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Abstract

Neural computation in biological and artificial networks relies on the nonlinear summation 

of many inputs. The structural connectivity matrix of synaptic weights between neurons is a 

critical determinant of overall network function, but quantitative links between neural network 

structure and function are complex and subtle. For example, many networks can give rise to 

similar functional responses, and the same network can function differently depending on context. 

Whether certain patterns of synaptic connectivity are required to generate specific network-level 

computations is largely unknown. Here we introduce a geometric framework for identifying 

synaptic connections required by steady-state responses in recurrent networks of threshold-linear 

neurons. Assuming that the number of specified response patterns does not exceed the number 

of input synapses, we analytically calculate the solution space of all feedforward and recurrent 

connectivity matrices that can generate the specified responses from the network inputs. A 

generalization accounting for noise further reveals that the solution space geometry can undergo 

topological transitions as the allowed error increases, which could provide insight into both 

neuroscience and machine learning. We ultimately use this geometric characterization to derive 

certainty conditions guaranteeing a nonzero synapse between neurons. Our theoretical framework 

could thus be applied to neural activity data to make rigorous anatomical predictions that follow 

generally from the model architecture.

I. INTRODUCTION

Structure-function relationships are fundamental to biology [1–3]. In neural networks, the 

structure of synaptic connectivity critically shapes the functional responses of neurons [4,5], 

and large-scale techniques for measuring neural network structure and function provide 

exciting opportunities for examining this link quantitatively [6–15]. The ellipsoid body in 

the central complex of Drosophila is a beautiful example where modeling showed how the 

structural pattern of excitatory and inhibitory connections enables a persistent representation 

of heading direction [16–19]. Lucid structure-function links have also been found in several 
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other neural networks [20–23]. However, it is generally hard to predict either neural network 

structure or function from the other [5,24]. For example, functionally inferred connectivity 

can capture neuronal response correlations without matching structural connectivity [25–28], 

and network simulations with structural constraints do not automatically reproduce function 

[29–31]. Two broad modeling difficulties hinder the establishment of robust structure-

function links. First, models with too much detail are difficult to adequately constrain and 

analyze. Second, models with too little detail may poorly match biological mechanisms, the 

model mismatch problem. Here we propose a rigorous theoretical framework that attempts 

to balance these competing factors to predict components of network structure required for 

function.

Neural network function probably does not depend on the exact strength of every synapse. 

Indeed, multiple network connectivity structures can generate the same functional responses 

[32,33], as illustrated by structural variability across individual animals [24,34] and artificial 

neural networks [29,35–37]. Such redundancy may be a general feature of emergent 

phenomena in physics, biology, and neuroscience [38–40]. Nevertheless, some important 

details may be consistent despite this variability, and here we find well-constrained 

structure-function links by characterizing all connectivity structures that are consistent 

with the desired functional responses [24]. We also account for ambiguities caused by 

measurement noise. Our goal is not to find degenerate networks that perform equivalently 

in all possible scenarios. We instead seek a framework that finds connectivity required for 

specific functional responses, independently of whatever else the network might do.

The model mismatch problem has at least two facets. First, neurons and synapses 

are incredibly complex [41–44], but which complexities are needed to elucidate 

specific structure-function relationships is unclear [5,45,46]. This issue is very hard to 

address in full generality, and here we seek a theoretical framework that makes clear 

experimental predictions that can adjudicate candidate models empirically. In particular, 

we predict neural network structure only when it occurs in all networks generating 

the functional responses. This high bar precludes the analysis of biophysically-detailed 

network models, which require numerical exploration of the connectivity space that is 

typically incomplete [24,32,47–49]. We instead focus on recurrent firing rate networks of 

threshold-linear neurons, which are growing in popularity because they strike an appealing 

balance between biological realism, computational power, and mathematical tractability 

[12,16,18,20,22,23,29,30,37,50–55].

The second facet of the model mismatch problem is hidden variables, such as missing 

neurons, neuromodulator levels, and physiological states [5,56–58]. Here we take inspiration 

from whole-brain imaging in small organisms [15], such as Caenorhabditis elegans [9], 

larval zebrafish [8,12,57], and larval Drosophila [11], and assume access to all relevant 

neurons. Our model neglects neuromodulators and other state variables, which would be 

interesting to consider in the future. Furthermore, many experiments indirectly assess 

neuronal spiking activity, such as by calcium florescence [58–61] or hemodynamic 

responses [25,62–64]. We restrict our analysis to steady-state responses to mitigate 

mismatch between fast firing rate changes and these inherently slow measurement 

techniques.
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Our analysis begins with an analytical characterization of synaptic weight matrices that 

realize specified steady-state responses as fixed points of neural network dynamics [Figs. 

1(a) and 1(b)]. A key insight is that asymmetrically constrained dimensions appear 

as a consequence of the threshold nonlinearity. Synaptic weight components in these 

semiconstrained dimensions are completely uncertain in one half of the dimension but 

well-constrained in the other. We then compute error surfaces by finding weight matrices 

with fixed points near the desired ones. This error landscape has a continuum of local 

and global minima, and constant-error surfaces exhibit topological transitions that add 

semiconstrained dimensions as the error increases. This may help explain the importance 

of weight initialization in machine learning, as poorly initialized models can get stuck in 

semiconstrained dimensions that abruptly vanish at nonzero error. By studying the geometric 

structure of the neural network ensemble that can approximate the functional responses, 

we derive analytical formulas that pinpoint a subset of connections, which we term certain 

synapses, that must exist for the model to work [Fig. 1(c)]. These analytical results are 

especially useful for studying high-dimensional synaptic weight spaces that are otherwise 

intractable. Since the presence of a synapse is readily measurable, our theory generates 

accessible experimental predictions [Fig. 1(c)]. Tests of these predictions assess the utility 

of the modeling framework itself, as the predictions hold across model parameters. Their 

successes and failures can thus move us forward toward identifying the mechanistic 

principles governing how neural networks implement brain computations.

The rest of the paper begins in Sec. II with a toy problem that concretely demonstrates the 

approach illustrated in Fig. 1 and relates the geometry of the solution space (all synaptic 

weight matrices that realize a given set of response patterns) to the concept of a certain 

synapse. In Sec. III, we explain how the solution space for a limited number of response 

patterns can be calculated for an arbitrarily large threshold-linear recurrent neural network. 

Section IV is devoted to three simple toy problems that provide additional insights into how 

the geometry of the solution space can help us to identify certain synapses. This is followed 

by Sec. V, where we explain and numerically test the precise algebraic relation that must be 

satisfied for a synapse to be certain when the response patterns are orthonormal. Section VI 

generalizes our analyses to include noise, including numerical tests via simulation. Finally, 

Sec. VII concludes the paper by summarizing our main results and discussing important 

future directions.

II. AN ILLUSTRATIVE TOY PROBLEM

To gain intuition on how robust structure-function links can be established, including the 

effects of nonlinearity, we begin by analyzing the structural implications of functional 

responses in a very simple threshold-linear feedforward network [Fig. 2(a)]. We assume that 

two input neurons, x1 and x2, provide signals to a single driven neuron, y, via synaptic 

weights, w1 and w2. The weights are unknown, and we constrain their possible values using 

two neuronal response patterns, labeled μ = + and μ = −. We suppose that steady-state 

activities of the input neurons and driven neuron are nonlinearly related according to

y = Φ w1x1 + w2x2 , (1)
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where x1, x2, and y denote firing rates of the corresponding neurons, and

Φ(s) = max(0, s) (2)

is the threshold-linear transfer function. The driven neuron responds (y = 1) when x1 = x2 = 

1 in the μ = + pattern. In contrast, the driven neuron does not respond (y = 0) when x1 = −x2 

= 1 in the μ = − pattern. If the transfer function were linear, then it is easy to see that there is 

a unique set of weights, w1 = w2 = 1
2 , that produces these driven neuron responses, the brown 

dot in Fig. 2(b).

How does the nonlinearity change the solution space of weights that reproduce the driven 

neuron responses? To answer this question, we define two linear combinations of weights,

η± = w1 ± w2, (3)

which correspond to the driven neuron’s input drive in patterns μ = ±. Equation (1) now 

yields rather simple algebraic constraints for the two patterns:

y+ = 1 = Φ η+ η+ = 1, (4)

y− = 0 = Φ η− η− ⩽ 0. (5)

Note that η− would have had to be zero if Φ were linear, but because the threshold-linear 

transfer function turns everything negative into a null response, η− can now also be any 

negative number. However, sufficiently negative values of η− correspond to implausibly 

large weight vectors, and hence we focus on solutions with norm bounded above by some 

value,W. The nonlinearity thus turns the unique linear solution [brown dot in Fig. 2(b)] 

into a continuum of solutions [yellow line segment in Fig. 2(b)]. This continuum lies along 

what we will refer to as a semiconstrained dimension. Indeed, this will turn out to be a 

generic feature of threshold-linear neural networks: every time there is a null response, a 

semiconstrained dimension emerges in the solution space.1

Although we found infinitely many weight vectors that solve the problem, all solutions to 

the problem have a synaptic connection x2 → y, and this connection is always excitatory 

[Fig. 2(b)]. Positive, negative, or zero connection weights are all possible for x1 → y. 

However, this reveals why the value of the synaptic weight bound, W, has important 

implications for the solution space. For example, all solutions in Fig. 2(b) with |w | < 1
have w1 > 0, whereas larger magnitude weight vectors have w1 ≤ 0. Therefore, one would 

be certain that an excitatory x1 → y synapse exists if the weight bound were biologically 

known to be less than Wcr = 1. We refer to this weight bound as W-critical. Looser weight 

bounds raise the possibility that the synapse is absent or inhibitory. Note that too tight 

weight bounds, here less than W min = 1/ 2, can exclude all solutions.

1Assuming that the number of patterns does not exceed the dimensionality of the synaptic weight vector.
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The example of Fig. 2 concretely illustrates the general procedure diagramed in Fig. 1. 

First, we specified a network architecture and steady-state response patterns [Figs. 1(a) 

and 2(a)]. Second, we found all synaptic weight vectors that can implement the nonlinear 

transformation [Figs. 1(b) and 2(b)]. Finally, we determined whether individual synaptic 

weights varied in sign across the solution space [Figs. 1(c) and 2(b)]. Section III will 

generalize the first two parts of this procedure to characterize the solution space of any 

threshold-linear recurrent neural network, assuming that the number of response patterns is 

at most the dimensionality of the weight vectors. Sections IV and V will then generalize the 

final part of this procedure to pinpoint synaptic connections that are critical for generating 

any specified set of orthonormal responses.

III. SOLUTION SPACE GEOMETRY

A. Neural network structure and dynamics

Consider a neural network of ℐ input neurons that send signals to a recurrently connected 

population of  driven neurons [Fig. 3(a)]. We compactly represent the network connectivity 

with a matrix of synaptic weights, wim, where i = 1, …,  indexes the driven neurons, and m 
= 1, …,  + ℐ indexes presynaptic neurons from both the driven and input populations. We 

suppose that activity in the population of driven neurons dynamically evolves according to

τi
dyi

dt = − yi + Φ ∑
m = 1

D
wimym + ∑

m = D + 1

D + ℐ
wimxm − D , (6)

where yi is the firing rate of the ith driven neuron, xm is the firing rate of the mth input 

neuron, and τi is the time constant that determines how long the ith driven neuron integrates 

its presynaptic signals. It is possible that prior biological knowledge dictates that certain 

synapses appearing in Eq. (6) are absent. For notational convenience, in this paper we will 

assume that the number of synapses onto each driven neuron remains the same,2 and we will 

denote this number of the incoming synapses as . Note that  = ℐ +  for a general 

recurrent network,  = ℐ +  − 1 for recurrent networks without self-synapses, and  = 

ℐ for feedforward networks. We suppose that the network functionally maps input patterns, 

xμm, to steady-state driven signals, yμi ⩾ 0, where μ = 1, …,  labels the patterns [Fig. 3(b)]. 

We assume throughout that  ⩽ , as the number of known response patterns is typically 

small, and the number of possible synaptic inputs is large. Experimentally, different response 

patterns often correspond to different stimulus conditions, so we will often refer to μ as a 

stimulus index and xμm → yμi as a stimulus transformation.

B. Decomposing a recurrent network into  feedforward networks

Our goal is to find features of the synaptic weight matrix that are required for the stimulus 

transformation discussed above. For notational simplicity, let us consider the case where we 

potentially have all-to-all connectivity, so that  =  + ℐ, but we will later explain how 

2It will become progressively evident that our construction of the solution space and certainty condition can be trivially adapted to the 
case where the number of presynaptic neurons changes from one driven neuron to another.
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our arguments generalize. Since all time-derivatives are zero at steady-state, the response 

properties provide  ×  nonlinear equations for  ×  unknown parameters3:

yμi = Φ ∑
m = 1

D
wimyμm + ∑

m = D + 1

D + ℐ
wimxμ, m − D . (7)

Inspection of the above equation, however, reveals that each neuron’s steady-state activity 

depends only on a single row of the connectivity matrix [Fig. 3(c)]; the responses of the ith 

driven neuron, {yμi, μ = 1, …, P}, are only affected by its incoming synaptic weights, {wim, 

m = 1, …, }. Thus, the above equations separate into  independent sets of equations, 

one for each driven neuron. In other words, we now have to solve  feedforward problems, 

each of which will characterize the incoming synaptic weights of a particular driven neuron, 

which we term the target neuron. Note that since a generic target neuron receives signals 

from both the input and the driven populations, the activities of both input and driven 

neurons serve to produce the presynaptic input patterns that drive the responses of the target 

neuron in the reduced feedforward problem.

C. Solution space for feedforward networks

We have just seen how we can solve the problem of finding synaptic weights consistent 

with steady-state responses of a recurrent population of neurons, provided we know how to 

solve the equivalent problem for feedforward networks. Accordingly, we will now focus on a 

feedforward network, where a single target neuron, y, receives inputs from  neurons {xm; 

m = 1, …, }, to find the ensemble of synaptic weights that reproduce this target neuron’s 

observed responses. The constraint equations are

yμ = Φ ∑
m = 1

N
xμmwm , (8)

where yμ now stands for the activity of the target neuron driven by the μth input pattern, and 

w  is the -vector of synaptic weights onto the target neuron. Assuming that the  × 

matrix x is rank P, we let the  ×  matrix X be rank  with Xμm = xμm for μ = 1, …, . 

This implies that the last  −  rows of X span the null space of x, and X defines a basis 

transformation on the weight space,

ημ = ∑
m = 1

N
Xμmwm wm = ∑

μ = 1

N
Xmμ

−1ημ . (9)

3A slightly different rate equation,

τi
dvi
dt = − vi + ∑

m = 1

D
wimrm + ∑

m = D + 1

D + ℐ
wimxm − D,

with ri = Φ(vi), is also in vogue. While the dynamics of this model are slightly different from Eq. (6), at steady state they reduce to the 
same form as Eq. (7). In particular, ri = Φ ∑m = 1

D wimrm + ∑m = D + 1
D + ℐ wimxm − D .
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The  linearly independent columns of X−1 define the basis vectors corresponding to the η 
coordinates,

X−1 = ε 1 ⋯ ε μ ⋯ ε N . (10)

In other words,

ε μ = ∑
m = 1

N
emXmμ

−1, (11)

where em  is the physical orthonormal basis whose coordinates, {wm}, correspond to the 

material substrates of network connectivity. These basis vectors can be obtained from ε μ

by an inverse basis transformation:

em = ∑
μ = 1

N
ε μXμm . (12)

We can thus write any vector of incoming weights as

w = ∑
m = 1

N
wmem = ∑

μ = 1

N
ημ ε μ . (13)

In terms of η coordinates, the nonlinear constraint equations take a rather simple form:

yμ = Φ ημ forμ = 1, ⋯, P . (14)

Accordingly, η coordinates succinctly parametrize the solution space of all weight matrices 

that support the specified fixed points [Fig. 3(d)]. Each η dimension can be neatly 

categorized into one of three types. First, for each stimulus condition μ where yμ > 0, 

we must have ημ > 0. This in turn implies that Φ(ημ) = ημ = yμ. Because the coordinate 

ημ must adopt a specific value to generate the transformation, we say that μ defines a 

constrained dimension. We denote the number of constrained dimensions as  ⩽ . Second, 

note that the threshold in the transfer function implies that Φ(a) = 0 for all a ⩽ 0. Therefore, 

for any stimulus condition such that yμ = 0, we have a solution whenever ημ 0. Because 

positive values of ημ are excluded but all negative values are equally consistent with the 

transformation, we say that μ defines a semiconstrained dimension. We denote the number of 

semiconstrained dimensions as  =  – . Finally, we have no constraint equations for ημ if 

μ =  + 1,···, . Because all positive or negative values of ημ are equally consistent with the 

stimulus transformation, we say that μ defines an unconstrained dimension. We denote the 

number of unconstrained dimensions as  =  − . Altogether, the stimulus transformation 

is consistent with every incoming weight vector that satisfies

ημ = yμ if yμ > 0, μ ⩽ P
−∞ < ημ ⩽ 0 if yμ = 0, μ ⩽ P
−∞ < ημ < ∞ if μ > P .

(15)
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Note that one can enumerate the solutions in the physically meaningful w coordinates by 

simply applying the inverse basis transformation in Eq. (9) to any solution found in η 
coordinates.

Going forward, it will be convenient to extend the -dimensional vector of target neuron 

activity to an -dimensional vector whose components along the unconstrained dimensions 

are equal to zero, because this will allow us to compactly write equations in terms of dot 

products between the activity vector and vectors in the -dimensional weight space. Rather 

than introducing a new notation for this extended -dimensional vector, we simply write y
with yμ = 0 for μ =  + 1, …, . It is critical to remember that this is merely a notational 

convenience, and the solution space distinguishes between semiconstrained dimensions and 

unconstrained dimensions according to Eq. (15). In particular, yμ = 0 is a constraint equation 

for semiconstrained dimensions, but yμ = 0 is a notational convenience for unconstrained 

dimensions.

D. Back to the recurrent network

To understand how the solution space geometry of the feedforward network can be 

translated back to the recurrent network, it is useful to group together the steady-state 

activities of all input and driven neurons that are presynaptic to the ith driven neuron as a 

×  input pattern matrix, z(i).4 The entries of the matrix, zμm
(i) , correspond to the responses 

of the mth presynaptic neuron to the μth stimulus. At this point it is easy to see that when 

biological constraints dictate that some of the synapses are absent, then one should just 

exclude those presynaptic neurons when constructing z(i), such that the m index excludes 

those presynaptic neurons. Similarly, by a suitable reordering, which will depend on the 

driven neuron, we can always ensure that m = 1, …,  runs only over the neurons that are 

presynaptic to the given driven neuron.

Once the input patterns feeding into the ith neuron are known, we can follow the steps 

outlined in the previous subsection to define the  ×  full rank extension of z(i), Z(i), and 

the η(i) coordinates via

ημ
(i) = ∑

m = 1

N
Zμm

(i) wim . (16)

The nature of the ημ
(i) coordinates, that is whether they are constrained, semiconstrained, or 

unconstrained, is determined by how the ith neuron responded to the stimulus conditions, 

as in Eq. (15). Repeating this process for all driven neurons provides a geometric 

characterization of the entire recurrent network solution space, which involves all elements 

of the synaptic weight matrix, wim.

An important special case is all-to-all network connectivity. In this case, the Z(i) matrices 

are the same for all driven neurons, and therefore the directions corresponding to the 

4In fact, one can easily incorporate the case when the number of presynaptic partners differs from one driven neuron to another. This 
just means that the z(i) matrices will have dimensions  × i, where i represents the number of presynaptic partners of the ith 
neuron.
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η coordinates are also preserved.5 In particular, the orientation of the unconstrained 

subspace with respect to the physical basis does not change from one driven neuron to 

another. However, how a given driven neuron responds to a particular stimulus determines 

whether the corresponding η direction is going to be constrained or semiconstrained for the 

feedforward network associated with that driven neuron.

IV. CERTAIN SYNAPSES IN ILLUSTRATIVE 3D EXAMPLES

Although we have found infinitely many weight matrices that produce a given stimulus 

transformation, it is nevertheless possible that the solutions imply firm anatomical 

constraints (e.g., Sec. II). In this paper we focus on finding synapses that must be nonzero 

in order for the response patterns to be fixed points of the neural network dynamics. We 

refer to such synapses as certain, because the synapse must exist in the model, and its sign 

is identifiable from the response patterns. It is clear from the geometry of the solution space 

that the relative orientations between the η coordinates and the physical w coordinates are 

significant determinants of synapse certainty. To build quantitative intuition for how the 

solution space geometry precisely determines synapse certainty, we begin by first analyzing 

a few illustrative toy problems. In the next section we will describe the more general 

treatment of high-dimensional networks. Importantly, we select and parametrize each toy 

problem to introduce concepts and notations that will reappear in the general solution.

More specifically, we first consider three feedforward examples with  = 3 [Fig. 4(a)]. 

