently, reflects the quality of less accurate 

domain in a X-ray structure.

Statistical tests

We used two one-sided statistical tests to compare the performance of different methods. 

For two sets of samples X and Y, we make the one-side hypothesis based on their average 

values. For example, if X has larger average than Y, we make the hypothesis that X is 

greater than Y. The p-values are calculated to evaluate the statistical significance of the null 

hypothesis.

Mann-Whitney U-test—Mann-Whitney U-test is a nonparametric test of the null 

hypothesis that, for randomly selected values of X and Y from two populations, the 

probability of X being greater than Y is equal to the probability of Y being greater than 

X. The alternative hypothesis is that one population is stochastically greater than the other.

Wilcoxon signed-rank test—Wilcoxon signed-rank test is also a nonparametric test. It 

is particularly designed for two pairs of dependent samples. For example, we used it to 

compare the performance of two methods over all datasets which results in paired samples 

(e.g., Figure 4b). Otherwise, the Mann-Whitney U-test is used for unpaired samples.

Evaluating metrics

Spearman correlation (ρ).—Spearman correlation assesses monotonic relationships 

between two variables. The Spearman correlation between two variables will be high when 

observations have a similar rank between the two variables and low when observations 

have a dissimilar rank between the two variables. It is defined as the Pearson correlation 

coefficient between the rank variables:

ρ(X, Y ) = cov(R(X), R(Y ))
σR(X)σR(Y )

, (28)

where cov is the covariance between two variables, σ is the standard deviation, and R(X) 

is the rank variable of X. The Spearman correlation is used to evaluate the rank correlation 

between ground truth and predicted fitness.
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Normalized discounted cumulative gain (NDCG).—NDCG is another measure of 

ranking quality [64]. The highly ranked samples have a higher contribution to NDCG. 

It evaluates the ranking quality by focusing on the top samples. Especially, it is useful 

for greedy search in protein engineering which requires selecting top predicted samples. 

The predicted values are first sorted into a descending order f i i = 1

N
 and the corresponding 

ground truth values are fi i = 1
N . The discounted cumulative gain (DCG) is defined as

 DCG  = ∑
i = 1

N fi

log2(i + 1) . (29)

The ground truth fitness contributes more to the sum if its prediction has a higher rank. The 

DCG is then normalized into a range between 0 and 1, where 1 indicates perfect ranking 

quality. The normalized DCG (NDCG) is defined as

NDCG = DCG/ ∑
i = 1

N f i

log2(i + 1) = ∑
i = 1

N fi

log2(i + 1) / ∑
i = 1

N f i

log2(i + 1) (30)

Root mean square error (RMSE).—RMSE is used to measure the accuracy of the 

regressor. Particularly, we used it to rank models in hyperparameter optimization and model 

selection in the ensemble regression. Since our tasks focus on the ranking quality of the data, 

RMSE is not used to evaluated fitness predictions in this work.
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Extended Data

Extended Data Fig. 1. The average performance of various models over 34 datasets.
This is a supplement for Figure 3a. (a). Line plots show identical data with Figure 3a with 

additional data for two TopFit strategies. (b). Results are evaluated by NDCG. In (a-b), 

ensemble regression is used, except ridge regression for Georgiev and one-hot embeddings. 

Absolute values of ρ were shown for evolutionary scores. The width of shade shows 

95% confidence interval from n = 20 repeats. Evolutionary scores use absolute values for 

corresponding quantities.
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Extended Data Fig. 2. Spearman correlation for various models on individual datasets.
This is a supplement for Figure 3a. Each line plots show average ρ for each dataset over n = 

20 repeats. Training data sizes are 24, 96, 168, and 240. The width of the shade shows 95% 

confidence interval.
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Extended Data Fig. 3. The frequency that an embedding is ranked as the best across 34 datasets 
using Spearman correlation.
This is a supplement for Figure 3b including comparisons over different strategies. 