The first two examples have  = 3, and the third has  = 2. In the first example, we 

will assume that the driven neuron does not respond to the first two stimulus patterns, but 

responds positively to the third pattern. So we have two semiconstrained and one constrained 

dimension,

η1 ⩽ 0, η2 ⩽ 0, and η3 = y3 > 0. (17)

In contrast, in the second example we will have two constrained and one semiconstrained 

dimension,

η1 = y1 > 0, η2 = y2 > 0, and η3 ⩽ 0. (18)

The final example will feature one unconstrained, one semiconstrained, and one constrained 

dimension,

η1 ⩽ 0, η2 = y2 > 0, and −∞ < η3 < ∞ . (19)

For technical simplicity we will consider orthonormal input patterns, X−1 = XT , which 

implies that

5Nevertheless, the vector spaces of synaptic weights are fundamentally distinct for different driven neurons, as these vector spaces 
pertain to the incoming synapses onto different driven neurons. The fact that the Z(i) matrices are the same for all i means that the 
relative orientation of the η directions, with respect to the physical w-coordinate axes (labeled by the presynaptic indices), remains the 
same for all the driven neurons.
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∑
m = 1

N
XμmXvm = δμv = ε μ ⋅ ε v, (20)

where δμν is the Kronecker δ function, which equals 1 if μ = ν and 0 if μ ≠ ν, so εμ = ε μ. 

This trivially implies that the η coordinates are related to the synaptic coordinates via a 

rotation, so the spherical biological bound on the physical coordinates transforms to an 

identical spherical bound on the η coordinates:

∑
μ = 1

N = 3
ημ

2 = ∑
m = 1

N = 3
wm

2 ⩽ W 2 . (21)

A. Problem 1

Let us first focus on the example with two semiconstrained and one constrained dimension, 

whose solution space is depicted in deep yellow in Fig. 4(b). Suppose we are interested 

in assessing whether the w1 synapse is certain. Since the w1 = 0 plane divides the weight 

space into the positive and the negative halves, the synapse will be certain if this plane 

does not intersect with the solution space, which clearly depends on the orientation of the 

plane relative to the various η directions [Fig. 4(b)]. It is thus useful to consider how the 

w1 = 0 plane’s unit normal vector pointing toward positive weights, e ≡ e 1, is oriented 

relative to the η directions. For ease of graphical illustration, here we assume the specific 

orientation diagramed in Figs. 4(b) and 4(c). Using Eq. (12) and the orthogonality of X, we 

can parametrize e  as

e = ∑
μ = 1

N = 3
Xμ1εμ = cosθc + sinθs , (22)

where

c = − ε3, and s = − cosγ ε1 + sinγ ε2 (23)

[Figs. 4(b) and 4(c)]. Geometrically, c  and s  are unit vectors along the projections of e  onto 

the constrained and semiconstrained subspaces [Fig. 4(b)]. Thus, cos θ ⩾ 0 and sin θ ⩾ 0, 

making θ an acute angle. In this example, γ is also an acute angle, as depicted in Fig. 4(c).

Note that all solutions lie within the two-dimensional semiconstrained subspace having η3 = 

y3. The w1 = 0 plane intersects this semiconstrained subspace as a line [Figs. 4(b) and 4(c)], 

and its equation in η coordinates is

w1 = e ⋅ w = sinθ −cosγ η1 + sinγ η2 − cosθy3 = 0. (24)

From the geometry of the problem [Fig. 4(c)], it is clear that if the perpendicular distance, 

ds, from the origin to this line is large enough, then it will not intersect the all-negative 

quadrant of the semiconstrained subspace within the weight bound. According to simple 

trigonometry, this occurs when
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ds > W cosγ = W 2 − y3
2 cosγ, (25)

where W = W 2 − y3
2 is the radius of the semiconstrained subspace containing the solutions. 

The perpendicular distance can be identified from Eq. (24) as

ds = y3cotθ . (26)

Substituting this expression for ds into Eq. (25), one finds through simple algebra that the w1 

= 0 hyperplane does not intersect the solution space, and hence the synapse is certain, if the 

response magnitude exceeds a critical value,

y3 > ycr = W sin2θ cos2γ
cos2θ + sin2θ cos2γ

, (27)

which we generally refer to as y-critical.

Notice that if θ increases in Fig. 4(b), then the orange line in Fig. 4(c) comes closer to the 

origin, making it intersect with the solution space for more γ angles. Therefore, the synapse 

is more difficult to identify, and indeed Eq. (27) shows that ycr increases. However, if γ 
increases, then the orange line in Fig. 4(c) rotates away from the solution space, making the 

synapse easier to identify with small ds. Accordingly, ycr decreases.

It will turn out that the concept of y-critical is general, and ycr can always be expressed in 

terms of projections of ê along several specific directions. In this example, if we define es* 

and ey to be projections of e  along, s∗ = − ε  and y = ε 3 respectively, then it is easy to check 

that one can re-express ycr as

ycr = W es ∗
2

ey
2 + es ∗

2 . (28)

We will later discover that these projections are closely related to correlations between 

pre-synaptic and postsynaptic neuronal activity patterns. Thus, the expressions in Eq. (28) 

will provide a deeper understanding of the determinants of synapse certainty.

B. Problem 2

Having identified two key angles, θ and γ, that play a role in synapse certainty, let us look 

at the example of two constrained and one semiconstrained dimensions to uncover other 

important geometric quantities. In this case, the solution space is a ray defined by η1 = y1, 

η2 = y2, and −∞ < η3 0, and the magnitude of η3 is at most

W = W 2 − y1
2 − y2

2 (29)

for solutions within the weight bound [Fig. 4(d)]. Figure 4(d) shows a geometry where the 

w1 = 0 plane intersects the solution space at the point
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w int = y1 ε 1 + y2 ε 2 + η3 ε 3 . (30)

Now we must have

e ⋅ w int = 0, (31)

as the intersection point lies on the w1 = 0 plane by definition, where we have defined 

e ≡ e 1 as in the previous toy problem. The projection directions of e  onto the constrained and 

semiconstrained subspaces are given by

c = cosβε1 + sinβε2, and s = ε3, (32)

[Fig. 4(d)]. Then combining Eqs. (22) and (32), we can find an equation to determine η3 at 

the intersection point

e ⋅ w int = cosθ y1 cosβ + y2 sinβ + η3 sinθ = 0. (33)

We next introduce α to represent the angle between c  and y  [Fig. 4(e)], such that

y1 = ycos(β − α) and y2 = y sin(β − α), (34)

where y = y . The first two terms in Eq. (33) can then be trigonometrically combined with a 

difference of angles identity to arrive at

ycosθcosα + η3 sinθ = 0 η3 = − ycotθcosα . (35)

To be able to identify the sign of w1, this intersection point must lie beyond the weight 

bounds of the solution line segment, so η3 < − W . After some straightforward algebra we 

obtain the certainty condition as

y > ycr ≡ W sin2θ
cos2θcos2α + sin2θ

. (36)

From the geometry of the problem in Figs. 4(d) and 4(e), one sees that as θ or α increases, 

the point where the orange hyperplane intersects the yellow line is closer to the origin. 

Indeed, ycr increases, making it more difficult to identify the synapse sign. Again, one can 

re-express ycr as Eq. (28) in terms of projections, with the role of s∗ being played by ε 3.

C. Problem 3

Through the two above examples we found three angles, θ,α, and γ, that determine how 

large the response of the driven neuron has to be in order for a given synapse to be certain. 

However in both examples the number of patterns were equal to the number of synapses, 

 = . When  < , we have unconstrained dimensions, and the projection of the e ≡ e 1

vector into the unconstrained subspace will also matter, because it relates to how much we 

do not know about the response properties of the driven neuron.
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Here we consider a  = 3 example with one constrained, one semiconstrained, and 

one unconstrained dimension rection as a linear combination of its projections along the 

[Fig. 4(f)]. In this case, we can express the e  synaptic diconstrained, semiconstrained and 

unconstrained dimension as

e = ∑
μ = 1

N
Xμ1 ε μ = cosθc + sinθcosϕs + sinθsinϕu, (37)

where we can always choose the directions of the unit vectors to make θ and φ acute angles. 

For the example shown in Fig. 4(f), this is achieved by choosing

c = ε 2, s = − ε 1, and u = ε 3 . (38)

Obtaining the certainty condition again involves ascertaining whether the w1 = 0 hyperplane 

intersects the deep yellow solution space [Fig. 4(f)]. In the example of Fig. 4(f), one can see 

that increasing the driven neuron response moves the yellow plane up, and there will come a 

critical point when the orange w1 = 0 plane just touches the solution space at the corner (η1 

= 0, η2 = ycr, η3). Thus,

w int = ycr ε 2 + η3 ε 3 . (39)

Since this corner point has a negative η3 component and lies on the bounding sphere, we 

must also have

η3 = − W 2 − ycr
2 , (40)

[Fig. 4(f)]. Substituting w int in the w1 = 0 plane equation,

e ⋅ w int = − sinθsinϕ W 2 − ycr
2 + cosθycr = 0, (41)

we can then determine ycr through simple algebra as

ycr = W sin2θsin2ϕ
cos2θ + sin2θsin2ϕ

. (42)

The final result now depends on the two acute orientation angles, θ and φ. By inspection of 

Fig. 4(f) or Eq. (42), it is clear that ycr increases if either θ or φ increases toward π/2. One 

therefore needs a larger response (y3) to make the synapse certain. We can again express ycr 
in terms of projections

ycr = W eu
2

ey
2 + eu

2 , (43)

where eu is the projection of e  along u, and es* does not appear because the intersection 

occurred at the origin of the semiconstrained subspace.

Biswas and Fitzgerald Page 13

Phys Rev Res. Author manuscript; available in PMC 2023 August 25.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



V. CERTAIN SYNAPSES, THE GENERAL TREATMENT

A. High-dimensional feedforward networks

We have seen in the previous section how geometric considerations can identify synapses 

that must be present to generate observed response patterns in small networks. One can 

similarly ask when a synapse is required in high-dimensional networks [Fig. 5(a)].

Although the rigorous derivation is intricate, this certainty condition is remarkably simple 

for orthonormal X (Appendix A). Quantitatively, orthonormal X imply that only a few 

parameters matter for the certainty condition, each illustrated in the previous section and 

abstractly summarized in Fig. 5(b).

For any given synapse, its physical basis vector, em, can always be written as a sum of 

components in the constrained, semiconstrained, and unconstrained subspaces,

em = ∑
μ = 1

N
Xμm ε μ = c m + s m + u m, (44)

where c m, s m and u m denote the partial sums over μ in the constrained, semiconstrained, 

and unconstrained subspaces, respectively. Note that ε μ  are orthogonal unit vectors if and 

only if X is an orthogonal matrix. In this case, the decomposition of em is a sum of three 

orthogonal vectors that can be parameterized by two angles,

em = cosθc m + sinθcosϕsm + sinθsinϕum, (45)

where c m, sm, and um are unit vectors in the constrained, semiconstrained, and unconstrained 

subspaces, and (θ, ϕ) are spherical coordinates6 specifying the orientation of em with respect 

to these subspaces [e.g., Fig. 4(f)]. In particular,

cosθ = ∑
μ ∣ yμ > 0

P
Xμm

2 ,

sinθcosϕ = ∑
μ ∣ yμ = 0

P
Xμm

2 ,

sinθsinϕ = ∑
μ = P + 1

N
Xμm

2 .

(46)

As we have seen in the toy examples, these two orientation angles heavily influence whether 

the synapse is certain.

Additionally, because the solution space’s height along cm [e.g., Fig. 4(b)] is controlled = by 

the angle between cm and y, the equation for the wm = 0 hyperplane that divides the positive 

and negative synaptic regions in the solution space depends on

6The angles also depend on the synapse but we have dropped the m index for brevity.
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y ⋅ c m = ycosα, (47)

where y is the length of y  and α is the angle between y  and cm [Fig. 4(e)]. Finally, there 

is another critical angle, which we call γ, that encodes how sm is oriented with respect 

to the solution space in the semiconstrained subspace. Using a more convenient direction, 

sm
′ ≡ − Sgn(cosα)sm, which is either along or opposite to the sm direction, we define γ to be 

the minimal angle between sm
′  and the solution space [e.g., Fig. 4(b)]. It is generally given by

cosγ = ∑
μ ∣ sμ

′ < 0
sμ

′2

(48)

(Appendix A), where sμ
′  is the μth component of sm

′ , and we have suppressed m to avoid 

cluttered notation. Although this definition and equation for γ may initially appear opaque, 

we soon clarify its meaning in terms of interpretable projections of the synapse vector.

Putting all the pieces together, we find that the mth synapse must be present, and its sign is 

unambiguous, if and only if y exceeds the critical value

ycr = W cos2γ sin2θcos2ϕ + sin2θsin2ϕ
cos2αcos2θ + cos2γ sin2θcos2ϕ + sin2θsin2ϕ

(49)

(Appendix A). Intuitively, W bounds the magnitude of weight vectors, and largeW increase 

ycr by admitting more solutions. Note that a synapse is certain, for a given y, when the 

weight bound is less than a critical value,

W cr = y cos2αcos2θ + cos2γ sin2θcos2ϕ + sin2θsin2ϕ
cos2γ sin2θcos2ϕ + sin2θsin2ϕ

. (50)

Finally, we note that we must have W ⩾ y for any solutions to exist. One can 

straightforwardly obtain the special cases Eqs. (27), (36), and (42), by substituting α = 

φ = 0, γ = φ = 0, and α = cosγ = 0 in the general expression given by Eq. (49).

The geometric description of Eq. (49) can be written more intuitively as

ycr = W es ∗
2 + eu

2

ey
2 + es ∗

2 + eu
2 = W 1

1 + ey
2/ es ∗

2 + eu
2 (51)

(Appendix A), where s∗ is the unit vector in the solution space that is most aligned with sm
′

[e.g., Fig. 4(b)], and ey, es*, and eu are the projections of em onto y = y /y, s∗, and um [Fig. 

5(b)]. Indeed, Eqs. (28) and (43) canbe readily recognized as special cases of the above 

general expression.

Each of these projections is interpretable in light of the fact that xμm represents the activity 

level of the mth presynaptic neuron in the μth response pattern. Most simply,
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ey = em ⋅ y = ∑μ = 1
P yμxμm

∑ν = 1
P yv

2
(52)

is a normalized correlation of the pre- and postsynaptic activity (note that ∑ρ = 1
N Xρm

2 = 1 As 

expected, synapse certainty is aided by large magnitudes of ey. Moreover, the sign of a 

certain synapse is the sign of this correlation, or equivalently the sign of ey. Synapse sign 

identifiability is hindered by large values of

eu = em ⋅ um = 1 − ∑
μ = 1

P
xμm

2 , (53)

which effectively measures the weakness of the presynaptic neuron’s activity, as it is the 

amount of presynaptic drive for which we do not have any information on the target 

neuron’s response. The more subtle quantity is

es ∗ = em ⋅ s ∗ = − Sgn(cosα) ∑
μ ∣ sμ

′ < 0

P
xμm

2

es ∗
2 = ∑

μ ∣ sμ
′ < 0

P
xμm

2 .
(54)

The condition that sμ
′ < 0 selects for patterns where the sign of the presynaptic activity 

is Sgn(cosα) = Sgn(ey), but the postsynaptic neuron does not respond. In other words, 

presynaptic activity should have promoted a response in the target neuron according to 

the observed activity correlation. That it does not generates uncertainty in the sign of the 

synapse. See Appendix A for a heuristic derivation of ycr based on this argument.

We can gain more useful intuition by interpreting our result in relation to what we would 

obtain in a linear neural network. In the linear problem, there are only constrained and 

unconstrained dimensions; every dimension that was semiconstrained in the nonlinear 

problem becomes constrained, with all solutions having ημ = yμ for μ = 1, …, . This 

implies that

ycr, lin = W eu
2

ey
2 + eu

2 . (55)

Returning to the nonlinear problem, recall that the certainty condition finds the largest y 
for which the solution space and wm = 0 hyperplane intersect within the weight bound, 

and this intersection is simply a point when y = ycr. Importantly, each semiconstrained 

dimension can either behave like a linear constrained dimension with ημ = yμ = 0 at this 

intersection point (toy problems 1 and 3), or like an unconstrained dimension with ημ < 

0 at the intersection point (toy problems 1 and 2).7 The first case occurs when em ⋅ ε μ

7Since this intersection point depends on m, the semiconstrained dimension indexed by μ can behave as constrained for some synapses 
and unconstrained for others.
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and ey = em ⋅ y have opposite signs and sμ
′ > 0; the second case occurs when they have the 

same sign and sμ
′ < 0. This means that one could compute the nonlinear theory’s y-critical 

from ycr,lin by appending the second class of semiconstrained dimensions onto the 

unconstrained dimensions. Mathematically, this corresponds to the replacement

eu
2 eu

2 + es ∗
2 = ∑

μ = P + 1

N
xμm

2 + ∑
μ ∣ sμ

′ < 0

P
xμm

2 , (56)

which indeed transforms Eq. (55) to Eq. (51). The role of es ∗
2  is to quantify the uncertainty 

introduced by the subset of semiconstrained dimensions that do not behave as constrained at 

the intersection point.

Since the parameters ey,es*, and eu cannot be set independently, it is convenient to 

reparameterize Eq. (51) as

ycr = W 1
1 + ry

2ep
2/ 1 − ep

2 1 − rs ∗
2 1 − ry

2 , (57)

where ep
2 = 1 − eu

2, ry
2 = ey

2/ep
2, rs ∗

2 = es ∗
2 / ep

2 − ey
2 , and all three composite parameters can be 

independently set between 0 and 1. Conceptually, ry and rs* merely normalize ey and es* 

by their maximal values, and ep is the projection of em into the activity-constrained subspace 

spanned by both constrained and semiconstrained dimensions. One could also interpret 

rs* as quantifying the effect of threshold nonlinearity. For instance, rs* = 0 describes the 

case where all semiconstrained dimensions are effectively constrained, but rs* increases as 

some of the semiconstrained dimensions start to behave like unconstrained dimensions. As 

expected, ycr is a decreasing function of ry
2 and ep

2 and an increasing function of rs ∗
2  [Fig. 

5(c)].

B. Regarding nonorthogonal input patterns

While a complete treatment of the certainty condition for generally correlated input patterns 

is beyond the scope of this paper, we could find a conservative bound for y-critical that 

may be useful when patterns are close to being orthogonal. The details of the derivation are 

discussed in the final subsection of Appendix A.

The major challenge caused by nonorthogonal patterns is that the spherical weight space 

becomes elliptical in terms of the η coordinates. Thus, the main idea behind the bound is 

that one can always find the sphere that just encompasses this ellipse. We can then use 

our formalism to obtain a conservative y-critical, such that if the norm of y  is larger than 

this value then all solutions within the encompassing sphere have a consistent sign for the 

synapse under consideration. An interesting insight that emerges from our analysis is that the 

relative orientations between

n m ≡ ∑
μ = 1

N
Xmμ

−1 ε μ (58)
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and the various important η directions play the role of θ, φ, α and γ (Appendix A). Note 

that n m = em when X is an orthogonal matrix. We anticipate that n  will also be an important 

player in a more comprehensive treatment of nonorthogonal patterns.

C. Application to recurrent networks

As we explained in Sec. III, to find the ensemble of all incoming weight vectors onto 

the ith driven neuron, one can use the results obtained for the feedforward network and 

just substitute X with the Z(i) matrix. Consequently, identifying certain synapses onto the 

ith neuron can follow the route outlined for the feedforward scenario as long as Z(i) is 

orthogonal. So for example, if we want to ascertain whether any incoming synapse to the ith 

neuron is certain, we have to replace xμm zμm
(i)  and yμ → yμi in Eqs. (51)–(54) to compute 

ycr.

D. Numerical illustration of the certainty condition

To illustrate and test the theory numerically, we first considered a small neural network of 

three input neurons and three driven neurons [Fig. 6(a)]. This small number of synapses 

meant that we could comprehensively scan the entire spherical weight space without relying 

on a numerical algorithm to find solutions.8 This is important because numerical techniques, 

such as gradient descent learning, potentially find a biased set of solutions that incompletely 

test the theory. We supposed that each driven neuron has three inputs, and we constrained 

weights with two orthonormal stimulus responses. We set W = 1 for all simulations and 

numerically screened weights randomly. See Appendix F for complete simulation details.

The first driven neuron in Fig. 6(a), y1, receives only feedforward drive, and we suppose 

that it responds to one stimulus condition with response y (μ = 2), but it does not respond 

to the other (μ = 1). Its synapses thus have one constrained, one semiconstrained, and one 

unconstrained dimension, and all of the terms in Eq. (49) contribute to y-critical. We could 

thus use y1 to verify Eq. (49). Moreover, this scenario includes the illustrative example of 

Fig. 4(f) as a special case, so we could also use y1 to verify Eq. (42).

To these ends, we decided to focus on a two-parameter family of input patterns,

x = −sinψcosχ cosψcosχ sinχ
cosψ sinψ 0 , (59)

where rows correspond to different input patterns and columns correspond to different input 

neurons, as usual, and we extend x to the full-rank orthogonal matrix

X =
−sinψcosχ cosψcosχ sinχ

cosψ sinψ 0
sinψ sinχ −cosψ sinχ cosχ

. (60)

8Our results for the certainty condition hold for network ensembles that exactly generate the desired responses. For numerical tests, 
we had to allow for small deviations from the desired responses, but our predictions proved robust.
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By Eq. (44), the physical basis vector corresponding to the synapse from the first input 

neuron is thus

e 1 = cosψ ε 2 + sinψ cosχ − ε 1 + sinψ sinχ ε 3, (61)

and it has the same general form as Eqs. (37) and (45), where ε 3 plays the role of u. If ψ 
and χ are both acute, then one can identify them with θ and φ in Fig. 4(f), and the roles 

of c  and s  are played by ε 2 and − ε 1, respectively. In this case α = 0, cosγ = 0, and the 

theoretical dependencies of ycr on θ and φ are given by Eq. (42). Figure 6(b) illustrates 

these dependencies as the purple and dark green curves. If ψ is acute, but χ is obtuse, then 

according to our conventions, θ = ψ, φ = π – χ, c = ε 2, and s = ε 1. Now α = 0 and cosγ = 

1, and our general formula, Eq. (49), implies

ycr = W sinθ = W sinψ . (62)

These dependencies are plotted as the pink and the light green curves in Fig. 6(b). We do not 

plot cases where ψ is obtuse, because obtuse and acute ψ result in equivalent ycr formulas. 

Whether ψ is acute or obtuse nevertheless matters because it determines the sign of the w1 

synapse when it is certain.

The black dots in Fig. 6(b) show the largest response magnitude, y, for which we 

numerically found solutions with both positive and negative w1 (see Appendix F for 

numerical methods), thereby providing a numerical estimate of ycr. The theoretical curves 

and numerical points precisely aligned in all cases. The differences between the light 

and dark theoretical curves illustrates the effect of nonlinearity. When χ is obtuse, the 

semiconstrained dimension effectively behaves as unconstrained, and the mixing angle 

between the semiconstrained and unconstrained dimension is irrelevant to y-critical. When 

χ is acute, the semiconstrained dimension effectively behaves as constrained, as if its 

coordinate were set to zero. Moreover, these results confirmed that stronger responses were 

needed to make synapses fixed sign when the synaptic direction was less aligned with the 

constrained dimension [Fig. 6(b), purple and pink]. Furthermore, smaller y-critical values 

occurred when the synaptic direction anti-aligned with the semiconstrained dimension [Fig. 

6(b), purple versus pink, dark green versus light green].

We next wanted to check the validity of our results for the recurrently connected neurons 

in Fig. 6(a). We therefore needed to tailor the steady-state activity levels of the recurrent 

network to result in orthogonal presynaptic input patterns for each driven neuron. In 

mathematical terms, Z(i) must be an orthogonal matrix for i = 1, 2, 3. We achieved this 

by considering a two-parameter family of driven neuronal responses in which the activity 

patterns of y2 and y3 were matched to those of x1 and x3, respectively. This construction 

means that all three driven neurons receive the same input patterns. To ensure positivity of 

driven neuronal responses, we set χ as an acute angle and ψ as the negative of an acute 

angle.

Although y2 has both feedforward and recurrent inputs, we can analyze its connectivity 

in exactly the same way as y1. Recurrence only complicates the analysis for neurons that 
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synapse onto themselves, like y3, since changing the output activity also changes the input 

drive. So y 3  and ycr are not independent. Here we focused on the certainty condition for 

the self-synapse, wy3,y3, for which ycr = cos χ, and y 3 = sinχ. Therefore, the synapse 

should be certain if 45° < χ ⩽ 90°. Since θ = π/2 − χ according to our conventions,9 this is 

equivalent to 0⩽ θ < 45° [Fig. 6(c), top]. Our numerical results precisely recapitulated these 

theoretical expectations [Fig. 6(c), bottom], as the self-connection was consistently positive 

across all simulations whenever this condition on θ was met. See Appendix E for certainty 

condition analyses for other synapses onto y3 and Appendix F for complete simulation 

details.

VI. ACCOUNTING FOR NOISE

A. Finding the solution space in the presence of noise

So far we have only considered exact solutions to the fixed point equations. However, it 

is also important to determine weights that lead to fixed points near the specified ones. 

For example, biological variability and measurement noise generally make it infeasible to 

specify exact biological responses. Furthermore, numerical optimization typically produces 

model networks that only approximate the specified computation. We therefore define the 

ℰ-error surface as those weights that generate fixed points a distance ℰ from the specified 

ones,

Vℰ = w ∣ ∑
μ = 1

P
∑
i = 1

D
yμi − yμi(w) 2 = ℰ2 , (63)

where yμi is the specified activity of the ith driven neuron in in the μth fixed point, and yμi

is the corresponding activity level in the fixed point approached by the model network when 

it is initialized as yi(t = 0) = yμi. If the network dynamics do not approach a fixed point, 

perhaps oscillating or diverging instead [54], we say ℰ = ∞.

Each ℰ-error surface can be found exactly for feedforward networks. For illustrative 

purposes, let us first consider the  = 1 feedforward scenario in which the driven neuron 

is active in every response pattern. This means that yμ > 0 for all μ = 1, …, , and we 

can reorder the μ indices to sort the driven neuron responses in ascending order, 0 < y1 

< y2 < ⋯ < y . Here we assumed that no two response levels are exactly equal, as is 

typical of noisy responses. Since all responses are positive, the zero-error solution space has 

no semiconstrained dimensions, and the only freedom for choosing w is in the  =  − 

 unconstrained dimensions. Therefore, the zero-error surface of exact solutions, 0, is a 

-dimensional linear subspace, and 0 is a point in the -dimensional activity-constrained 

subspace.

9For y3, μ = 1, 2 are constrained and semiconstrained, respectively. Accordingly,

ey3y3 = sinχ ε 1 + cosχ ε 3 = cosθ ε 1 + sinθ ε 3 = cosθc + sinθu .
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How does this geometry change as we allow error? For 0 < ℰ < y1, we must have yμ > 0
for all μ. Therefore, the nonlinearity is irrelevant, and ℰ-error surfaces are spherical in the 

activity-constrained η coordinates [Eq. (63), Fig. 7(a(i))]. However, once ℰ = y1 it becomes 

possible that y1 = 0, and suddenly a semi-infinite line of solutions appears with η1 ⩽ 0. As 

ℰ further increases, this line dilates to a high-dimensional cylinder [Fig. 7(a(ii))]. A similar 

transition happens at ℰ = y2, whereafter two cylinders cap the sphere [Fig. 7(a(iii))]. Things 

get more interesting as ℰ increases further because two transitions are possible. A third 

cylinder appears at ℰ′ = y3. However, at ℰ″ = y1
2 + y2

2 it is possible for both y1 and y2

to be zero, and the two cylindrical axes merge into a semi-infinite hyperplane defined by 

η1 ⩽ 0, η2 ⩽ 0. Thus, when ℰ″ < ℰ′ the error surface grows to attach a third cylinder 

[Fig. 7(a(iv))], and when ℰ″ < ℰ′ the two cylindrical surfaces merge to also include planar 

surfaces in between [Fig. 7(av)]. These topological transitions continue by adding new 

cylinders and merging existing ones, and the sequence is easily calculable from {yμ}. Note 

that we use the terminology “topological transition” to emphasize that the structure of the 

error surface changes discontinuously at these values of error. The geometric transitions we 

observe here also relate to topological changes in a formal mathematical sense. For instance, 

while there are no incontractible circles in Fig. 7(a(ii)), one develops as we transition to Fig. 

7(a(iii)).

In general, yμ may also be zero or negative in the presence of noise. Whenever yμ = 0, 

the μth response pattern generates a semiconstrained dimension in 0. However, if some 

response levels are negative, then there are no exact solutions at all. However, it becomes 

possible to find solutions when ℰ = ∑ μ ∣ yμ < 0 yμ
2,, and each response pattern associated 

with a negative yμ acts as a semiconstrained dimension in ℇ. As illustrated above, more 

semiconstrained dimensions open up as more error is allowed in each of these cases.

This geometry only approximates ℰ-error surfaces for recurrent networks (Appendix C). 

For instance, displacing yμi from its specified value changes the input pattern that define 

the ε μ directions for downstream driven neurons, but this effect is neglected here. We will 

nevertheless find that this feedforward approximation to ℰ-error surfaces is practically useful 

for predicting synaptic connectivity in recurrent networks as well.

B. Predicting connectivity in the presence of noise

The threshold nonlinearity and error-induced topological transitions can have a major impact 

on synapse certainty [Fig. 7(b)]. For example, one might model a neuronal dataset with 

a linear neural network and find that models with acceptably low error consistently have 

positive signs for some synapses. However, if measured neural activity was sometimes 

comparable to the noise level, then semiconstrained dimensions could open up that suddenly 

make some of these synapse signs ambiguous [Fig. 7(b), left]. Although semiconstrained 

dimensions can never make an ambiguous synapse fully unambiguous, semiconstrained 

dimensions can heavily affect the distribution of synapse signs across the model ensemble 

by providing a large number of solutions that have consistent anatomical features [Fig. 7(b), 

right].
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We therefore generalized the certainty condition to include the effects of error, including 

topological transitions in the error surface (Appendix C). As before, finding the certainty 

condition amounts to determining when the wm = 0 hyperplane intersects the solution 

space within the weight bound, but to account for noise of magnitude ε, we must now 

check whether an intersection occurs with any ℰ-error surface with ℰ ⩽ ε. No intersections 

will occur if and only if every nonnegative y  within ε of the provided -vector of noisy 

target neuron activity [Fig. 3(c)] satisfies its zero-error certainty condition, and each y  is a 

possible denoised version of it [Eq. (63)]. We thus define y-critical in the presence of noise 

as the maximal ycr [Eq. (51)] among this set of y .

Although we lack an exact expression for y-critical in the presence of noise, we derived 

several useful bounds and approximations (Appendix C). We usually focus on a theoretical 

upper bound for y-critical, ycr,max. Note that this upper bound suffices for making 

rigorous predictions for certain synapses, because y > ycr,max ⇒ y > y-critical. In the 

absence of topological transitions, this formula is

ycr,max = W es ∗
2 + eu

2

ey
2 + es ∗

2 + eu
2 + ε2

W 2 1 + ey
2 ep

2 − ey
2

ey
2 + es ∗

2 + eu
2 2

+ ε
W 1 + ey

2 ep
2 − ey

2

ey
2 + es ∗

2 + eu
2 2 .

(64)

We also computed a lower bound, ycr,min, to assess the tightness of the upper bound. This 

bound is

ycr,min = W es ∗
2 + eu

2

ey
2 + es ∗

2 + eu
2 + ε

W (65)

without topological transitions. Both bounds increase with error and should be considered to 

be bounded above byW. As expected, both expressions reduce to Eq. (51) as ε/W → 0. We 

also note that the two bounds coincide, to leading order in ε/W, if ey ≪ max(es*, eu) and 

ep/max(es*, eu) = (1), and we argue in Appendix B that this is typical when the network 

size is large.

The effect of topological transitions is that ycr,max and ycr,min become the maximums 

of several terms, each corresponding to a way that constrained dimensions could behave 

as semiconstrained within the error bound (Appendix C). We compute each term from 

generalizations of Eqs. (64) and (65) that account for the amount of error needed to open up 

semiconstrained dimensions.

C. Testing the theory with simulations

To examine our theory’s validity, we assessed its predictions with numerical simulations 

of feedforward and recurrent networks [Fig. 8(a)]. Each assessment used gradient descent 

learning to find neural networks whose late time activity approximated some specified 

orthogonal configuration of input neuron activity and driven neuron activity (Appendix F). 
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We then used our analytically derived certainty condition with noise to identify a subset 

of synapses that were predicted to not vary in sign across the model ensemble (W = 1), 

and we checked these predictions using the numerical ensemble. We similarly checked 

predictions from simpler certainty conditions that ignored the nonlinearity or neglected 

topological transitions in the error surface (Appendix C). Note that we expected gradient 

descent learning to often fail at finding good solutions in high dimensions, as our theory 

predicts that each semiconstrained dimension induces local minima in the error surface [Fig. 

7(a)]. Since we did not want the theory to bias our numerical verification of it, we focused 

our simulations on small to moderately sized networks, where we could reasonably sample 

the initial weight distribution randomly. Future work will consider more realistic neural 

network applications.

We first considered feedforward network architectures, for which our analytical treatment 

of noise is exact. To illustrate how nonlinearity and noise affect synapse certainty, we 

calculated the magnitude of postsynaptic activity needed to make a particular synapse sign 

certain [Fig. 8(b)]. We specifically considered 102 random input-output configurations of a 

small feedforward network with 6 input neurons (  = 5,  = 2), which were tailored to have 

orthonormal input patterns and generate one topological error surface transition at small 

errors. In particular, we generated random orthogonal matrices by exponentiating random 

antisymmetric matrices, we set one element of y to a small random value to encourage 

the topological transition, and we ensured that the other nonzero random element of y was 

large enough to preclude additional transitions (Appendices C and F). For each input-output 

configuration, we then systematically varied the magnitude of driven neuron activity, y, 

finding 105 synaptic weight matrices with moderate error, ℰ2 ≈ ε2, for each magnitude 

y. Since randomly screening a six-dimensional synaptic weight space is not numerically 

efficient, we applied gradient descent learning. Nevertheless, the small network size meant 

that we could comprehensively sample the solution space and numerically probe the distinct 

predictions made by each bound or approximation used to estimate y-critical.

As expected, the maximum value of y that produced numerical solutions with mixed synapse 

signs [Fig. 8(b), black dots] was always below the theoretical upper bound for y-critical 

[Fig. 8(b), black line]. In contrast, mixed-sign numerical ensembles were often found above 

theoretical y-critical values that neglected topological transitions in the error surface [Fig. 

8(b), yellow line] or that neglected the nonlinearity entirely [Fig. 8(b), cyan line]. This 

means that these simplified calculations for estimating y-critical make erroneous predictions, 

because the synapse sign is supposed to be exclusively positive or negative whenever y 
exceeds y-critical, by definition. Therefore, we were able to accurately assess synapse 

certainty, and this generally required us to include both the nonlinearity and noise-induced 

topological transitions in the error surface.

We next asked how often we could identify certain synapses in larger networks. For this 

purpose, we generated 25 random input-output configurations in the feedforward setting 

(Appendix F), again with orthonormal input patterns, but this time we increased the number 

of input neurons from 4 to 100 across the configurations [Fig. 8(c)]. As we increased the 

size of the network, we kept /  fixed at 0.25 and /  fixed at 1 [Fig. 8(c), brown] 

or 0.5 [Fig. 8(c), purple]. These scaling relationships put our simulations in the setting of 
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high-dimensional statistics [65], where both the number of parameters and the number of 

constraints increase with the size of the network. In this high-dimensional regime, a simple 

heuristic argument suggests that the number of zero-error certain synapses should scale 

linearly with the number of synapses (Appendix B), because ycr and the typical magnitude 

of y scale equivalently with . Here we tested this prediction by setting y randomly, setting 

y = 1 − ln 2/-  to approximate the median norm of vectors in the unit -ball (Appendix B), 

and numerically finding a small error solutionC for each configuration (ℰ2/  ≈ 10−6).

As expected, we empirically found that the number of certain synapses predicted by the 

theory [Fig. 8(c), solid lines] scaled with the network size linearly [Fig. 8(c), dashed lines]. 

The jaggedness of the solid curves reflect the fact that each point is specific to the random 

input-output configuration constructed for that value of . The purple curve corresponds to 

the case when  = 2  = 4  and the brown curve when  =  = 4 . Furthermore, for every 

certain synapse predicted, we verified that its predicted sign was realized in the numerical 

solution we found [Fig. 8(c), circles]. These results suggest that the theory will predict many 

synapses to be certain in realistically large neural systems.

Finally, we empirically tested our theory for a recurrent network [Figs. 8(d) and 8(e)], 

where our treatment of noise is only approximate. For this purpose, we considered networks 

without the self-coupling terms,  = ℐ +  − 1. We constructed a single random 

configuration with nonnegative driven neuron responses and orthogonal presynaptic patterns 

for one of the driven neurons10 (Appendix F). This driven neuron could thus serve as the 

target neuron for our analyses. Note that it is sometimes possible to orthogonalize the input 

patterns for more than one driven neuron, but this is irrelevant to our analysis and is not 

pursued here. We then used gradient descent learning to find around 4500 networks that 

approximated the desired fixed points with variable accuracy. For technical simplicity, we 

first found connectivity matrices using a proxy cost function that treated the network as if it 

were feedforward. We then simulated the neural network dynamics with these weights and 

correctly evaluated the model’s error as prescribed by Eq. (63).

This network ensemble revealed that constrained and semiconstrained dimensions accurately 

explained the structure of the solution space for recurrent networks with nonzero error. 

Figure 8(d) shows the projection of the corresponding solution space along two η directions, 

one predicted to be constrained by the feedforward theory and the other predicted to 

be semiconstrained. As predicted, the extension of the solution space along the negative 

semiconstrained direction was clearly discernible. However, recurrence implies that the 

exact solution space is not perfectly cylindrical around the semiconstrained axes (Appendix 

C), because the driven neuron inputs to the target neuron can themselves vary due to noise. 

Here this effect was empirically insignificant, and the geometric structure of the solution 

space conformed rather well to our feedforward prediction. One might have expected the 

error [color in Fig. 8(d)] to increase monotonically as one moves away from the center 

of semiconstrained cylinder, but this expectation is incorrect for two reasons. First, we are 

visualizing the error surface as a projection along two dimensions, yet variations in other 

10We performed this numerical experiment with several random configurations to confirm that the results did not qualitatively depend 
on the random sample.

Biswas and Fitzgerald Page 24

Phys Rev Res. Author manuscript; available in PMC 2023 August 25.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



η coordinates add variation to the error.11 Second, we are visualizing the solution space 

for one target neuron, but other driven neurons in the recurrent network contribute to the 

summed error represented by the color.

Moreover, the theory correctly predicted how the number of certain synapses would decrease 

as a function of ε [Fig. 8(e)], and we never found a numerical violation of the theoretical 

certainty condition that included nonlinearity and noise. In Fig. 8(e), the yellow circles 

represent the number of certain synapses that were predicted by the theory and verified to 

have synapse signs that agreed with the theoretical prediction. Here accurate predictions did 

not require us to account for topological error surface transitions. In contrast, although our 

simulations usually agreed with the predictions of the linear theory [Fig. 8(e), cyan circles], 

they could also disagree. In Fig. 8(e), the blue crosses indicate configurations where the 

linear theory incorrectly predicted some synapse signs. The absence of red crosses reiterates 

the consistency of predictions coming from the nonlinear treatment.

VII. DISCUSSION

In summary, we enumerated all threshold-linear recurrent neural networks that generate 

specified sets of fixed points, under the assumption that the number of candidate synapses 

onto a neuron is at least the specified number of fixed points. We found that the geometry of 

the solution space was elegantly simple, and we described a coordinate transformation that 

permits easy classification of weight-space dimensions into constrained, semiconstrained, 

and unconstrained varieties. This geometric approach also generalized to approximate 

error-surfaces of model parameters that imprecisely generate the fixed points. We used 

this geometric description of the error surface to analyze structure-function links in neural 

networks. In particular, we found that it is often possible to identify synapses that must be 

present for the network to perform its task, and we verified the theory with simulations of 

feedforward and recurrent neural networks.

Rectified-linear units are also popular in state of the art machine learning models [29,66–

68], so the fundamental insights we provide into the effects of neuronal thresholds on neural 

network error landscapes may have practical significance. For example, machine learning 

often works by taking a model that initially has high error and gradually improving it 

by modifying its parameters in the gradient direction [69]. However, error surfaces with 

high error can have semiconstrained dimensions that abruptly vanish at lower errors (Fig. 

7). Local parameter changes typically cannot move the model through these topological 

transitions, because models that wander deeply into semiconstrained dimensions are far from 

where they must be to move down the error surface. The model has continua of local and 

global minima, and the network needs to be initialized correctly to reach its lowest possible 

errors. This could provide insight into deep learning theories that view its success as a 

consequence of weight subspaces that happen to be initialized well [70,71].

The geometric simplicity of the zero-error solution space provides several insights into 

neural network computation. Every time a neuron has a vanishing response, half of a 

11For example, imagine projecting the 3D surfaces in Fig. 7(a) along two dimensions.
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dimension remains part of the solution space, which the network could explore to perform 

other tasks. In other words, by replacing an equality constraint with an inequality constraint, 

simple thresholding nonlinearities effectively increase the computational capacity of the 

network [72,73]. The flexibility afforded by vanishing neuronal responses thereby provides 

an intuitive way to understand the impressive computational power of sparse neural 

representations [50,74–76]. Furthermore, the brain could potentially use this flexibility to 

set some synaptic strengths to zero, thereby improving wiring efficiency. This would link 

sparse connectivity to sparse response patterns, both of which are observed ubiquitously in 

neural systems.