Histograms show the frequency that an embedding is ranked as the best across 34 datasets 

with 24, 96, 168, and 240 training data, respectively. For each dataset, the best embedding 

has average ρ over 20 repeats within the 95% confidence interval of the embedding with 

the highest average ρ. Comparisons were performed for (a). sequence-based embeddings; 

(b). structure- and sequence-based embeddings; (c). structure-based embeddings, sequence-

based embeddings, and evolutionary scores; and (d). structure-based embeddings, sequence-

based embeddings, evolutionary scores, and two sets of TopFit (VAE+PST+ESM and 

VAE+PST+eUniRep). We showed and used absolute values Spearman correlation for 

evolutionary scores.
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Extended Data Fig. 4. NDCG for various models on individual datasets.
This is an analog for Extended Data Figure 2 but using NDCG. Each line plots show average 

NDCG for each dataset over n = 20 repeats. Training data sizes are 24, 96, 168, and 240. 

The width of the shade shows 95% confidence interval.
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Extended Data Fig. 5. The frequency that an embedding is ranked as the best across 34 datasets 
using NDCG.
This is an analog for Extended Data Figure 3 but measured by NDCG. Histograms show 

the frequency that an embedding is ranked as the best across 34 datasets with 24, 96, 

168, and 240 training data, respectively. For each dataset, the best embedding has average 

NDCG over 20 repeats within the 95% confidence interval of the embedding with the 

highest average NDCG. Comparisons were performed for (a). sequence-based embeddings; 

(b). structure- and sequence-based embeddings; (c). structure-based embeddings, sequence-

based embeddings, and evolutionary scores; and (d). structure-based embeddings, sequence-

based embeddings, evolutionary scores, and two sets of TopFit (VAE+PST+ESM and 

VAE+PST+eUniRep). We showed and used absolute values NDCG for evolutionary scores.
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Extended Data Fig. 6. Relationships between quality of wild-type protein structure and PST 
performance.
This is a supplement for Figure 3c. Boxplots show distribution of (a). percentages of 

coils for protein structure over 34 datasets and (b). third quartile (Q3) of B-factors at 

alpha carbons over 26 X-ray datasets. Datasets were classified into two classes depending 

on whether PST embedding is the best embedding. Scatter plots show same data with 

boxplots but for individual datasets. One-sided Mann-Whitney U test examines the statistical 

significance that two classes have different values. Boxplots display five-number summary 

where center line shows median, upper and lower limits of the box show upper and lower 

quartiles, and upper and lower whiskers show the maximum and the minimum by excluding 

“outliers” outside the interquartile range. In (a), sample sizes for PST ranked as the best 

model are n = 21, n = 15, n = 18, and n = 19 for training data size 24, 96, 168, and 240, 

respectively. Sample sizes for PST not ranked as the best model are n = 13, n = 19, n = 16, 

and n = 15 for training data size 24, 96, 168, and 240, respectively. The p-values are 0.01, 3 
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× 10−5, 1 × 10−3, and 1 × 10−3 for training data size 24, 96, 168, and 240, respectively. In 

(b), sample sizes for PST ranked as the best model are n = 8, n = 12, n = 14, and n = 15 for 

training data size 24, 96, 168, and 240, respectively. Sample sizes for PST not ranked as the 

best model are n = 18, n = 14, n = 12, and n = 11 for training data size 24, 96, 168, and 240, 

respectively. The p-values are 0.03, 0.02, 0.07, and 0.02 for training data size 24, 96, 168, 

and 240, respectively.

Extended Data Fig. 7. Model occurrence in ensemble regression.
This is a supplement for Figure 3e to show model occurrence on individual datasets. For 

each repeat, the top N = 3 regressors were picked and counted. Histograms count the model 

occurrence over 20 repeats.
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Extended Data Fig. 8. Comparisons between TopFit and other methods for mutation effects 
prediction using Spearman correlation.
This is an analog for Figure 4a–b, but TopFit combines VAE score, eUniRep embedding, 

and PST embedding. All supervised models use 240 labeled training data. Results are 

evaluated by Spearman correlation ρ. DeepSequence VAE takes the absolute value of ρ. 

The average ρ from 20 repeats is shown. All 34 datasets are categorized by their structure 

modality used: X-ray, nuclear magnetic resonance (NMR), AlphaFold (AF), and cryogenic 

electron microscopy (EM). (a). Dot plots show results across 34 datasets (b). Dot plots show 

pairwise comparison between TopFit with one method at each plot. Medians of difference 

for average Spearman correlation ∆ρ across all datasets are shown. One-sided rank-sum test 

determines the statistical significance that TopFit has better performance than VAE score, 

eUniRep embedding and PST embedding with p-values P = 3 × 10−7, 2 × 10−7, and 4 × 

10−7, respectively.
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Extended Data Fig. 9. Comparisons between TopFit with other methods. TopFit consists of VAE 
score, ESM embedding, and PST embedding.
This is a supplement for Figure 4b to include results with various numbers of training data. 

Average Spearman correlation from 20 repeats are shown, and all datasets are categorized by 

their structure modality used: X-ray, nuclear magnetic resonance (NMR), AlphaFold (AF), 

and cryogenic electron microscopy (EM). One-sided rank-sum test determines the statistical 

significance that TopFit has better performance than other strategies, except we use null 

hypothesis that TopFit has worse performance than VAE with 24 training data. The p-values 

are shown in the corresponding subfigures. They are 1. TopFit versus VAE: P = 4×10−6, 

2×10−5, and 1×10−6; 2. TopFit versus ESM: P = 2×10−7, 2×10−7, and 2 × 10−7; and 3. 

TopFit versus PST: P = 2 × 10−7, 2 × 10−7, and 2 × 10−7 for training data size 24, 96, and 

168, respectively.
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Extended Data Fig. 10. Comparisons between TopFit with other methods. TopFit consists of VAE 
score, eUniRep embedding, and PST embedding.
This is a supplement for Extended Data Figure 8b to include results with various numbers of 

training data. Average Spearman correlation from 20 repeats are shown, and all datasets 

are categorized by their structure modality used: X-ray, nuclear magnetic resonance 

(NMR), AlphaFold (AF), and cryogenic electron microscopy (EM). One-sided rank-sum 

test determines the statistical significance that TopFit has better performance than other 

strategies, except we use null hypothesis that TopFit has worse performance than VAE with 

24 training data. The p-values are shown in the corresponding subfigures. They are 1. TopFit 

versus VAE: P = 3 × 10−6, 3 × 10−5, and 8 × 10−7; 2. TopFit versus eUniRep: P = 4×10−7, 

2×10−7, and 2×10−7; and 3. TopFit versus PST: P = 3×10−7, 2×10−7, and 3 × 10−7 for 

training data size 24, 96, and 168, respectively.
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Figure 1: Conceptual diagram of the TopFit method.
(a). Topological structure-based module generates PST embedding. A wild-type three-

dimensional structure is obtained from the PDB or AlphaFold database. Both wild-type 

and mutant structures are optimized for local mutational-site structure extraction. PST 

embedding is generated from the spectra of persistent Laplacians where the harmonic and 

non-harmonic spectra delineate the mutational atlas. (b). Sequence-based embedding and 

evolutionary scores are generated by various deep protein language models. (c). Ensemble 

regression recruits multiple regressors in predicting fitness. Features from two featurization 

modules are concatenated and fed into the downstream ensemble regression. The ensemble 

regression ranks and selects top performing models from 18 regressors in three major 

classes: artificial neural networks (ANNs), kernel models, and tree models. Hyperparameters 

of each regressor are optimized. The ensemble regression averages the predictions from top 

regressors to navigate the fitness landscape.
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Figure 2: Persistent spectral theory for topological persistence and homotopic shape evolution.
(a). Three dimensional protein structure data is given as a point cloud. (b). Simplex provides 

the basic building block of the simplicial complex. (c). Balls with a fixed radius are placed at 

each point to generate a covering of the point cloud. The simplicial complex is constructed 

from the covering patterns of the point cloud. Filtration generates a family of simplicial 

complexes with a series of increasing radii. (d). Persistent homology (PH) provides a 

topological representation from persistent barcodes at homology group Hi at i-th dimension. 