Our theory could be extended in several important ways. First, we only derived the certainty 

condition to identify critical synapses from orthonormal sets of fixed points. Although our 

orthogonal analysis also provides a conservative bound for a general set of fixed points 

(Appendix A), a more precise analysis will be needed to pinpoint synapses in realistic 

biological settings where stimulus-induced activity patterns may be strongly correlated. 

Since our error surface description made no orthonormality assumptions, this analysis will 

only require more complicated geometrical calculations to discern whether the synapse sign 

is consistent across the space of low-error models. Furthermore, we could use the error 

surfaces to identify multisynapse anatomical motifs that are required for function, or to 

estimate the fraction of models in which an uncertain synapse is excitatory versus inhibitory. 

It would also be interesting to relax the assumption that the number of fixed points is small. 

This would allow us to consider scenarios where the fixed points can only be generated 

nonlinearly. We could also consider cases where no exact solution exists at all. Here we 

assumed that we knew the activity level of every neuron in the circuit. This is not always the 

case, and it will be important to determine how unobserved neurons alter the error landscape 

for synaptic weights connecting the observed neurons. The error landscape geometry will 

also be affected by recurrent network effects that we ignored here (Appendix C). It will be 

interesting to see whether the geometric toolbox of theoretical physics can provide insights 

into the nontrivial effects of unobserved neurons and recurrent network dynamics. Finally, 

we note that it will sometimes be important to analyze networks with alternate nonlinear 

transfer functions. Our analyses already apply exactly to recurrent networks with arbitrary 

threshold-monotonic nonlinear transfer functions (Appendix D). Moreover, our analyses can 

approximate any nonlinearity by treating its departures from threshold-linearity as noise 

(Appendix D). An extension to capped rectified linear units [67], which saturate above a 

second threshold, would also be straightforward. In particular, semiconstrained dimensions 

would emerge from any condition where the target neuron is inactive or saturated.

Our primary motivation for undertaking this study was to find rigorous theoretical methods 

for predicting neural circuit structure from its functional responses. This identification can 

be used to corroborate or broaden circuit models that posit specific connectivity patterns, 

such as center-surround excitation-inhibition in ring attractors [16–18] or contralateral relay 

neuron connectivity in zebrafish binocular vision [12,77]. More generally, if an experimental 

test violates the certainty conditions we derived using our ensemble modeling approach, it 

will suggest that some aspect of model mismatch is important. We could then move on to the 

development of qualitatively improved models that might modify neuronal nonlinearities, 

relax weight bounds, incorporate subcellular processes or neuromodulation, or hypothesize 
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hidden cell populations. However, we hope that our focus on predictions that follow 

with certainty from simple network assumptions will enable predictions that are relatively 

insensitive to minor mismatches between our abstract model and the real biological brain. 

More nuanced predictions may require more nuanced models.

An important parameter of the theory is the weight bound. In particular, W bounds the 

magnitude of synaptic weight vectors in biological networks, and our certainty condition 

declares a synapse to be necessary when the ratio y/W exceeds a critical value. It is not a 
priori clear how to set this scale parameter without additional biological data. Nevertheless, 

one could use the neuronal activity data to compute each synapse’s W-critical value, 

below which the certainty condition is satisfied, and rank-order the synapses according 

to decreasing W-critical values. Until we know the value of W, we do not know where to 

draw the line between certain synapses and uncertain synapses. However, our theory predicts 

that all of the certain synapses will be at the top of the list, which specifies a sequence 

of experimentally testable predictions and may already provide biological insights into the 

important synaptic connections. Testing these predictions can help constrain the theory’s 

biological bound parameter.

Our theory describes function at the level of neural representations. This description is 

useful because many systems neuroscience experiments measure representations directly, 

and it is important to build mechanistic models that explain these data in terms of neural 

network interactions [12,15,18,77]. However, it would also be interesting to link structure to 

function at the higher levels of behavior and cognition. This is a significantly different 

problem because multiple representations can support the same high-level functions, 

and both neural network structure and representation can change over time [78–85]. 

Consequently, experimental tests of our current framework must measure network structure 

and representation on timescales shorter than the network’s representational dynamics, 

and certain synapses may be most biologically meaningful in innate circuits with limited 

plasticity. Extensions to our framework may also be useful for relating structural and 

representational dynamics in circuits for learning [86].

An exciting prospect is to explore how our ensemble modeling framework can be combined 

with other theoretical principles and biological constraints to obtain more refined structure-

function links. For instance, we could refine our ensemble by restricting to stable fixed 

points. Alternatively, once the sign of a given synapse is identified, Dale’s principle might 

allow us to fix the signs of all other synapses from this neuron [87]. This would restrict 

the solution space and could make other synapses certain. Utilizing limited connectomic 

data to impose similar restrictions might also be a fruitful way to benefit from large-

scale anatomical efforts [7,10,13,14]. Finally, rather than restricting the magnitude of 

the incoming synaptic weight vector, we could consider alternate biologically relevant 

constraints, such as limiting the number of synapses, minimizing the total wiring length, 

or positing that the network operates at capacity [88,89]. These changes would modify the 

certainty conditions in our framework, as well as our experimental predictions. We could 

therefore assess candidate optimization principles and biological priors experimentally. 

While the base framework developed here was designed to identify crucial network 

connections required for function, we hope that our approach will eventually allow us 
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to assess theoretical principles that determine how neural network structure follows from 

function.
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APPENDIX A: A CERTAINTY CONDITION TO PINPOINT SYNAPSES 

REQUIRED FOR SPECIFIED RESPONSE PATTERNS

1. Preliminaries

For completeness, we begin by briefly reviewing a few central concepts from the main 

manuscript.

a. From recurrent to feedforward networks

Let us consider a neural network of ℐ input neurons that send signals to an interconnected 

population of  driven neurons governed by dynamical equations (6), as described in the 

main manuscript. At steady-state, since all time-derivatives are zero, Eq. (6) yields

yμi = Φ ∑
m = 1

D
wimyμm + ∑

m = D + 1

D + ℐ
wimxμ, m − D

= Φ ∑
m = 1

N
wimzμm ,

(A1)

where, as prescribed in the main manuscript, yμi and xμm denote steady-state activity levels 

of the driven and input neurons to the μth stimulus, which we have combined into zμm, 

and  is the number of incoming synapses onto each of the driven neurons. Equation 

(A1) provides  ×  nonlinear equations for  ×  unknown parameters. However, we 

immediately notice that the steady-state activity of neuron i depends only on the ith row of 

the connectivity matrix, so these equations separate into  independent sets of  equations 

with  unknowns, the weights onto a given driven neuron. In other words, the recurrent 

network involving  driven and ℐ input neurons decomposes into  feedforward networks 

with  =  + ℐ feedforward inputs. The steady-state equations for these feedforward 

networks are given by

yμ = Φ ∑
m = 1

N
zμmwm , (A2)

where we have now suppressed the i index in yμi and in wim. For this feedforward network 

we will refer the ith neuron as the target neuron, and it is as if that all the neurons 

(driven and input) are providing feedforward inputs to it. As long as we only consider exact 

solutions to the fixed point equations, the problem of identifying synaptic connectivity in a 
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recurrent network reduces to solving the problem for feedforward networks. Thus, in the rest 

of this Appendix we will focus on identifying wm’s satisfying Eq. (A2).

Note that the main text used the notation zμm
(i)  to emphasize that the set of presynaptic neurons 

may depend on the target neuron, but we simply write zμm throughout the Appendices with 

the understanding that the formalism applies to a specified target neuron whose index is 

suppressed. Furthermore, for conceptual simplicity the main text first stated many results 

in a feedforward setting with a single driven neuron, but the Appendices immediately treat 

the general case where presynaptic partners may come from either the input or driven 

populations of neurons.

b. A convenient set of variables

In all our discussions in this section the input neuronal response matrix, zμm, will be 

assumed to be fixed. Note that zμm connects synaptic weight vectors to the target response 

vector and can be used to define  weight combinations, the η coordinates. Each η 
coordinate controls the target response to a single stimulus condition:

yμ = Φ ημ , whereημ ≡ ∑
m = 1

N
zμmwm . (A3)

It is rather convenient to extend this set of  η coordinates to a basis set of  η coordinates, 

such that all synaptic weights can be uniquely expressed as a linear combination of these 

η coordinates, and vice versa. To see how this can be done, we will henceforth make the 

simplifying assumption that the  ×  matrix has the maximal rank, , although we 

anticipate that much of our framework, results, and insights will apply more generally. If z 
has maximal rank, then its kernel will be an (  − )-dimensional linear subspace spanned 

by (  − ) orthogonal basis vectors, denoted by ε μ for μ =  + 1 … . We can now extend 

z to an  ×  matrix, Z, as follows:

Zμm = zμm for μ = 1…P,  and ∀m,
Zμm = εμm for μ = P + 1…N,  and ∀m, (A4)

where εμm is the mth component of the null vector ε μ. With this construction, it is easy to 

see that the new η coordinates,

ημ = ∑
m = 1

N
Zμmwm, for μ = P + 1, …, N, (A5)

remain completely unconstrained by the specified response patterns, as these linear 

combinations do not contribute to any of the target responses. In contrast, the original η 
coordinates,

ημ = ∑
m = 1

N
Zμmwm = ∑

m = 1

N
zμmwm, forμ = 1, …, P, (A6)

are all constrained by the data:
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ημ
= yμ forμ = 1, …, C, the constrained dimensions,
⩽ 0 forμ = C + 1, …, P, the semiconstrained dimensions, (A7)

where for notational simplicity we have ordered the response patterns such that yμ = 0 only 

for μ = 1, …, . Also, we extend the yμ’s to an -dimensional vector, y , by assigning yμ = 

0 for μ =  + 1 … .

The extended response matrix Z defines a basis transdirections formation connecting 

physical synaptic directions, em, with directions

ε μ ≡ ∑
m = 1

N
emZmμ

−1, (A8)

along which the η coordinates change. These ε  vectors clearly differentiate directions in the 

weight space that are activity-constrained by neuronal responses (μ = 1, …, ) from those 

that are not (μ =  + 1, …, ). We can express any weight vector in either the em  basis or 

the ε μ  basis:

w = ∑
m = 1

N
wmem = ∑

μ = 1

N
ημ ε μ,

where

wm = ∑
μ = 1

N
Zmμ

−1ημ, ημ = ∑
m = 1

N
Zμmwm,

ε μ ≡ ∑
m = 1

N
emZmμ

−1, em = ∑
μ = 1

N
ε μZμm .

(A9)

For later convenience we also define the number of semiconstrained and unconstrained 

dimensions as,  =  −  and  =  − , respectively.

2. Derivation of the certainty condition for orthogonal input patterns

Our goal here is to use the solution space (i.e., ensemble of weights that are precisely able 

to recover the specified target responses) to derive a condition for when we can be certain 

that a given synapse must be nonzero. For technical simplicity, we will specialize to the case 

when all the response patterns are orthonormal, i.e.,

∑
m = 1

N
zμmzvm = δμν zzT = I, (A10)

where I is the identity matrix. Then we can always choose the extended Z matrix to be an 

 ×  orthogonal matrix, such that Z−1 = ZT and the ε μ vectors now form an orthonormal 

basis. Motivated by biological constraints, we will impose a bound on the magnitude of the 
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synaptic weight vector. For orthonormal response patterns, this translates into a spherical 

bound on η coordinates as well [see Fig. 5(b)]:

w
2

= ∑
m = 1

N
wm

2 = ∑
μ = 1

N
ημ

2 ⩽ W 2 . (A11)

We refer to this -dimensional ball, in which all admissable synaptic weights reside, as the 

weight space.

a. A heuristic argument for y-critical

Before diving into the rigorous and technical derivation, in this subsection we first try to 

intuitively understand how the certainty condition (51) can arise. For this purpose, let us start 

with a linear theory with no unconstrained dimension, so  =  = 0. In this case, there is a 

unique set of weights that can precisely reproduce the observed responses:

wm = ∑
μ = 1

N
Zmμ

−1yμ = ∑
μ = 1

N
Zμmyμ . (A12)

Since Zμm = zμm represents the responses of the mth presynaptic neuron, the solution for 

the mth synaptic weight (A12) is simply the correlation between the pre and post synaptic 

activity. In a linear theory, the sign of the synapse is thus dictated by the sign of the 

correlation between the pre and post synaptic neuron.

Let us now allow a single ( th) unconstrained direction. One can think of this situation 

as if we do not have the information on how the target neuron would respond to the 

unconstrained stimulus pattern. If we knew that this response was say, yu, then we would 

have been able to determine the sign of wm:

Sgn wm = Sgn ∑
μ = 1

N − 1
Zμmyμ + ZNmyu . (A13)

However, since we do not know what the last term is, if it can cancel the first term for some 

allowed value of yu then the overall sign becomes ambiguous. Conversely, wm becomes 

certain if

∑
μ = 1

N − 1
Zμmyμ > ZNmyu ∀yu . (A14)

Now, it is easy to recognize that the first term is just e ⋅ y = yey, where we have suppressed 

the m index on em here to reduce notational clutter and will continue to doso while referring 

to the synapse direction whose we are considering.12 ey = e ⋅ y refers to the projection of e
along y. Also, note that in this simple case with one unconstrained direction, the projection 

12We do want to point out that in the main manuscript since we were introducing the various concepts and relevant quantities, for 
clarity we did explicitly keep track of the m index.
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of e  along the unconstrained subspace is just given by eu = e ⋅ ε N = ZNm. Further, since Z is 

orthogonal, to have any solution at all

y2 + yu
2 ⩽ W 2 (A15)

Substituting the maximum |yu| from Eq. (A15) into Eq. (A14), after some algebra we get the 

condition for sign certainty as

y > ycr = W eu
2

eu
2 + ey

2 . (A16)

The same argument applies if the th direction is semiconstrained instead of unconstrained, 

with one notable difference. If the th pattern was semiconstrained that means y  = 0, 

and the nonlinear thresholding is masking how the target neuron would have responded in a 

linear model.13 However, the ambiguity in sign can only arise if the second term has a sign 

opposite to the first term, or a sign opposite to Sgn(ey). Moreover, for the thresholding to 

act, the target response for the semiconstrained pattern must be negative in the linear theory, 

so Z m has to have the same sign as ey to generate the ambiguity. And, if it is indeed so, 

then we obtain a certainty condition that is identical to Eq. (A16) except that eu → es, the 

projection of e  along the semiconstrained direction:

y > ycr = W es
2

es
2 + ey

2 . (A17)

If Z m and ey have opposite signs, then the synapse always has the same sign throughout 

the solution space.

While this derivation of ycr is heuristic and only deals with a single semiconstrained 

or unconstrained dimension, it provides intuition for the general result (51). Essentially, 

whether the sign of a given synapse is constant across the solution space depends on two 

competing quantities: the correlation between the pre- and postsynaptic responses; and the 

strength of the postsynaptic drive for patterns where the target response is either unknown or 

masked by the thresholding nonlinearity.

b. Hyperplane dividing excitatory and inhibitory synaptic regions

Having gained some intuition about the certainty condition, let us now proceed to a rigorous 

derivation of the result. Since the constrained coordinates are fixed for the weight vectors 

that belong to the solution space [the deep yellow wedge in Fig. 5(b)], we must have

y2 ≡ ∑
μ = 1

C
yμ

2 = ∑
μ = 1

C
ημ

2, (A18)

so that the solution space resides within an (  + )-dimensional ball with radius

13Note that our relation between the sign of the synapse and the sign of the correlation is based on a linear response.
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W ≡ W 2 − y2, (A19)

as depicted in Fig. 5(b), by the yellow region. We refer to this semiconstrained plus 

unconstrained subspace as the flexible subspace.

Now, the synaptic direction of interest, e , can be decomposed into its projections along 

constrained, semiconstrained and unconstrained subspaces. For notational simplicity, let us 

denote eμ ≡ e ⋅ ε μ = Zμm as the component of e  along ε μ. Note that the second equality 

follows from the orthogonality assumption and Eq. (A9). In general, in this manuscript we 

will subscripts on e to denote projections of e  along different directions or subspaces. We 

can now write14

e = ∑
μ = 1

N
eμ ε μ = ∑

μ = 1

C
eμ ε μ + ∑

μ = C + 1

P
eμ ε μ + ∑

μ = P + 1

N
eμ ε μ = cosθc + sinθ

cosϕs + sinθsinϕu,
(A20)

where

c ≡ ∑μ = 1
C eμ ε μ

∑μ = 1
C eμ

2 , s ≡ ∑μ = C + 1
P eμ ε μ

∑μ = C + 1
P eμ

2 , u ≡ ∑μ = P + 1
N eμ ε μ

∑μ = P + 1
N eμ

2 , (A21)

are unit vectors that lie within the constrained, semiconstrained and unconstrained 

subspaces, and

ec ≡ c ⋅ e = cosθ = ∑
μ = 1

C
eμ

2 ⩾ 0, es ≡ s ⋅ e = sinθcosϕ = ∑
μ = C + 1

P
eμ

2 ⩾ 0,

eu ≡ u ⋅ e = sinθsinϕ = ∑
μ = P + 1

N
eμ

2 ⩾ 0
(A22)

are the projections of e  along these directions. One could think of θ, φ as representing 

a spherical coordinate system where the role of x, y, and z axesare played by s , u, and 

c  respectively, and our definitions (A20)–(A22) imply the convention, 0 ⩽ {θ, φ} < π/2. 

For later convenience, let us also introduce the projection of e  onto the activity-constrained 

subspace

ep ≡ p ⋅ e = cos2θ + sin2θcos2ϕ = ∑
μ = 1

P
eμ

2 ⩾ 0, where p ≡ ∑μ = 1
P eμ ε μ

∑μ = 1
P eμ

2 . (A23)

We would also like to emphasize that we can compute θ, φ just from the knowledge of the 

neuronal responses, zμm = eμ, which is particularly useful for numerical calculations:

14Again, we remind the readers that in the main manuscript these projected vectors were denoted by c m, sm and um.
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θ ≡ cos−1 ∑
μ = 1

C
zμm

2 , and ϕ ≡ cos−1 ∑
μ = C + 1

P
zμm

2 / 1 − ∑
μ = 1

C
zμm

2 . (A24)

Now, any weight vector in the solution space can be written as

w = y + w s + w u, (A25)

where w s and w u are the projections of w  onto the semiconstrained and unconstrained 

subspaces, and the constrained part of w  is fixed at y . Using Eqs. (A20) and (A25), one 

then finds that the wm = 0 hyperplane dividing the excitatory and inhibitory regions in the 

flexible subspace satisfies the equation

w = w ⋅ e
= ycosθcosα + sinθcosϕs ⋅ w s + sinθsinϕu ⋅ w u = 0,

(A26)

where we have now also suppressed the index m in wm. Also, we have defined α ∈ [0, π] 

to be the angle between y  and c . We now notice that the origin of the flexible subspace, 

w s = w u = 0, is in the solution space and the sign of w for this solution point is given by

Sgn(w) = Sgn(cosα) = Sgn ey = Sgn ∑
μ = 1

C
zμmyμ . (A27)

In other words, if the sign of the synapse is certain, this certain sign must be Sgn(cos 

α), which corresponds to the sign of the correlation between the target neuron and the 

presynaptic neuron. Intuitively, positive correlations point to an excitatory connection, and 

negative correlations point to an inhibitory connection.

c. Special case without unconstrained dimensions

To derive the certainty condition, let us start by looking at the case when  = , so that 

there are no unconstrained directions, or equivalently, ϕ = 0. In this case, the solution space 

is just the all-negative orthant in the -dimensional semiconstrained hypersphere (Fig. 9), 

and the equation for the w = 0 hyperplane can be written as

sinθ s′ ⋅ w s = ycosθ cosα , (A28)

where the right-hand side (RHS) is positive, and we have introduced

s′ ≡ − Sgn(cosα)s , (A29)

which flips the direction of s  if cos α > 0, or equivalently, if ey > 0. Now, if the w = 0 

hyperplane (orange lines in Fig. 9) is far enough along s′ from the origin that it does not 

intersect with the all-negative orthant within the weight bounds, then we can be certain that 

w is nonzero and always has a consistent sign. To check this, we need to compare the cone 
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angle that the orange hyperplane subtends at the center, φ, with the minimum angle, γ, that 

the s′ vector makes with the all-negative orthant.

First, φ can easily be inferred from trigonometry:

cosφ = ds

W = ycotθ cosα
W 2 − y2

, (A30)

where ds = y cot θ|cos α| represents the distance from the center of the semiconstrained 

sphere to the hyperplane. The expression for ds follows from the general mathematical result 

that if

β ⋅ x + β0 = 0 (A31)

is an equation for a hyperplane, where x  denotes the coordinate vector and 

β = sinθs′ | β | = sinθ, β0 are constants, then the perpendicular distance, d⊥, to it from 

a point x = ζ  is given by

d⊥ =
β ⋅ ζ + β0

β
(A32)

Note, we are interested in the distance from the origin, ζ = 0, to the hyperplane satisfying 

Eq. (A28), so β = sinθs′ | β | = sinθ and β0 = − ycosθ | cosα|.

To provide a geometric intuition for γ, let us first assume that s′ does not point into the all-

negative orthant. If we can find the projection of s′ on the correct boundary of the solution 

space, then γ will be given by the angle between s′ and the appropriate semiconstrained 

boundary vector, s * (Fig. 9). Since all the components in the solution space (all-negative 

orthant) have to be negative or zero, to find the appropriate projection vector of s′ onto the 

boundary of solution space, we essentially have toset all the positive components to zero:

s ∗ = ∑
μ = C + 1

P
sμ

′ Θ −sμ
′ ε μ = ∓ ∑

μ = C + 1

P
sμΘ ±sμ ε μ, (A33)

depending upon whether Sgn(ey) = ±. Here sμ
′ , sμ are just the μth components of s′ and 

s  vectors, and ϴ(x) is the Heaviside step function, whichis one if x is positive and zero 

otherwise. Then, γ is given by

cosγ = s′ ⋅ s ∗ = s′ ⋅ s ∗

s ∗
= ∑

μ = C + 1

P
sμ

′2Θ −sμ
′

= ∑
μ = C + 1

P
sμ

2Θ ±sμ = s ∗ ,
(A34)

where again the sign in Θ is determined by the sign of ey.
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A formal way to see that γ is indeed given by Eq. (A34) is to start with any unit vector, w s, 

lying in the solution space. Then, the angle, γ, between s′ and w s is given by

cosγ = ∑
μ = C + 1

P
sμ

′ wsμ = ∑
μ ∈ A+

sμ
′ wsμ + ∑

μ ∈ A−

sμ
′ wsμ, (A35)

where we have defined A± as the set of all μ indices for which sμ
′  is positive/negative, 

respectively. Since w s is in the solution space, wsμ ⩽ 0, and therefore the second term sums 

positive quantities while the first term subtracts. Thus,

cosγ ⩽ ∑
μ ∈ A−

sμ
′ wsμ = s ∗ ⋅ w s ⩽ s ∗ (A36)

where both the equalities are achieved when w s is aligned with the boundary 

semiconstrained vector, s ∗, or w s = s∗, as argued previously. Note also, that this formal 

proof did not assume any restrictions on s′ direction and thus Eq. (A34) turns out to be a 

general result that also holds if s′ points into the all-negative orthant.

Combining Eqs. (A34) and (A30), the certainty condition now reads

φ γ y2cot2θcos2α
W 2 − y2 cos2γ

y > ycr ≡ W cos2γ sin2θ
cos2αcos2θ + cos2γ sin2θ

.
(A37)

d. General case with unconstrained dimensions

We can extend the above analysis to the case when we have unconstrained dimensions 

by noting that, for a given set of unconstrained coordinates, the solution space is again 

the all-negative orthant in a semiconstrained hypersphere. Isometry along unconstrained 

dimensions ensures that it is always possible to make one of the null directions, lets say ε N, 

align with u. Then, the w = 0 hyperplane Eq. (A26) reads

w = sinθcosϕs ⋅ w s + ycosθcosα + ηusinθsinϕ = 0, (A38)

which can be rewritten as

sinθcosϕs′ ⋅ w s = ycosθ cosα − ηu
′sinθsinϕ, (A39)

where we have introduced ηu
′ = − Sgn(cosα)ηu. To have a certain synapse, the w = 0 

hyperplane cannot intersect the solution space for any allowed value of ηu
′.

The direction of s′ is independent of the unconstrained coordinates and hence the value 

of γ remains unchanged. However, the cone-angle, φ, does depend on the unconstrained 

coordinates in two ways. First, the radius, W , of the -dimensional spherical subspace 

containing admissible solutions is now
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W = W 2 − y2 − η⊥
2 − ηu

′2, (A40)

where η⊥ is the magnitude of the weight-vector in the (  − 1)-dimensional subspace that is 

perpendicular to ε N = u. We note in passing that Eq. (A40) implies η⊥, ηu
′ ⩽ W 2 − y2 = W . 

Second, the distance of the hyperplane from origin that follows from Eq. (A39) is now a 

function of ηu
′:

ds = y cosθcosα − ηu
′sinθsinϕ

sinθcosϕ . (A41)

Strictly speaking, this expression for the distance is only valid as long as the numerator 

in the ds expression stays positive. However, if there exists an allowed ηu
′ ⩽ W  (let us call 

it ηu0) for which the numerator can vanish, then the synapse cannot have a certain sign, 

because at that point ds = 0, the hyperplane intersects the origin, and the weight can vanish 

even for a linear theory. In fact, the ds = 0 condition provides us with the y-critical value 

below which the synapse sign becomes uncertain in a linear theory:

ηu0 = ycosθ cosα
sinθsinϕ ⩽ W ycr,lin = W sin2θsin2ϕ

cos2θcos2α + sin2θsin2ϕ
. (A42)

So we will now look into cases when y ⩾ ycr,lin which also means that Eq. (A41) will 

remain valid.

Combining Eqs. (A40) and (A41) we get

cosφ = ds

W = y cosθcosα − ηu
′sinθsinϕ

sinθcosϕ W 2 − y2 − η⊥
2 − ηu

′2
. (A43)

For us to be certain that w is nonzero, we have to make sure that even the largest φ that one 

can obtain by varying η⊥ and ηu
′ is still smaller than γ. Clearly, to make φ large it is best 

to make η⊥ = 0. Also, it is clear from inspection that cos φ starts to initially decrease as ηu
′

increases from zero, being dominated by the linear term. However, as the quadratic term in ηu
′

in the denominator becomes more and more important, cos φ reaches a minimum and starts 

to increase. Imposing dcosφ/dηu
′ = 0, we can find that this minimum is reached at

ηu
′ =

sinθsinϕ W 2 − y2

ycosθ cosα = W (W /y)2 − 1
W /ycr,lin

2 − 1
⩽ W , (A44)

where we substituted ycr,lin from Eq. (A42) and used the fact that W ⩾ y ⩾ ycr,lin 
to obtain the inequality. This proves that the minimum cos φ indeed occurs at an allowed 

positive value of ηu
′ ⩽ W . Substituting the above ηu

′ in Eq. (A43), after some algebra we find 

that this minimum value of cos φ, or equivalently the maximum φ, is given by
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cosφ =
y2cos2θcos2α − W 2 − y2 sin2θsin2ϕ

W 2 − y2 cos2ϕsin2θ
. (A45)

The certainty condition then requires

cos2φ =
y2cos2θcos2α − W 2 − y2 sin2θsin2ϕ

W 2 − y2 cos2ϕsin2θ
> cos2γ, (A46)

which can be recast as

y > ycr ≡ W cos2γ sin2θcos2ϕ + sin2θsin2ϕ
cos2αcos2θ + cos2γ sin2θcos2ϕ + sin2θsin2ϕ

, (A47)

It is illuminating to express y-critical in terms of the projections, ey, eu, es∗, of the synaptic 

direction, e , respectively along the data vector, y, the unconstrained unit vector, u, and the 

semiconstrained boundary vector, s ∗:

ycr = W es *
2 + eu

2

ey
2 + es *

2 + eu
2 , (A48)

where

ey ≡ e ⋅ y = ∑μ = 1
C yμeμ

∑μ = 1
C yμ

2 = cosθcosα, es * ≡ e ⋅ s * = ∑
μ ∈ A−

eμ
2 = − Sgn(cosα

)sinθcosϕcosγ,
(A49)

and eu is given by Eq. (A22). We note that setting ϕ = 0 precisely reproduces the correct 

limit with no unconstrained directions (A37).

3. Regarding orthogonal input patterns in recurrent networks

While our analysis of the solution space and the certainty condition (A48) translate directly 

to recurrent networks, the requirement of orthogonality for the derivation of our certainty 

condition imposes certain technical restrictions on its scope when it comes to recurrent 

neural networks.

The certainty condition we derived for feedforward networks can be applied to two different 

recurrent neural network set ups. First, let us consider networks where neurons have self-

couplings. A consequence of having orthogonal response patterns in this case is that the 

certainty condition can only be satisfied for self-couplings wii, as long as W ⩾ 1. This is 

because the imposition of orthogonality in response patterns also restricts the correlation 

between the target neuron and the other neurons:
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∑
m = 1

N
ZμmZvm = δμν ∑

μ = 1

N
ZμmZμn = δmn . (A50)

However, for the synapse-sign to be certain, the responses of pre and postsynaptic neurons 

need to be correlated. To see the problem more quantitatively, suppose we are interested in 

constraining the synapse from the mth neuron onto the ith neuron, as before. Now, the first 

P elements of the unit vectors, e i and em contain the responses of the ith and the mth neuron 

in the  patterns. We have already derived a decomposition of em in terms of its projections 

onto the constrained, semiconstrained and unconstrained subspaces (A20). Similarly, e i can 

be decomposed as

e i = yy + 1 − y2y⊥, (A51)

where y lies entirely along the constrained directions, and y⊥ is orthogonal to it and only has 

components along unconstrained directions. Then, orthogonality implies

e i ⋅ em = ycosθcosα + 1 − y2sinθsinϕ y⊥ ⋅ u
= 0 sinθsinϕ = − ycosθcosα

y⊥ ⋅ u 1 − y2 . (A52)

Starting from the certainty condition (A48), we can now go through a sequence of 

(in)equalities:

y2 > W 2 sin2θsin2ϕ + sin2θcos2ϕcos2γ
sin2θsin2ϕ + sin2θcos2ϕcos2γ + cos2θcos2α

⩾ W 2sin2θsin2ϕ
sin2θsin2ϕ + cos2θcos2α

= W 2y2cos2θcos2α
y2cos2θcos2α + 1 − y2 y⊥ ⋅ u 2cos2θcos2α

= W 2y2

y2 + 1 − y2 y⊥ ⋅ u 2 ⩾ W 2y2,

(A53)

where we substituted sin θ sin ϕ from Eq. (A52). Note that the RHS is minimized when 

u and y⊥ are either aligned or antialigned. Even in this case, RHS = W2y2, and thus the 

certainty condition cannot be satisfied if W ⩾ 1. One can check that when i = m, because the 

RHS in the first equation of (A52) is one and not zero, no similar constraints appear. Indeed, 

the certainty condition may be satisfied depending upon the specific response patterns.

As a second possibility, suppose that no self-couplings are present. Then to be able to 

apply our framework and determine the couplings wim for a given i, we only need the 

truncated row vectors of z whose ith column entry is absent, to be orthonormal. Therefore, 

the response of the ith driven neuron, which consists of the entries of the ith column, can 

now be chosen independently from the responses of its input neurons. In other words, e i and 

em, m ≠ i, no longer need to satisfy orthogonality constraint of Eq. (A52). Consequently, the 

wim weights can indeed satisfy the certainty condition, just as in the feedforward case.
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4. Implied conservative bound on the certainty condition for 

nonorthogonal input patterns

A complete treatment of the certainty conditions for nonorthogonal fixed point patterns is 

beyond the scope of this work. However, here we provide some preliminary results and 

insights by explaining how our formalism for analyzing orthogonal fixed-point patterns can 

be simply adapted to derive an exact, but conservative, upper bound for y-critical that applies 

to general sets of patterns.

Conceptually speaking, deriving the certainty condition amounts to determining when the 

wm = 0 hyperplane intersects the solution space within the sphere of weight vectors with 

norm at most W. Because the solution space is exceedingly simple in η coordinates, our 

orthogonal analysis used η coordinates to conveniently recast the equations for the bounding 

sphere and wm = 0 hyperplane. To adapt this analysis to the nonorthogonal case, it is 

important to account for three important changes to the geometry of the problem. Most 

fundamentally, the ε μ directions corresponding to η coordinates are no longer orthonormal. 

However, the mathematical notions of orthogonality and normality are implicitly defined 

with respect to the inner-product structure imposed on the vector space, and our geometrical 

calculations from the orthogonal case easily carry over to the nonorthogonal case if we 

redefine the inner product structure of the weight space to give an orthonormal coordinate 

system with respect to the η coordinates rather than the physical coordinates.15 In practice, 

all that this will entail is interpreting the η coordinates as if they define coordinates 

along orthogonal axes, and we will never need to explicitly write down the associated 

inner product. Second, the equation for the weight bound in the orthogonal system of η 
coordinates is elliptical around the origin, rather than spherical. However, for any ellipse one 

can find a sphere that just encompasses it. If we can find the radius of this bounding sphere, 

then one can look for an intersection anywhere within this sphere and our geometrical 

approach for deriving Eq. (A48) will carry over and provide a conservative bound for 

y-critical. This bound will poorly approximate the true y-critical when some axes of the 

ellipse are much longer than others. Third, the normal vector to the wm = 0 hyperplane is no 

longer em in the orthogonal system of η coordinates. Therefore, the projections of em in Eq. 

(A48) must be generalized to become projections of the hyperplane’s normal vector.

To obtain the radius of the bounding sphere, consider the SVD decomposition of the data-

matrix:

z = LΛRT , (A54)

where L and R are  ×  and  ×  orthogonal rotation matrices, and Λ is a  × 

rectangular diagonal matrix whose only nonzero entries are given by

15In particular, for an orthogonal Z matrix, the two inner product structures defined via em ⋅ e n = δmn and ε μ ⋅ ε v = δμν are 
equivalent, but this is not the case when Z is nonorthogonal. Although one would conventionally adopt the first inner product structure, 
both the derivation and interpretation of the conservative y-critical formula is easier in terms of the latter inner product structure, 
which makes all of the response pattern directions orthonormal by definition.
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Λaa = λa ⩾ 0, a = 1…P . (A55)

Note that λ1,·⋯ ,λ  are called the singular values of z. We can now define rotated 

coordinates:

η′ = LTη, andw′ = RTw, (A56)

so that

η′ = LTLΛRTw = Λw′ ηa
′ = λawa

′ ∀ a = 1…P . (A57)

Note that η and η′ are  vectors in the current notation. We also note that since w′ is just a 

rotation of the original synaptic coordinates, the biological bound does not change as we go 

from w to w′ coordinates:

∑
a

wa
′2 = ∑

m
wm

2 ⩽ W 2 . (A58)

This makes it possible to find an inequality in terms of the η′ coordinates:

W 2 ⩾ ∑
a = 1

N
wa

′2 = ∑
a = 1

P ηa
′2

λa
2 + ∑

a = P + 1

N
wa

′2

⩾ 1
λmax

2 ∑
a = 1

P
ηa

′2 + ∑
a = P + 1

N
wa

′2

= 1
λmax

2 ∑
μ = 1

P
ημ

2 + ∑
a = P + 1

N
wa

′2,

(A59)

where in the last step we have used the fact that the orthogonal matrix L does not change the 

L2-norm as one goes from η′ to η coordinates, and λmax is defined as the maximal singular 

value. To obtain spherical symmetry, we thus define unconstrained coordinates via

ημ = λmaxwμ
′ , ∀ μ > P, (A60)

such that

W ′2 ≡ λmax
2 W 2 ⩾ ∑

μ = 1

N
ημ

2 . (A61)

We now realize that the problem of finding y-critical using this conservative bound can 

be recast into the problem of the orthogonal case: As we just described, the η coordinates 

satisfy the conservative spherical bound. Our goal can then be to find the minimum value of 

y for which the hyperplane satisfying, wm = 0, does not intersect the solution space. Now, if 

we define Z to be, as in the orthogonal case, a full rank extension16 of z:

16One can equivalently obtain Z as
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Zμm =
zμm, ∀ μ ⩽ P,
λmaxRμm

T , ∀ μ > P,
(A63)

so that for all value of μ,

ημ = ∑
m = 1

N
Zμmwm, (A64)

then the hyperplane equation can be rewritten as

wm = ∑
μ = 1

N
Zmμ

−1ημ = 0. (A65)

From Eq. (A65) it is clear that

n m = ∑
μ = 1

N
Zmμ

−1 ε μ (A66)

is perpendicular to the wm = 0 hyperplane, where we remind the readers that ε μ’s were 

defined by Eq. (A9). nm thus plays the role of em whose orientation with respect to 

the constrained, semiconstrained and unconstrained dimensions determines the certainty 

condition. Specifically,

ycr = W ′ ns *
2 + nu

2

ny
2 + ns *

2 + nu
2 = W λmax

ns *
2 + nu

2

ny
2 + ns *

2 + nu
2 , (A67)

where the various projections of nm are given by

ny ≡ ∑μ = 1
C yμZmμ

−1

∑μ = 1
C yμ

2 ∑μ = 1
N Zmμ

−1 2 ,

ns * ≡ ∑μ ∈ A− Zmμ
−1 2

∑μ = 1
N Zmμ

−1 2 ,

and nu ≡ ∑μ = P + 1
N Zmμ

−1 2

∑μ = 1
N Zmμ

−1 2 .

(A68)

We remind the readers that in the orthogonal case the set A− contained each semiconstrained 

μ index along which the component of em had the same sign as ey. Similarly, here A−, 

contains those semiconstrained μ indices along which the component of n m have the same 

Z = LΛR, (A62)

where Λ is now an  ×  diagonal matrix with same entries as Λ and Λμμ = 1/λmax for μ > , and L is the an -dimensional 
extension of the rotation matrix L where the (  − )-dimensional block is an identity and there is no mixing between the 
unconstrained and the activity-constrained coordinates.
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sign as ny. To summarize, the above analysis suggests that both Z and Z−1 will play 

an important role in generalizing the certainty condition to nonorthogonal patterns, and 

especially the relative orientation of nm (defined by Z−1) with respect to the η directions.

Appendix B: ESTIMATING THE PROBABILITY THAT A SYNAPSE IS 

CERTAIN IN LARGE FEEDFORWARD NETWORKS

For given values of (= ℐ), ,  in a feedforward setting we will here try to assess how likely 

it is that noiseless orthonormal neuronal responses require a given synapse to be nonzero. As 

we have seen in Eq. (49), whether a synapse is certain to exist depends on six parameters, 

θ, φ, γ, α, W, and y. The first four quantities depend on how e  is oriented with respect 

to various directions in the weight space. Since e  is a unit vector, typically we expect its 

component along any given direction to be O(1/ N). Thus, we typically expect

ey
2 = cos2θcos2α 1

N ; es
2 = sin2θcos2ϕ S

N ;

eu
2 = sin2θsin2ϕ U

N andes *
2 = cos2γ es

2 S
2N .

(B1)

Hence, we approximate the typical ycr as

ycr = W S/(2N) + U/N
1/N + S/(2N) + U/N = W S + 2U

2 + S + 2U . (B2)

Let us now suppose that all the dimensions scale with the network size, such that

S = σN andU = vN . (B3)

Then, we find that as the network size increases ycr behaves as

ycr

W ≈ 1 − 1
σ + 2v

1
N , (B4)

and ycr is essentially pushed up toward W.

However, the typical scale of y behaves similarly as the dimensions increase. To see this 

concretely, let us define y cons ≡ yμ ∣ μ = 1…C  as a -dimensional vector, and assume that 

every possible y cons is equally likely within a sphere of radius W (larger activity levels of the 

target neuron admit no solutions). Then the average and median values of y = y cons  are given 

by
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y =
∫0

W dyyC

∫0
W dyyC − 1 = W C

C + 1
y

W = 1
1 + 1/(ηN) ≈ 1 − 1

ηN , whereη ≡ C
N ,

and
∫0

yMdyyC − 1

∫0
W dyyC − 1 = 1

2
yM

W = 1
2

1
C

yM

W ≈ 1 − ln2
ηN ,

(B5)

respectively. Since y and ycr scale similarity as one increases the network size, the 

probability of a synapse being certain should not change as the network size increases. 

In Fig. 8(c), we show that if we choose, y = 1 − ln 2/ , as the approximate median value in 

simulations with random input-output configurations (see Appendix F for details), then the 

number of certain synapses does indeed increase linearly with .

To quantitatively estimate the probability of finding a certain synapse, we can compute the 

fraction of volume of y cons’s for which the synapse is certain for the typical projections 

(B2), as compared to the volume of y cons’s for which solutions to the steady-state equations 

exist. We know that y cons has to lie within a -dimensional sphere of radius W in order 

for there to be any solutions to the problem.17 However, for the synapse sign to be certain, 

we need W ⩾ y cons = y > ycr, where ycr is given by Eq. (B2). So, we need to compare 

the spherical shell volume, V W ⩾ y > ycr, with the volume of the -dimensional sphere, Vy⩽W. 