(e). Persistent spectral theory (PST) analyzes the spectra of persistent Laplacians. The 

harmonic spectra reveal topological persistence as PH does, and the non-harmonic spectra 

capture the homotopic shape evolution of data. Abscissa shows the range of spectra, and 

ordinate shows the number of spectra in the range.
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Figure 3: Prediction from single embedding on fitness landscape measured by Spearman 
correlations (ρ).
(a). Line plots show average ρ over 34 datasets. Ensemble regression is used, except ridge 

regression for Georgiev and one-hot embeddings. Absolute values of ρ were shown for 

evolutionary scores. The width of shade shows 95% confidence interval from n = 20 

independent repeats. (b-b’). Histograms show the frequency that an embedding is ranked 

as the best across 34 datasets for training data size (b) 24 and (b’) 240. For each dataset, the 

best embedding has average ρ over n = 20 independent repeats within the 95% confidence 

interval of the embedding with the highest average ρ. In (a)-(b), Structure-based embeddings 

include persistent homology (PH) and PST. Sequence-based embeddings include ESM [15], 

eUniRep [17], Georgiev [49], UniRep [14], Bepler [13], and three TAPE models (LSTM, 

Transformer, and ResNet) [12]. Evolutionary scores include DeepSequence VAE [8], EVE 

[9], Tranception [19], ESM [15], and eUniRep [17]. (c-c’). Boxplots show distribution of 

percentages of coils for protein structure for each dataset, where boxplots were presented 

on 34 datasets classified into two classes depending on whether PST embedding is the 

best embedding. Scatter plots show same data with boxplots but for individual datasets. 

One-sided Mann-Whitney U test examines the statistical significance that two classes have 

different percentages of coils. Boxplots display five-number summary where center line 
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shows median, upper and lower limits of the box show upper and lower quartiles, and upper 

and lower whiskers show the maximum and the minimum by excluding “outliers” outside 

the interquartile range. Training data size is (c) 24 and (c’) 240. The classes that PST is 

ranked as the best or not the best have sample sizes (c) n = 21 versus n = 13, and (c’) 
n = 19 versus n = 15. P-values are (c) P = 0.01 and (c’) P = 1 × 10−3. (d). Line plots 

show comparisons between different regression for average ρ over 34 datasets using PST 

embedding. Error bars show the 95% confidence interval from n = 20 independent repeats. 

(e). Histograms show model occurrence in ensemble regression over 34 datasets using the 

PST embedding.
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Figure 4: Comparisons between TopFit embeddings and other methods for fitness prediction.
All supervised models use 240 labeled training data. Results are evaluated by Spearman 

correlation ρ. DeepSequence VAE takes the absolute value of ρ. In (a-b), TopFit combines 

PST embedding, ESM embedding, and DeepSequence VAE score. The average ρ from 

20 independent repeats is shown. 34 datasets are categorized by their structure modality 

used: X-ray, nuclear magnetic resonance (NMR), AlphaFold (AF), and cryogenic electron 

microscopy (EM). (a). Dot plots show results across 34 datasets (b). Dot plots show 

pairwise comparison between TopFit with one method at each plot. Medians of difference 

for average Spearman correlation ∆ρ across all datasets are shown. One-sided rank-sum test 

determines the statistical significance that TopFit has better performance than VAE score, 

ESM embedding, and PST embedding for n = 34 datasets with p-values P = 0.087, 0.083, 

and 2 × 10−7, respectively. (c). Comparisons for extrapolation that predicts datasets with 

multiple mutations using the single-mutation data. Bars show average values and errorbars 
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show 95% confidence interval from n = 20 independent repeats. Scatter plots show ρ from 

each repeat.
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Figure 5: Comparisons between TopFit and other regression models for fitness predictions using 
Spearman correlation (ρ).
Heatmap shows the relative improvement in ρ achieved by TopFit. TopFit compares with 

the augmented VAE model [20] for training data sizes 24, 96, 168, 240, and 80/20 train/

test split. TopFit compares with ECNet [21] using five-fold cross-validation (5-fold CV). 

One-side Mann-Whitney U-test examines the statistical significance that two comparing 

methods have different ρ. The p-values are annotated in the heatmap using star form: ‘ns’ for 

not significant with p > 0.05, ‘*’ for p ≤ 0.05, ‘**’ for p ≤ 0.01, ‘***’ for p ≤ 0.001, ‘****’ 

for p ≤ 0.0001. TopFit has n = 20 independent repeats for 24, 96, 168, 240 training data, and 

n = 10 for 80/20 train/test split and 5-fold CV. Augmented VAE was reproduced by us with n 
= 20 independent repeats. Results for ECNet were obtained from their work with average ρ, 

and indeed p-values were not reported.
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