To find V W ⩾ y > ycr, we have to subtract the -dimensional spherical volume with radius ycr 
from the spherical volume with radius W. Since n-dimensional spherical volumes scale as 

the nth power of the radius, the probability, P, of ascertaining the sign of the synapse is 

approximately given by

P ≈ V W ⩾ y > ycr

V y ⩽ W
= W C − ycr

C

W C = 1 − ycr

W
C

. (B6)

Now, when ,  ≫ 1 we can approximately evaluate the RHS as follows:

ycr

W
C

= S + 2U
2 + S + 2U

C/2
= 1 + 2

S + 2U
−C/2

ln ycr

W
C

= − C
2 ln 1 + 2

S + 2U
= −C

S + 2U 1 + O 1
S + 2U .

(B7)

Thus, we get

17The allowed y cons  must also lie in the all positive orthant, but as we will compute the ratio of two spherical volumes the reduction 
factor will cancel out.
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P ≈ 1 − e− C
S + 2U . (B8)

The most prominent feature of Eq. (B8) is that the probability only depends on the ratios of 

the various dimensions. Hence, it does not change as we increase the size of the network as 

long as the ratios are kept constant.

For the purpose of illustration and numerically testing this feature we assessed how certainty 

predictions changed when the network size is increased while holding the ratios between , 

, and  fixed. In Fig. 8(c) we have plotted the number of certain synapses in simulations 

generated from random data as we scale up  maintaining the ratios between , , and 

 (see Appendix F for more details). We illustrate two cases. In the first example, no 

unconstrained directions were present, and  = 3 . Then P = 1 − e−1/3 ≈ 0.28, so one has a 

28% chance of being able to determine the sign of the connections. This answer incidentally 

is the same as an example with  =  = . As another example, Fig. 8(c) considered the 

case when  = 2  = 2 . According to Eq. (B8), then P = 1 − e−1/5 ≈ 0.18, so the chance of 

determining the sign drops to about 18%. We only expect these numbers to be approximate. 

For example, our arguments relied on the assumption that all target responses admitting 

solutions are equally likely, an assumption that definitely needs to be revisited for realistic 

networks. However, the scaling behavior should hold for other probabilistic distributions as 

long as the scale of y cons behaves similar to Eq. (B5) with increasing .

APPENDIX C: NONZERO-ERROR CERTAINTY CONDITIONS

There are various reasons why we may want to not only consider weights that exactly 

reproduce the specified neuronal responses, but also weights that do so approximately. 

For instance, we are always limited by the accuracy of the measurement apparatus. More 

importantly, there are various sources of biological noise that typically lead to uncertainties 

in observed values of neuronal responses. For the purpose of this paper we will consider 

any set of weights to be part of the ε-error solution space if it is able to reproduce the 

specified neuronal responses with an error ⩽ ε [see Eq. (63) for definition of E]. We will 

neglect uncertainties in the input responses to the target neuron, but we will comment on 

their possible effects toward the end of this Appendix.

1. Errors in feedforward networks

Let us first focus on feedforward networks. Allowing for error increases the value of ycr 
by expanding the solution space. One way to think about this is to realize that we have 

to now make sure that Eq. (51) is satisfied for any nonnegative y = y + δ , where y  and 

δ  are vectors in the -dimensional activity-constrained subspace, the former representing 

the observed responses, and the latter coming from noise. We will initially assume that 

all the observed responses are nonnegative, so a zero-error solution is possible and the 

noise is bounded by |δ | ⩽ ε. Our strategy will be to first seek the minimum y needed to 

have a certain synapse for a given δ . We then find the maximum among these y-critical 

values as we let δ  vary within the ε-ball. Since this procedure will guarantee that the w 
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= 0 hyperplane does not intersect the entire solution space with ℇ ⩽ ε, this means that 

the synapse must exist for the network to generate the specified responses patterns. The 

synapse’s sign will match the zero-error analysis. We will first estimate y-critical when 

the error is small enough to not induce topological transitions in the error surface. In the 

subsequent sections, we will include the effects of topological transitions, as well as explain 

how to deal with situations where some of the observed responses are negative, which is 

possible due to noise.

a. When all observed responses are nonnegative and no topological transitions occur

To understand how errors affect the certainty conditions, let us consider the case where the 

observed responses are nonnegative and the allowed error satisfies 0 < ε < min{yμ}μ=1, …, , 

so that no topological transitions can occur. If some responses that were zero in y  are now 

nonzero in y , then both ey and es∗ can change due to the noise. Withoutloss of generality, 

let us assume that δ  only has nonzero components along μ =  + 1, …,  semiconstrained 

dimensions,18 as well as along some (or all) of the constrained dimensions. Then ey changes 

to

ey = e ⋅ ( y + δ )
y + δ

. (C1)

Furthermore, if some previously semiconstrained components that contributed to s* have 

now become constrained,19 then s* no longer has thosecomponents. This means that we 

haveto subtract these components from es∗:

s∗ = s∗ − ∑
μ = C + 1

Q
Aμeμ ε μ es ∗

2 = es ∗
2 − ∑

μ = C + 1

Q
Aμeμ

2, (C2)

where Aμ is 1 if (y ⋅ c) and eμ have the same sign and 0 otherwise. This follows from the 

definition of the boundary projection vector (A33) and es∗ (A49). Thus, for a given δ  the 

certainty condition (A48) yields

18The components of δ  along these semiconstrained directions are all positive since y  must be nonnegative.
19This will happen if a component of y  that was zero now has a nonzero component.
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y

2

= y + δ
2

> W 2 es ∗
2 + eu

2

ey
2 + es ∗

2 + eu
2

y + δ

2
ey

2

es ∗
2 + eu

2 + 1 > W 2

e ⋅ ( y + δ )
2

es ∗
2 + eu

2 + y + δ

2

> W 2 .

(C3)

As before, one can interpret the above inequality as equivalently specifying either y-critical 

or W-critical. For a fixed y , one can obtain a minimum value of the left-hand side (LHS) 

of the latter inequality by varying δ  within the ε ball. The square root of this is W-critical. 

Then as long as W is less than W-critical, we will have a certain synapse. Inverting the 

relation, one finds y-critical as the minimum y needed to make the synapse sign certain for 

all δ  and given y and W. More explicitly, equating the two sides of the inequality forany 

given y, δ , and W, we get a minimal y that depends on δ . To find y-critical, we have to take 

the maximum of the minimal y as we vary over all possible δ  in the ε-ball.

Let us first obtain a lower bound on y-critical. By inspection of the LHS of the above 

inequality, it is clear that the more the δ -dependent terms can cancel the y -dependent 

terms, the harder it is to satisfy the certainty condition. We observe that in Eq. (C3), the 

second term is minimized when δ = − εy.20 Accordingly, one can obtain a lower bound on 

y-critical by substituting δ = − εy in Eq. (C3):

e ⋅ y 2 y − ε 2 + es ∗
2 + eu

2 y − ε 2 > W 2 es ∗
2 + eu

2 , or,

y > ycr, min, 0 ≡ W es ∗
2 + eu

2

ey
2 + es ∗

2 + eu
2 + ε,

(C4)

where we have used ey = e ⋅ y and es *
2 = es *

2 , since δ  has no components along the 

semiconstrained directions. We will see later that this simple lower bound can approximate 

the actual y-critical very well in many situations. Notice that we used a subscript “0” 

to denote this lower bound. This is because, as we will soon see, when noise allows 

for topological transitions, one may be able to obtain stricter lower bounds by allowing 

some constrained dimensions to behave as semiconstrained. This “0” emphasized that no 

constrained indices behave as semiconstrained. Next, we can find an upper bound for 

y-critical by noting

20This assumes that y > ε. Smaller values of y permit y = 0  and all weights can be set to zero.
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e ⋅ ( y + δ )
2

es ∗
2 + eu

2 + y + δ

2

⩾
e ⋅ ( y + δ )

2

es ∗
2 + eu

2 + y + δ

2

⩾ (e ⋅ y )2 + 2(e ⋅ y )(e ⋅ δ )
es ∗

2 + eu
2 + y0

2 + 2 y ⋅ δ ,

(C5)

where the first inequality is true because es *
2 ⩽ es *

2 , and the second inequality because we have 

dropped positive (δ2) terms. Then we can obtain an upper bound on y-critical by finding a y 
such that even the last expression on the RHS is greater than W2. Specifically,

e ⋅ y 2 + 2 e ⋅ y e ⋅ δ + es ∗
2 + eu

2 y0
2 + 2 y ⋅ δ > W 2 es ∗

2 + eu
2 . (C6)

So, let us try to find the δ  that minimizes the LHS:

LHS = y2ey
2 + 2yey(e ⋅ δ ) + es ∗

2 + eu
2 y2 + 2yy ⋅ δ

= y2 ey
2 + es ∗

2 + eu
2 + 2y eye + es ∗

2 + eu
2 y ⋅ δ

= y2 ey
2 + es ∗

2 + eu
2 + 2y ξ ⋅ δ ,

(C7)

where ξ ≡ ey∑μ = 1
P eμ ε μ + es ∗

2 + eu
2 y, and we have noted that u ⋅ δ = 0 because δ  must be in 

the activity-constrained subspace. It is now clear that LHS is minimized if δ  anti-aligns with 

ξ . Then Eq. (C6) yields

y2 ey
2 + es ∗

2 + eu
2 − 2y ξ ε > W 2 es ∗

2 + eu
2 . (C8)

Equating the two sides of Eq. (C8) and solving for y,21 we now get an upper bound for 

y-critical:

ycr, max, 0 ≡ W 2 es ∗
2 + eu

2

ey
2 + es ∗

2 + eu
2 + ε2ξ2

ey
2 + es ∗

2 + eu
2 2 + εξ

es ∗
2 + eu

2 + ey
2 , (C9)

where ξ is the norm of ξ  and can be simplified as

21This quadratic equation obviously has two solutions. The correct one can easily be identified, for instance, by taking the ε → 0 
limit.
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ξ2 = ∑
μ = 1

P
eyeμ + es ∗

2 + eu
2 yμ

2

= ey
2 ∑
μ = 1

P
eμ

2 + es ∗
2 + eu

2 2 ∑
μ = 1

C
yμ

2 + 2 es ∗
2 + eu

2 ey ∑
μ = 1

C
yμeμ

= ey
2ep

2 + es ∗
2 + eu

2 2 + 2 es ∗
2 + eu

2 ey
2

= ey
2 + es ∗

2 + eu
2 2 + ey

2 ep
2 − ey

2 .

(C10)

Thus, we have

ycr, max, 0 ≡ W 2 es ∗
2 + eu

2

ey
2 + es ∗

2 + eu
2 + ε2 1 + ey

2 ep
2 − ey

2

ey
2 + es ∗

2 + eu
2 2 + ε 1 + ey

2 ep
2 − ey

2

ey
2 + es ∗

2 + eu
2 2 . (C11)

As with lower bound, we will see that to obtain the correct upper bound in presence of 

topological transitions, one has to maximize over several upper bounds. Hence, we refer the 

above upper bound that does not include any effects from topological transitions with an 

index “0.”

Finally, we would like to point out that for small errors one can also obtain an approximate 

correction to y-critical that lies in between ycr,min,0 and ycr,max,0. To obtain this 

estimate, let us first write down the bound on y that one would obtain from Eq. (C3) as δ → 
0:

y > W es ∗
2 + eu

2

ey
2 + es ∗

2 + eu
2 . (C12)

If δ  has components along any semiconstrained direction that contributes toward the 

original e s ∗  vector, then es ∗
2 < es ∗

2 , and comparing Eqs. (A48) and (C12) we see that, as δ 
→ 0, the bound on y will be less than the zero-error ycr. In other words, for sufficiently 

small errors, if δ  explores directions that contribute to es∗, then the corresponding bound 

on y is going to be smaller than even the zero-error ycr. Thus, for these small errors the 

leading order corrections to Eq. (A48) is obtained only if δ do not have any components 

along these semiconstrained directions. This means es ∗
2 = es ∗

2 , and we can reorder the indices 

such that the semiconstrained directions along which excursions of δ  will be considered 

range from  + 1, …, ; i.e., Sgn sμ
′  is negative for these, and only these, semiconstrained 

indices. To obtain the certainty condition, one can then follow steps (C5)22 through (C9) 

except that δ  is restricted to only have nonzero components along constrained directions 

those semiconstrained directions that do not contribute to e s ∗ , i.e., for μ = 1 … . In other 

words, it can at the most anti-align with a truncated ξ ,

22Since we are only interested in the leading order correction, we could also drop the (δ2) terms needed to arrive at an expression 
such as the RHS of Eq. (C5).
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ξ trunc ≡ ∑
μ = 1

Q
ξμ ε μ = ∑

μ = 1

Q
eyeμ + es ∗

2 + eu
2 yμ ε μ, and

ξ ⋅ δ
min

= − εξtrunc,
(C13)

where ξtrunc is the norm of ξ trunc and can be simplified as

ξtrunc
2 = ∑

μ = 1

Q
eyeμ + es ∗

2 + eu
2 yμ

2

= ey
2 ∑
μ = 1

Q
eμ

2 + es ∗
2 + eu

2 2 ∑
μ = 1

C
yμ

2

+ 2 es ∗
2 + eu

2 ey ∑
μ = 1

C
yμeμ

= ey
2 ep

2 − es ∗
2 + es ∗

2 + eu
2 2 + 2 es ∗

2 + eu
2 ey

2

= ey
2 + es ∗

2 + eu
2 2 + ey

2 ep
2 − es ∗

2 − ey
2 .

(C14)

Substituting ξ = ξtrunc into the counterpart of Eq. (C9), and keeping only the linear terms 

in ε, we thus get the leading order correction to Eq. (A48):

ycr, appr, 0 ≈ W es ∗
2 + eu

2

ey
2 + es ∗

2 + eu
2 + εξtrunc

ey
2 + es ∗

2 + eu
2

= W es ∗
2 + eu

2

ey
2 + es ∗

2 + eu
2 + ε 1 + ey

2 ep
2 − es ∗

2 − ey
2

ey
2 + es ∗

2 + eu
2 2 .

(C15)

We will see later how ycr,appr,0 can be generalized to provide an approximation, 

ycr,appr, to y-critical that accounts for topological transitions.

Reassuringly, we see that at ε = 0, ycr,appr,0, ycr,max,0, and ycr,min,0, all reduce 

to the zero-error ycr Eq. (A48). Also it is obvious that the coefficient of ε in ycr,appr,0 
is greater than that of ycr,min,0 but less than that of ycr,max,0. Finally, note that 

ycr,appr,0 coincides with ycr,min in the maximally nonlinear case where es ∗
2 = ep

2 − ey
2. 

In Fig. 10(a), we have plotted how these different quantities depend on ep, ey and es∗. In 

particular we note that as the network size increases, these curves typically come closer 

together [Fig. 10(b)], so that they provide a good approximation for y-critical. Finally, for 

future reference we point out that for a given set of input patterns, zμm, the various y-criticals 

that we have computed above depend on the orientation of the target response vector, or y, 

and the total noise budget, ε. In other words, ycr, min, 0 = ycr, min, 0(y, ε), ycr, max, 0 = ycr, max, 0(y, ε), and 

ycr, appr, 0 = ycr, appr . 0(y, ε).

b. Comparing predictions from linear and nonlinear models

To assess the effects of nonlinearity it is useful to compare the predictions for certain-

synapses between the linear and nonlinear theory. In a linear theory, there are no 

semiconstrained directions, and therefore, a lower bound, leading order and upper bound 
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on y-critical can be obtained from Eqs. (C4), (C15), and (C11), respectively, by setting es∗ = 

0:

ycr, min, lin = W eu
2

ey
2 + eu

2 + ε, (C16)

ycr,appr ,lin = W eu
2

ey
2 + eu

2 + ε 1 + ey
2 ep

2 − ey
2

ey
2 + eu

2 2 , (C17)

ycr, max, lin = W 2 eu
2

ey
2 + eu

2 + ε2 1 + ey
2 ep

2 − ey
2

ey
2 + eu

2 2 + ε 1 + ey
2 ep

2 − ey
2

ey
2 + eu

2 2 . (C18)

We note that since all these quantities are increasing function of es∗, the linear values are 

always less than or equal to the nonlinear counterparts. Since no topological transitions are 

possible in a linear theory, these expressions do not need a qualifying “0” index. In Fig. 10, 

we show a comparison between the upper bound on y-critical obtained in the linear and the 

nonlinear theories.

c. ycr,max, when one and only one nonzero response is smaller than noise

In the previous section we have considered responses which are either zero, or positive and 

greater than the noise bound, ε. In this section, we consider a situation where one and only 

one of the observed responses is smaller than the noise, |y1| < ε.

Note that once we admit noise, it is possible for the small observed response to be negative. 

In this case, there is no zero-error solution as Φ(η1) cannot be negative, and therefore we 

need a minimum noise, and incur a minimum error:

δ1 = − y1 ℰmin = y1
2 . (C19)

In fact, since the noise for this observation has to be positive, we must have

Φ η1 = y1 + δ1 ≡ δ1
′ ⩾ 0. (C20)

Then using

δ1
2 = δ1

′2 + y1
2 − 2y1δ1

′, (C21)

we obtain a modified bound on the noise:

∑
μ = 1

P
δμ

2 = ∑
μ = 2

P
δμ

2 + δ1
′2 + y1

2 − 2y1δ1
′ ⩽ ε2

δ1
′2 + ∑

μ = 2

P
δμ

2 ⩽ ε2 − y1
2 + 2y1δ1

′ ⩽ ε2 − y1
2,

(C22)

since y1δ1
′ < 0. Or,
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δ1
′2 + ∑

μ = 1

P
δμ

2 ⩽ ε′2 ≡ ε2 − y1
2 . (C23)

Let us now introduce a new reduced response vector whose response to the first pattern is set 

to zero:

y ′ ≡ ∑
μ = 2

C
yμ ε μ. (C24)

We can then identify δ1
′ to be the noise associated with the μ = 1 response in this new 

feedforward problem, while the other δμ’s can continue to represent the noise associated 

with all the other responses. Thus, a sufficient condition for a given synapse to be certain is

y ′ > ycr, max, 0 y′, ε′ . (C25)

A very similar condition arises if y1 is positive but small enough to admit a topological 

transition. To see how, let us first remember that in order for a synapse to be certain, 

the solution space should not intersect with the w = 0 hyperplane. Now, let us look at 

the solution space coming from denoised y ’s that have y1 > 0. Since, the solution space 

corresponding to these y ’s do not have any additional semiconstrained dimension as 

compared to the observed response, y , the condition for no intersection with this part of 

the solution space is simply given by

y > ycr, max, 0(y, ε), (C26)

a condition that guarantees a certain synapse when no topological transitions are considered. 

Next consider the solution space for denoised y ’s with y1 = 0. The solution space for 

these y ’s have an additional semiconstrained dimension corresponding to the first pattern. 

We can therefore use the reduced response vector, y ′ (C24), so that the solution space 

corresponding this new response vector with the error bound, ε′ (C23), along with the 

solution space with y1 > 0 accounts for the full solution space of y  with error ε. Note, that 

the noise budget is again reduced according to Eq. (C23) since we are committed to making 

at least an error of y1 to convert the first response to a semiconstrained dimension. To ensure 

that there is no intersection of the w = 0 hyperplane with the y ′ solution space we must 

therefore also satisfy Eq. (C25). We note that to calculate the right-hand side using Eq. 

(C11), the various projections have to be recalculated according to

ey′ = ∑μ = 2
C yμeμ

∑μ = 2
C yμ

2 and

es′ ∗ = ∑
μ ∈ A−

eμ
2 + Θ Sgn ey′ e1 e1

2 .
(C27)

The condition (C25) on y ′  translates to a condition on | y |:
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| y | > ycr, max, 0
2 y, ε′ + y1

2 | y | > ycr, max, 0 y′, ε′
1 − y1

2 , (C28)

where we have defined yμ’s to be the μth component of y.

We note that this is a nonlinear inequality as the right-hand side depends on | y | through its 

implicit dependence on ε′. When we have a negative y1, only Eq. (C28) needs to be satisfied 

to guarantee a certain synapse, but if y1 is positive, both Eqs. (C26) and (C28) have to be 

satisfied. It is not hard to see how this process should be continued if one has more than 

one topological transition within the allowed error. Since we know the precise sequence of 

topological transitions, all the sequential certainty-conditions can in principle be obtained. A 

synapse is certain if all of its certainty-conditions are satisfied.

So far, we have obtained a way to check whether a synapse is certain given the response 

data, y . We also have an upper bound of y-critical, ycr,max,0, ignoring effects from 

topological transitions when all the observed responses are nonnegative. We will now 

investigate how topological transitions can change this upper bound. We will start by 

quantifying effects from a single topological transition by finding potentially a new upper 

bound for y-critical, ycr,max, such that we can say that if | y | > ycr,max, then the synapse 

is certain. Suppose we start out with a data vector whose norm is so large that there are 

no topological transitions. Then as we decrease the strained norm, but keep its orientation, 

y, fixed, eventually a semiconstrained dimension will open up in the solution space, in 

our example, the first direction. If we keep decreasing further, then at some point another 

response dimension will become semiconstrained due to the presence of noise. Let us 

however consider the situation where ycr,max (that is yet to be computed) is going to turn 

out to be larger than the norm when the second transition occurs. In this case, we do not 

have to consider this possibility (and any other transitions) because then if | y | > ycr,max the 

second transition cannot occur. We will later find a condition that guarantees this. Since we 

are trying to find the smallest value of ycr,max that we can find, what all this means is that 

at y cr,max = ycr,maxy, one of the two inequalities, (C26) or (C25), becomes an equality. While 

the first equality is trivial to solve as the right-hand side does not depend on ycr,max, the 

second equation is highly nonlinear23:

ycr, max, 1 = ycr, max, 0 y′, ε′
1 − y1

2 , (C29)

where

ε′ = ε2 − ycr, max, 1
2 y1

2 . (C30)

In particular, we notice that there are two competing effects that ultimately determine 

ycr,max,1. The numerator depends on ε′, which decreases as ycr,max,1 increases and 

23Here the “1” in the subscript indicates that this possibility for y-critical is computed by only considering the first topological 
transition.
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therefore has an overall effect of decreasing ycr,max,1. However, the presence of y1 in the 

denominator within the square root tends to increase ycr,max,1. To determine the correct 

upper bound for y-critical one has to compare the ycr, max, 1 y′, y1, ε′  obtained from Eq. (C29) 

with ycr, max, 0(y, ε), and then choose the maximum because then both the inequalities (C26) and 

(C25) will be satisfied. For the negative response case, we simply need to solve Eq. (C29) to 

obtain ycr,max,1.

Now, determining ycr,max,1 from Eq. (C28) involves solving a quartic equation leading to 

expressions that are not particularly insightful. However, we can obtain a relatively simple 

conservative estimate bypassing the nonlinearity if we have a lower bound on y-critical, 

ycr,min because we can use this bound to overestimate ε′:

ycr,max ≡ max ycr, max, 0 y′, ε″
1 − y1

2 , ycr, max, 0(y, ε) where

ε″ ≡ ε2 − ycr,min
2 y1

2 ⩾ ε′ .
(C31)

Before we describe how we can obtain ycr,min, let us note that if

ycr,minyμ > ε, ∀ μ > 1, (C32)

then the second transition occurs at a magnitude that is lower than ycr,max,1, and 

therefore does not need to be incorporated in the ycr,max,1 calculation. Indeed, Eq. (C32) 

is a sufficient condition but not a necessary one.

d. ycr,min, when one and only one nonzero response is smaller than noise

When we have a small response, |y1| < ε, we have seen that we have to consider solution 

space around a reduced response vector, y ′ (C24), with a smaller error budget, ε′ (C23). 

Accordingly, we can obtain an equation for a lower bound on y-critical using Eq. (C4),24

ycr, min, 1 = ycr y′ + ε′, (C33)

where μ = 1 along with μ =  + 1 …  are all treated as semiconstrained. As before, since 

the norms along y  and y ′ are related via

y 1 − y1 = y ′ , (C34)

we get an equation for ycr,min,1 very similar to Eq. (C29) for ycr,max,1:

ycr, min, 1 = ycr y′ + ε″
1 − y1

2 , whereε″ = ε2 − ycr, min, 1
2 y1

2 . (C35)

Although nonlinear, the above equation reduces to a quadratic equation for ycr,min,1,

24To remind the readers, the expression for ycr,min,0 was obtained by computing ycr for y = (1 − ε) y , a denoised point that 

is allowed because of the noise. In this case, the corresponding point is y = 1 − ε′ y ′.
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ycr, min, 1
2 − 2ycr, min, 1ycr 1 − y1

2 + ycr
2 − ε2 = 0, (C36)

solving which we get25

ycr, min, 1 = ycr y′ 1 − y1
2 + ε2 − ycr

2 y′ y1
2 . (C37)

For positive y1 the above expression provides another lower bound along with the one 

obtained without the transition (C4). To ensure we have the tightest possible lower bound we 

thus maximize:

ycr,min ≡ max ycr, min, 0, ycr, min, 1 . (C38)

e. When more than one nonzero responses are smaller than allowed error

It is not difficult to see how the arguments above generalize if we have more than one 

small (< ε) observed response. We have to consider cases where all the negative observed 

responses, and different possible combinations of the positive responses, are set to zero. Let 

us denote T to be one such possible set of μ indices. As before, we define a reduced response 

vector, which is now indexed by T:

y T ≡ ∑
μ ∉ T

yμ ε μ, (C39)

so yT,μ = 0 for all μ ∈ T. Then, essentially following the same algebraic manipulations as 

above we obtain a lower bound according to

ycr, min, T = ycr yT 1 − ∑
μ ∈ T

yμ
2 + ε2 − ycr

2 yT ∑
μ ∈ T

yμ
2 . (C40)

To reiterate, whenever an observed response is negative, which is inconsistent with a 

threshold linear transfer function, this means that some of the noise budget has to be used 

up to bring this response up to zero, and the same noise reduction occurs if one wants to 

consider topological transitions. Each ycr,min,T evaluated this way provides us with a lower 

bound, and hence we have to take a maximum over all these to find the tightest lower bound, 

ycr,min. To make things explicit, let us also enumerate the new expressions for the various 

projections of e  that one needs to calculate ycr yT :

ey, T = ∑
μ ∉ T

yμeμ / ∑
μ ∉ T

yμ
2 and

es ∗ , T = ∑
μ ∈ T

Θ eμey, T eμ
2 .

(C41)

Once we have a lower bound, we can obtain conservative upper bounds analogous to Eq. 

(C31) for each T:

25The second root gives a negative result, and accordingly does not reduce to the correct ε → 0 limit.
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ycr, max, T ≡ ycr, max, 0 yT, εT

1 − ∑μ ∈ T yμ
2 , where

εT ≡ ε2 − ycr,min
2 ∑

μ ∈ T
yμ

2 .
(C42)

As before, for a consistent upper bound for y-critical, we need to take the maximum over all 

ycr,max,T ’s.

Finally, we note that we do not need to consider all possible transitions. While going through 

the sequence of transitions, as soon as we find a T such that ycr, min, Tyμ > ε for all μ ∉ T we can 

stop as this means that by the time | y | is small enough that any additional yμ’s can be set to 

zero, the synapse is already uncertain.

f. Numerical simulation

To illustrate the behavior of the various y-critical functions and check their utility, in Fig. 11 

we have plotted ycr,min (light gray curve) and ycr,max (black curve) for the same 102 

configurations as the ones depicted in Fig. 8(b) involving a feedforward simulation with 

= 6,  = 5,  = 2, and ℇ < ε = 0.1. We also defined, ycr,appr, as a maximum over different 

approximations, ycr,appr,T’s, that incorporate topological transitions and are defined as 

natural generalizations of Eq. (C15):

ycr, appr, T = W es ∗ , T
2 + eu

2

ey, T
2 + es ∗ , T

2 + eu
2 + εT 1 + ey, T

2 ep
2 − es ∗ , T

2 − ey, T
2

ey, T
2 + es ∗ , T

2 + eu
2 2 . (C43)

We have plotted ycr,appr, the approximation of y-critical, in green in Fig. 11. As in 

Fig. 8(b), the black dots here denote the maximum value of y in our simulations that still 

admitted mixed signs for the synapse under consideration, for details on the simulations, 

please see Appendix F. As one can see, most of the black dots seem to closely track the 

ycr,min curve, but some of the dots lie between the ycr,appr and ycr,min curves.

2. New sources of corrections in recurrent neural networks

It is clear that recurrent neural networks inherit error corrections to y-critical that were 

already present in the feedforward case. There are two additional sources of error that 

one could consider as one moves from feedforward to recurrent networks. However, our 

numerical simulations of recurrent networks suggest that these are sometimes small effects, 

and we leave their systematic study for the future.

First, we could account for the fact that the ε μ directions themselves can change. This is 

because the inputs driving any given driven neuron can no longer be assumed to be fixed 

at zμm if the other driven neurons suffer from noise. However, these activity patterns define 

the ε μ directions and ημ coordinates. Allowing noise in input neurons would lead to similar 

corrections.

Biswas and Fitzgerald Page 56

Phys Rev Res. Author manuscript; available in PMC 2023 August 25.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



Second, the total error in Eq. (63) may be unevenly distributed across the driven neurons. 

If the total squared error summed over all responses and neurons is εtot
2 , then on average, 

the root-mean-square error associated with each driven neuron is εtot/ D. We can thus hope 

that a substitution of ε = εtot/ D in the various y-critical formulas will provide a good 

approximation. However, it is also possible that a few neurons will incur most of the error 

(up to εtot), potentially leading to violation of the certainty conditions computed from the 

root-mean-square error over neurons.

APPENDIX D: BEYOND THRESHOLD-LINEAR TRANSFER FUNCTIONS

So far, we have always modeled the firing rate as a threshold-linear function applied to the 

input drive. Here we will explain how our analyses of y-critical with noise also provide a 

formalism to analyze a much more general class of nonlinear transfer functions.

1. Bounded deviations from the threshold-linear function

Let us start by considering transfer functions with bounded differences from the threshold-

linear function:

Ψ(x) = Φ(x) + Δ(x), with Δ(x) < Δ0 ∀ x. (D1)

In this case, the fixed-point equations become

yμ = Ψ ∑
m = 1

N
zμmwm = Φ ∑

m = 1

N
zμmwm + δμ, where

δμ ≡ Δ ∑
m = 1

N
zμmwm .

(D2)

Since |Δ(x)| is bounded by Δ0, we have a bound on the squared norm of δ :

δ
2

< PΔ0
2 . (D3)

It is therefore clear that we can estimate y-critical for the Ψ nonlinearity with exactly the 

same formalism that we used to estimate y-critical for the threshold nonlinearity in the 

presence of noise. In particular, all the y-critical estimates [(64), (65), (C15)] are valid with 

the substitution, ε = PΔ0. Moreover, one can account for other sources of noise (bounded 

by ε0) by instead substituting

ε = ε0
2 + PΔ0

2 (D4)

to obtain estimates and bounds on y-critical.

2. Bounded departures from any threshold-monotonic nonlinearity

Let us now consider transfer functions, Ψ(x), that are close to a function, Ξ(x), that 

monotonically increases above a threshold, xT :
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Ξ(x) = 0, if x ⩽ xT,
Ξ(x) > Ξ(y) > 0, if x > y > xT, and
Ψ(x) = Ξ(x) + Δ(x), with Δ(x) < Δ0 ∀ x .

(D5)

Accordingly, we find

yμ = Ψ ∑
m = 1

N
zμmwm = Ξ ημ + Δ ημ Ξ ημ

= yμ − Δ ημ .
(D6)

Since the monotonicity condition ensures that Ξ−1 is well defined above threshold, and, we 

then have the upper bound,

0 ⩽ Ξ ημ < yμ + Δ0 ημ < Ξ−1 yμ + Δ0 . (D7)

Additionally, if yμ > Δ0, then we also have a lower bound:

0 < yμ − Δ0 < Ξ ημ ημ > Ξ−1 yμ − Δ0 . (D8)

Thus, combining the upper and lower bounds, we find

Ξ−1 yμ + Δ0 > ημ > Ξ−1 yμ − Δ0 > 0 (D9)

However, if yμ ⩽ Δ0, then there is no lower bound, and any ημ satisfying the upper bound 

(D7) is allowed. Now, we can introduce effective responses, representing the midpoint of 

possible superthreshold input drives,

yμ ≡

1
2 Ξ−1 yμ + Δ0 + Ξ−1 yμ − Δ0 , if yμ > Δ0,

1
2Ξ−1 yμ + Δ0 , if yμ ⩽ Δ0,

(D10)

and effective noise limits,

εμ ≡

1
2 Ξ−1 yμ + Δ0 − Ξ−1 yμ − Δ0 , if yμ > Δ0,

1
2Ξ−1 yμ + Δ0 , if yμ ⩽ Δ0,

(D11)

which allow ημ to span the full allowed range. By inspection, we now see that the solution 

space is equivalent to the solution space of a threshold-linear problem:

Φ ημ = yμ + δμ, with δμ ⩽ εμ .

Thus, again all the y-critical estimates [(64), (65), (C15)] will be valid with the substitution 

yμ yμ and a conservative error bound
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ε2 = ∑
μ = 1

P
εμ

2 . (D13)

APPENDIX E: CERTAIN SYNAPSES IN LOW-DIMENSIONAL RECURRENT 

NETWORKS WITH SELF-CONNECTIONS

As discussed in Appendix A, when one moves from feedforward to recurrent neural 

networks with self-synapses, the input patterns can no longer be considered independent 

from the target neuron responses. How then does one assess synapse certainty for driven 

neurons with self-synapses, such as y3 in Fig. 6(a), y in Fig. 12(a), y1 in Fig. 12(c), and y2 in 

Fig. 12(c)?

We begin by concretely analyzing neuron y in Fig. 12(a), because this is the conceptually 

simplest example, and fundamentally the mathematical analyses are the same for the other 

examples. In particular, to test our formalism and analytical results using this neuron, we 

performed low-dimensional simulations where the  ×  extended input pattern matrix 

was

Z =

x1 x2 y
−sinψ cosχ cosψ cosχ sinχ

cosψ sinψ 0
sinψ sinχ −cosψ sinχ cosχ

(E1)

which is the same as X in Eq. (60), except that the role of x3 is now played by y itself.26 

The third column of Eq. (E1) corresponds to the responses of the driven neuron, but it also 

provides a self-input. The two input neuron responses are given by the first two columns. 

Equation (E1) is meant to correspond to the case where  = 2 and  = 1, such that μ = 

1, 2, 3 correspond to the constrained, semiconstrained, and unconstrained response patterns, 

respectively. For the purpose of numerical testing, we assumed that χ ∈ (0°, 90°) and ψ ∈ 
(−90°, 0°), as this range of angles ensures that driven neuron responses were nonnegative.27 

We set W = 1. See Appendix F for numerical simulation details.

This example problem has one self-coupling, w, and two feedforward couplings, u1 and u2. 

For this response structure, one can use Eq. (51) to calculate ycr for each of these three 

couplings. We find

ycr, w = W cosχ,
ycr, u1 = W cos2ψ + cos2χ sin2ψ,
ycr, u2 = W sinχ .

(E2)

We assess synapse certainty by checking whether these formulas for ycr are smaller than 

the magnitude of y ,

26In the context of Fig. 6(a), y, x1, and x2 can be identified with y3, y2, and x2, respectively.
27This range also allowed us to ensure nonnegativity for the other example recurrent circuits in Figs. 6(a) and 12(c).
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y = sinχ . (E3)

Since W = 1, we see that the self-coupling becomes certain only if

sinχ > cosχ, or, 0° < θ ≡ π/2 − χ < 45° (E4)

[Fig. 12(b), left], where θ has been defined to be the angle between e yy and c = y28. 

consistent with the conventions of Eq. (37). Next, basic trigonometric manipulations tell us 

that the certainty condition can never be satisfied for u1 [Fig. 12(b), middle]. Finally, we 

see that the condition for certainty is always just not satisfied for u2. Here this implies that 

all solutions have u2 ⩾ 0 [Fig. 12(b), right]. This is because it is a very special case where 

cos γ = es∗ = 0 and y⊥ in Eq. (A51) is aligned with u, so that both the inequalities in Eq. 

(A53) turn into equalities. In each panel of Fig. 12(b), we tracked the fraction of positive and 

negative synapse signs across the simulations, as we varied θ. In particular, we see that w 
had a unique sign as long as θ < 45°, u1 always had mixed signs, and u2 was nonnegative.29

The same exact response matrix (E1) can also be used to consider neurons y3 in Fig. 6(a) 

and y2 in Fig. 12(c). The only difference is that the three columns respectively encode the 

responses of the second driven neuron, second input neuron, and third driven neuron in Fig. 

6(a) and the responses of the single input neuron and two driven neurons, y1 and y2, in Fig. 

12(c). This correspondence can be seen by comparing the numerical results in Figs. 12(b) 

and 12(d). We use this correspondence to avoid having to simulate the full network in Fig. 

6(a), and the numerical results in Fig. 6(c) are the same as those in Fig. 12(b).

APPENDIX F: NUMERICAL METHODS

1. Low-dimensional numerical methods

Here we detail the numerical methods relevant for Figs. 6 and 12.

a. Feedforward analysis

To test the analytic dependence in Fig. 6(b), we wanted to simulate solutions without 

biasing ourselves by the particular search algorithm used to find solutions. Accordingly, 

to find solutions to the fixed point equations (A2) with very small error (ℇ < ε = 0.01) 

we performed a random screen where each weight was chosen randomly from a uniform 

distribution between −1 and +1. For feedforward circuits, given the synaptic weights, one 

can obtain the fixed point responses of the target neuron by direct substitution of the known 

input responses in Eq. (A2) and then comparing these simulated target responses with the 

known target responses. We varied ψ, χ in the response data (E1) systematically in steps of 

28Note that

eyy = sinχ ε 1 + cosχ ε 3 = cosθ ε 1 + sinθ ε 3, (E5)

where we have identified c  and u  with ε 1 and ε 3, respectively.
29As we explained before, ycr,u2 = y for all values of θ. Hence, the certainty condition is not satisfied because u2 may be zero. The 
fact that u2 can vanish is not discernible from our simulations because the weight magnitudes were generated randomly, and weights 
where u2 = 0 comprise a zero measure set.
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6°.30 For the light and dark green curves, ψ was fixed at 45°, and χ was varied between (0°, 

90°) and (90°, 180°), respectively, while for the pink and purple curves χ was fixed at 45°, 

135°, respectively, and ψ was varied between (0°, 90°). Finally, for a given choice of ψ, χ, 

we systematically varied y between 0 and 1, in intervals of Δy = 0.01. For each value of ψ, 

χ, and y, we obtained ~(102–104) solutions31 satisfying the error and the biological bound 

(A11) from five to ten million different trial weight vectors. We then identified the maximal 

value of y for which the solutions had both positive and negative w1’s. This simulation 

point should lie beneath the theoretical ycr if no error is allowed. However, since the error 

is small but nonzero, occasionally the y-criticals determined from simulations did slightly 

exceed the theoretical value. Also, since we vary y by small amounts y = 0.01, we expected 

the simulated y-criticals to be discrete but close to the theoretical predictions, which is 

exactly what we found in Fig. 6(b).

b. Recurrent analysis

Because the recurrent network solution space separates into several feedforward solution 

spaces at zero error, we numerically treated the driven neurons one at a time. To find 

solutions for the recurrent neurons in Figs. 6(a), 12(a), and 12(c), we fixed χ, ψ and then 

performed screens with random weights, selected in the same manner as the feedforward 

simulations discussed earlier. For each set of weights, and for each μ = 1, 2, we obtained the 

late time values of y by solving the time evolution equation [Eq. (6) with τi = 20 ms] using 

Euler’s method starting with initial conditions yi(0) = yμi, for μ = 1, 2. We used a time step 

of Δt = 0.2 ms. The yμ’s obtained from the simulation at late times, t ~ 600 ms, were then 

compared with yμ to obtain ℇ. If the weights satisfied, ℰ < 0.05 D and the biological bound 

(A11), then we considered the weights as solutions and checked the sign of the synaptic 

weights. For every value of ψ, χ, we found at least 50 solutions32 to test the certainty 

predictions.

2. High-dimensional numerical methods

Here we detail the numerical methods relevant for Figs. 8 and 11.

a. Generating random orthogonal matrices

In several simulations we had to generate orthogonal response matrices. This meant that 

we had to obtain  orthonormal -dimensional vectors. This was done by first generating 

an  ×  matrix, G, where each of its entries was randomly selected from a uniform 

distribution between −1 and +1. We then antisymmetrized the matrix, G → (G − GT)/2, and 

a random orthogonal response matrix was then obtained via matrix exponentiation, Z = eG, 

where the matrix exponential is defined by substituting the matrix G into the power series 

30Since here we were primarily interested in the zero-error result, we restricted ourselves to a range of ψ, χ where no topological 
transitions can occur due to the small but finite error we had to allow for numerical simulations.
31The number of solutions varied between 200 and 40 000 depending primarily on the value of y, the higher the value, typically the 
more difficult it was to find solutions.
32The number of solutions varied between 104 and 105 for the  = 1 simulation in Fig. 12(b) and between 56 and 110 for the  = 
2 simulation in Fig. 12(d). Note that for the  = 2 simulation we have a six-dimensional weight space, which makes it a lot harder 
to find solutions through random scanning. Also, for this latter case we only checked that the biological constraint is satisfied by the 
incoming weights to y1.
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expansion of the exponential function and is distinct from the simple exponentiation of 

individual matrix elements. The first  rows of Z could then correspond to the  orthogonal 

patterns, and Z can be interpreted as the orthogonal extension of z as discussed before.

b. Generating random orthogonal matrices with nonnegativity constraints

In recurrent networks, all driven neurons must have nonnegative responses for all patterns. 

Accordingly, when the input response pattern includes responses of driven neurons, we 

follow a different procedure for generating the response matrix, which works as long as ℐ ⩾ 
 – 1. We started by choosing a (  × )-dimensional matrix, z, containing the responses 

of  driven neurons and ℐ ⩾  – 1 input neurons. The first columns of z corresponded to 

driven neuron responses, and the last columns to input neuron responses, such that z = (y x). 

We made sure that the responses of the driven neurons were all nonnegative, as the threshold 

nonlinearity dictates, by choosing them to lie randomly between 0 and 1. To mimic a sparse 

response pattern, we set driven responses to 0 with 50% probability. The feedforward inputs, 

however, were randomly selected between −1 and 1. We then orthogonalized the input 

responses to the target neuron as follows. We start by normalizing the ν = 1 pattern:

z1m
z1m

∑n = 1
N z1n

2 . (F1)

Then, for each row, ν = 2 … , in a sequential order we performed the following 

operations:

1. We started by defining a (ν − 1)-dimensional square matrix, x′:

xμm
′ ≡ xμm forμ, m = 1…(v − 1) . (F2)

2. We next changed the first m = 1 … ν − 1 elements of the νth row of x

xvm ≡ − ∑
μ = 1

v − 1
xmμ

′ − 1 ∑
i = 1

D
yμiyvi + ∑

n = v

ℐ
xμnxvn , (F3)

and thus z. The other elements of the νth row of z were left unchanged. In 

particular, none of the driven neuron responses changed during this step.

3. Finally, we rescaled all the elements of the νth row of z for normalization:

zvm
zvm

∑n = 1
N zvn

2 . (F4)

This algorithm essentially uses the responses of the input neurons to the νth 

stimulus to ensure that the full νth response pattern involving both the driven and 

input neurons is orthogonal to all μ ⩽ ν − 1 patterns.

c. Generating target responses and response directions

To generate  target responses with  null responses, we simply randomly selected 

numbers between 0 and 1 for the  =  −  nonzero responses.
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In some simulations, we wanted to consider situations where one has to account for a 

single topological transition to compute y-critical. Accordingly, we tailored the responses as 

follows. First, we set one nonzero response of the target neuron to a small value, 0.1ε. y was 

then obtained by dividing the response vector by its norm. We then only considered those 

y’s whose other entries were large enough to prevent additional topological transitions from 

affecting y-critical. This was done by: evaluating ycr,min, the theoretical lower bound for 

y-critical that includes the first topological transition (Appendix C); constructing y = ycr,miny, 

which approximates the activity vector right below y-critical; and ensuring that all the other 

entries of y  were greater than the allowed error, which guarantees that no other constrained 

dimensions can become semiconstrained in between ycr,min and the true y-critical. This 

way, typically one and only one constrained direction became semiconstrained when we 

allowed solutions with errors ≲ε.

d. Finding solutions using gradient descent learning in feedforward networks

In all the high-dimensional simulations, we had to find solutions to the fixed point equations 

(A2). Since scanning a high-dimensional synaptic weight space randomly is not numerically 

efficient, we applied gradient descent learning33 to obtain solutions. For feedforward 

networks, this meant using the loss function

ℰ2 = ∑
μ = 1

P
yμ − yμ

2, whereyμ = Φ ∑
m = 1

N
zμmwm . (F5)

We performed gradient descent optimization until we reached the desired error bound, ℇ < ε. 

The initial weights were first chosen randomly from a uniform distribution between −1 and 

1. The initial weight vector was then rescaled to have a norm between 0 and W = 1, chosen 

uniformly.

e. Finding solutions using gradient descent learning in recurrent networks

To find solutions for recurrent neural networks, we used the modified loss function,

ℰ2 ≡ ∑
i = 1

D
∑

μ = 1

P
yμi − yμi

2 ≡ ∑
i = 1

D
ℰi

2, where

yμi = Φ ∑
m = 1

N
zμmwim ,

(F6)

to perform gradient descent, instead of Eq. (63). Since the responses of the driven neurons 

can vary for nonzero errors, the two loss functions, ℇ and ℰ, differ. However, it is 

numerically a lot quicker to obtain solutions via gradient descent with ℰ as compared to 

using back-propagation through time to consider the entire time evolution of the network. 

Thus, the strategy we adopted to find solutions with ℇ ≲ ε was to first find weights 

satisfying ℰ ≲ ε = ε/10. Also, the gradient descent was done in two stages. In the first stage 

we minimized the error associated with each individual driven neuron, ℰi treating it as a 

33Typically with learning rate ~0.01.
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feedforward problem. Once each of these errors were less than ε, we performed a second 

stage of gradient descent to minimize ℰ down to ε. Next, we obtained the late time values 

of yi’s by solving the time evolution equations (6) with τi = 20 ms using Euler’s method 

with step time Δt = 0.2 ms for the weights obtained via gradient descent and starting with 

initial conditions yi(0) = yμi, ∀μ,i. The yμi’s obtained at late times, t ~ 600 ms, this way were 

compared with yμi to obtain ℇ. Finally, we checked that the weights satisfied the biological 

bound34 (A11).

f. Other minor simulation details

In Fig. 8(b), we show results from a simulation with  = 6,  = 5,  = 2, and ℇ < ε = 0.1. 

The solutions were obtained using a gradient descent learning rate of 0.02. We varied the 

norm of the target response vector, y = yy, systematically by Δy = 0.01 in a manner similar 

to the low-dimensional simulations.

In Fig. 8(c), we considered a single input-output configuration for a given value of  and , 

and we found a single solution with ℰ < 0.001 P using a gradient descent learning rate of 

0.005.

In Figs. 8(d)–8(e), we show results of a simulation for a  = 10,  = 4, ℐ = 7,  = 8, and 

 = 3 network where the norm of y  was fixed to 0.79, which approximates the median value 

of y for the given values of , , and  [Eq. (B5)]. Our solutions were obtained using a 

gradient descent learning rate of 0.004 and the overall error satisfied 0.017 D ≲ ℰ ≲ 0.25 D.
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FIG. 1. 
Cartoon of theoretical framework. (a) We first specify some steady-state responses of a 

recurrent threshold-linear neural network receiving feedforward input. (b) We then find all 

synaptic weight matrices that have fixed points at the specified responses. Red (blue) matrix 

elements are positive (negative) synaptic weights. (c) When a weight is consistently positive 

(or consistently negative) across all possibilities, then the model needs a nonzero synaptic 

connection to generate the responses. We therefore make the experimental prediction that 

this synapse must exist. We also predict whether the synapse is excitatory or inhibitory.
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FIG. 2. 
An illustrative two-dimensional problem. (a) Cartoon depicting two stimulus response 

patterns in a simple feedforward network with two input neurons and one driven neuron. (b) 

Since the driven neuron in panel (a) responds in one condition but not the other, we have one 

constrained dimension (magenta axis) and one semiconstrained dimension (green axis). The 

yellow ray depicts the space of weights, (w1, w2), that generate the stimulus transformation. 

The weight vector 1
2 , 1

2  (brown dot) would uniquely generate the neural responses in a 

linear network. We assume that the magnitude of the weight vector is bounded by W, such 

that all candidate weight vectors lie within a circle of that radius. A nonzero synapse x2 → y 
exists in all solutions, but the x1 → y synapse can be zero because the yellow ray intersects 

the w1 = 0 axis.
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FIG. 3. 
Finding network structure that implements functional responses. (a) Cartoon depicting a 

recurrent network of driven neurons (blue) receiving feedforward input from a population 

of input neurons (orange). (b) The μth pattern of input neuron activity (xμm) appears 

at t = 0 and drives the recurrent neurons to approach the steady-state response pattern 

(yμi) via feedforward and recurrent network connectivity (wim). (c) (Left) We focus on 

one driven neuron at a time, referred to henceforth as the target neuron, to determine 

its possible incoming synaptic weights, wm. (Right) These weights must reproduce the 

target neuron’s  steady-state responses from the steady-state activity patterns of all 

presynaptic neurons. (d) The yellow planes depict the subspace of incoming weights that 

can exactly reproduce all nonzero responses of the target neuron, and the subregion shaded 
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dark yellow indicates weights that also reproduce the target neuron’s zero responses. The 

top graph depicts the weight space parametrized by physically meaningful w coordinates, 

but the solution space is more simply parametrized by abstract η coordinates (bottom). The 

η coordinates depend on the specified stimulus transformation (xμm → yμi), and ηc, ηs, 

and ηu are coordinates in -dimensional constrained, -dimensional semiconstrained, and 

-dimensional unconstrained subspaces, respectively.
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FIG. 4. 
Geometric quantities determining whether neurons must be synaptically connected in several 

three-dimensional toy problems. (a) Cartoon depicting the  = 3 feedforward network 

corresponding to the toy problems. (b), (c) Geometrically determining whether a synapse 

is nonzero when the target neuron responds to one input pattern but does not to two other 

patterns. A synapse can only vanish if the w1 = 0 plane (orange circle) intersects the solution 

space (dark yellow wedge) within the weight bounds (bounding sphere). For example, this 

intersection occurs in panel (b), so the synapse is not required for the responses. For every 

synapse one can associate a direction in synaptic weight space (orange arrow) that is normal 

to the planes with constant synaptic weight. This synapse vector can be decomposed into its 

projections into the semiconstrained subspace (green arrow, s ) and along the constrained 

dimension (pink arrow, c ). In this example, whether the synapse is certain is determined 

by the size of the bounding synapse space, W [see panel (b)], the angle θ between the 

synapse direction (orange arrow) and the closest axis of the constrained dimension − ε 3

[see panel (b)], and the angle γ between s  and its closest vector in the solution space s ∗

[see panel (c)]. In panel (c), ds depicts the perpendicular distance from the origin of the 

yellow semiconstrained plane in panel (b) to its intersection line with the w1 = 0 orange 

plane. If this distance is sufficiently large, then the orange line will not intersect the target 

neuron responds to two input patterns but not the third pattern. In panel (d), the orange 

w1 = 0 plane intersects the solution space (deep solution space within the yellow plane’s 

circular bound of radius W . (d), (e) Geometrically determining whether a synapse is nonzero 

when the yellow line) within the bounding sphere, so the synapse is not certain. In this 

example, the factors that determine synapse certainty are W [see panel (d)], the angle θ that 
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the synapse vector (orange arrow) makes with its projection along the constrained subspace 

(pink arrow) [see panel (d)], and the angle α between the target response vector (brown 

arrow) and the pink arrow [see panel (e)]. The angle β does not ultimately matter, but it 

is included in the diagrams to aid the derivation. Here ds is the distance from the brown 

dot to the point of intersection between the yellow line and the orange plane. Again this 

point will lie outside the bounding sphere if ds is large enough, and this signals a certain 

synapse. (f) Geometrically determining whether a synapse is nonzero when the target neuron 

responds to one input pattern but does not to a second pattern. In the figure shown, the w1 

= 0 orange plane intersects the solution space (deep yellow semicircle) within the bounding 

sphere, so the synapse is not certain. In this example, apart from W, what determines 

synapse certainty are the angles θ and φ, which encode how the synapse vector (orange 

arrow) can be decomposed into its projections along the constrained direction (pink arrow), 

semiconstrained direction (green arrow) and unconstrained direction (purple arrow).
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FIG. 5. 
Identifying certain synapses in high-dimensional networks. (a) Cartoon depicting the 

high-dimensional feedforward network under consideration. (b) Geometrically determining 

whether a synapse is nonzero throughout a high-dimensional solution space. A synapse 

can only vanish if the wm = 0 hyperplane (orange circle) intersects the solution space 

(dark yellow wedge) within the weight bounds (bounding sphere). In the example shown, 

this intersection does not occur, so the synapse must be present. For orthonormal neural 

responses, only a few parameters determine whether this intersection occurs (Appendix A). 

First, the magnitude of the weight bound, W, controls the extent of the solution space. 

Second, there are three projections of the synapse direction (orange arrow) whose lengths 

are important determinants of the certainty condition: ey, the length of projection along the 

target response vector (pink arrow); es*, the length of projection along the closest boundary 

vector in the semiconstrained solution subspace [green arrow, see also s ∗ in Fig. 4(c)]; and 

eu, the length of projection into the unconstrained subspace (purple arrow). Note that the 

shown example would have had an intersection if the solution space (dark yellow wedge) 

were moved down (along c) to lie below the hyperplane (orange circle). The solution space’s 

height is proportional to the magnitude of the postsynaptic responses, y. Thus, the solution 

space does not intersect the hyperplane only if y exceeds a critical value, ycr. (c) Plots 

of the certainty condition, Eq. (57), for W = 1. The red, blue, and purple curves plot ycr 
as a function of ry = ey/ep for ep = 0.3, 0.6, and 0.9, respectively. Different purple shades 

correspond to different values of rs ∗ = es ∗ / ep
2 − ey

2. As this ratio increases, nonlinear effects 

increase ycr and make the sign harder to determine. The red and blue curves are for the 
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maximally nonlinear case when rs ∗ = 1 es ∗ = ep
2 − ey

2. The dashed black curves represent 

ycr in a linear model, which cannot exceed the nonlinear ycr.
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FIG. 6. 
Testing the certainty condition with exhaustive low-dimensional simulations. (a) A simple 

recurrent network with three input neurons and three driven neurons (Appendix E). (b) We 

plot the theoretically derived ycr for feedforward synapses to y1 as we vary θ (green curves) 

or φ (magenta curves), keeping the other angle fixed at 45°. The lighter shades correspond 

to cosγ = 1 ⇒ rs* = 1. The darker shades correspond to cosγ = 0 ⇒ rs* = 0, where the 

predictions from the nonlinear network match those of a linear network. The dots represent 

ycr estimated through simulations, and they agree well with the theory. (c) (Bottom) Bar 

graph of the fraction of solutions with positive (red) and negative (blue) self-couplings (y3 

→ y3) as a function of θ. (Top) As predicted, all solutions have positive wy3,y3 when y − 

ycr > 0.
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FIG. 7. 
The solution space geometry changes as the allowed error increases. (a) Error surface 

contours in a three-dimensional subspace corresponding to η1, η2, and η3. Several 

topological transitions occur as the error increases. (i) We consider the case where all 

responses are positive, so the contours are spherical for small errors, just like in a linear 

neural network. (ii), (iii) Two cylindrical dimensions sequentially open up when the error 

is large enough for some η coordinates to become negative. (iv), (v) After that, either a 

third cylindrical dimension can open up, or the two cylindrical axes can join to form a 

plane. Which transition occurs at lower error depends on the pattern of neural responses. 

(b) (Left) We illustrate a case where there is a unique exact solution to the problem (brown 

dot). Allowing error but neglecting topological transitions would expand the solution space 
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to an ellipse (here, brown circle), but the signs of w1 and w2 remains positive. Including 

topological transitions in the error surface can cap the ellipse with a cylinder (full yellow 

solution space). Now we can say with certainty that the sign of w2 is positive, but negative 

values of w1 become possible. (Right) Graphical conventions are the same. However, in 

this case all solutions inside the cylinder have w2 > 0. Therefore, the topological transition 

breaks a near symmetry between positive and negative weights.
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FIG. 8. 
The theory accounting for error explains numerical ensembles of feedforward and recurrent 

networks. (a) Cartoon of a recurrent neural network. We disallow recurrent connectivity 

of neurons onto themselves throughout this figure.  = 1 corresponds to the feedforward 

case, and W = 1 for all panels. (b) Comparison of numerical and theoretical y-critical 

values for 102 random configurations of input-output activity (Appendix F). We considered 

a feedforward network with ℐ = 6,  = 5,  = 2. For each configuration and postsynaptic 

activity level y, we used gradient descent learning to numerically find many solutions to 

the problem with ℇ ≈ 0.1. The black dots correspond to the maximal value of y in our 

simulations that resulted in an inconsistent sign for the synaptic weight under consideration. 

The continuous curves show theoretical values for y-critical that upper bound the true 

y-critical (ycr,max, black), that neglect topological transitions in the error surface (yellow), 

or that neglect the threshold nonlinearity (cyan). Only the black curve successfully upper 

bounded the numerical points. Configurations were sorted by the ycr,max value predicted 

by the black curve. (c) The number of certain synapses increased with the total number 

of synapses in feedforward networks. Purple and brown correspond to  = 2  = 4
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and  =  = 4 , respectively. The solid lines plot the predicted number of certain 

synapses. The circles represent the number of correctly predicted synapse signs in the 

simulations. The dashed brown and purple lines are best-fit linear curves with slopes 

0.16(±0.01) and 0.07(±0.01) at 95% confidence level, significantly less than the zero error 

theoretical estimates of 0.28 and 0.18 (Appendix B). (d), (e) Testing the theory in a recurrent 

neural network with  = 10, ℐ = 7,  = 4,  = 8, and  = 3. Each dot shows a 

model found with gradient descent learning. (d) x and y axes show two η coordinates 

predicted to be constrained and semiconstrained, respectively, and the color axis shows 

the model’s root-mean-square error over neurons, ℰ/ D. Although our theory for error 

surfaces is approximate for recurrent networks, the solution space was well explained by 

the constrained and semiconstrained dimensions. Note that the numerical solutions tend to 

have constrained coordinates smaller than the theoretical value (vertical line) because the 

learning procedure is initialized with small weights and stops at nonzero error. (e) The x 
axis shows the model’s error, and the y axis shows the number of synapse signs correctly 

predicted by the nonlinear theory (yellow dots or red crosses) or linear theory (cyan dots 

or blue crosses). Dots denote models for which every model prediction was accurate, and 

crosses denote models for which some predictions failed.

Biswas and Fitzgerald Page 81

Phys Rev Res. Author manuscript; available in PMC 2023 August 25.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



FIG. 9. 
Cartoons depicting the orientation of the semiconstrained projection of a given synaptic 

weight direction s′  within the semiconstrained subspace and its impact on determining the 

sign of the given weight. In these plots, the yellow wedges represent the solution space, η1, 

η2 ⩽ 0. ds is the distance of the wm = 0 orange line (hyperplane in higher dimension) from 

the origin. If ds is small, as in the left plot (a), then the projection angle γ is smaller than φ, 

half of the angle subtended by the orange line to the origin, and therefore the orange line and 

the yellow cone intersect. This means that solutions with both positive and negative w’s are 

present. In the right plot (b), ds is sufficiently large such that γ > φ and consequently, all the 

solutions must have consistent sign.
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FIG. 10. 
Dependence of y-critical on various parameters for nonzero errors. (a) The red, blue, and 

purple curves track y-critical as a function of ey/ep for ep = 0.5, 0.7, and 0.9, respectively. 

The dotted, dashed and bold curves represent the lower bound, leading-order and upper 

bound y-critical curves for a fixed error, ε = 0.1W. The darker shade correspond to the most 

nonlinear case when es ∗ / ep
2 − ey

2 = 1, while the lighter shade correspond to es∗ = 0. These 

latter curves are also the ones that one obtains in a linear theory. Clearly, the difference 

between the linear and nonlinear theory increases as ep increases. In all these cases y-critical 

decreases with increase of ep, and for a given ep, as ey/ep increases. Also, as es∗ increases 

and the semiconstrained dimensions become more important, it becomes harder to constrain 

the synapse sign, and therefore y-critical increases. (b) The green, brown, and orange curves 

again track y-critical, but this time as a function of ε, for networks with  = 3,9, and 

27 input neurons, respectively. The dotted, dashed and bold curves plot the lower bound, 

leading-order and upper bound on y-critical for typical values of ep, ey, and es∗ that one 

expects in these networks (B1). We see that these curves come closer together as the network 

size increases. The dot-dashed curves correspond to the linear theory (es∗ = 0), which 

remains clearly separated from the nonlinear curves. In each of these networks, /  = 2/3 

and /  = 1/2.
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FIG. 11. 
Testing bounds on y-critical for solutions with error. We show the same 102 random 

configurations of input-output activity as Fig. 8(b). The bold black, green, and gray curves 

represent the upper bound ycr,max, approximate ycr,appr, and lower bound y-critical 

ycr,min, values, respectively. The black dots correspond to the maximum value of y in our 

simulations that resulted in mixed signs for the synaptic weights under consideration.
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FIG. 12. 
Comparing simulation and theoretical results in  = 3 recurrent network. (a) A simple  = 

3 recurrent neural network with one driven and two input neurons. Note that the y1 neuron 

shown here maps onto the y3 neuron in Fig. 6(a) by interpreting the x1 and x2 neurons 

shown here as the x3 and y2 neurons shown in Fig. 6(a). (b) Bar graphs depicting the fraction 

of positive (red) and negative (blue) weights from the network depicted in panel (a). (c) 

Another  = 3 recurrent neural network, this time with two driven and one input neuron. 

(d) Bar graphs depicting the fraction of positive (red) and negative (blue) weights from the 

network depicted in panel (c). (e) The black bars depict y − ycr for the corresponding 

synapses.
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