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UTX inactivation in germinal center B cells promotes the
development of multiple myeloma with extramedullary disease
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UTX/KDM6A, a histone H3K27 demethylase and a key component of the COMPASS complex, is frequently lost or mutated in cancer;
however, its tumor suppressor function remains largely uncharacterized in multiple myeloma (MM). Here, we show that the
conditional deletion of the X-linked Utx in germinal center (GC) derived cells collaborates with the activating BrafV600E mutation and
promotes induction of lethal GC/post-GC B cell malignancies with MM-like plasma cell neoplasms being the most frequent. Mice
that developed MM-like neoplasms showed expansion of clonal plasma cells in the bone marrow and extramedullary organs, serum
M proteins, and anemia. Add-back of either wild-type UTX or a series of mutants revealed that cIDR domain, that forms phase-
separated liquid condensates, is largely responsible for the catalytic activity-independent tumor suppressor function of UTX in MM
cells. Utx loss in concert with BrafV600E only slightly induced MM-like profiles of transcriptome, chromatin accessibility, and H3K27
acetylation, however, it allowed plasma cells to gradually undergo full transformation through activation of transcriptional networks
specific to MM that induce high levels of Myc expression. Our results reveal a tumor suppressor function of UTX in MM and
implicate its insufficiency in the transcriptional reprogramming of plasma cells in the pathogenesis of MM.
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INTRODUCTION
Deregulation of histone modifications has been attributed to an
imbalance between writers that install the histone methylation marks
and erasers that remove these marks [1]. Specifically, alteration of the
methylation of lysine 27 on histone H3 (H3K27) has an incriminating
role in hematological malignancies [2, 3]. The catalytic components
of polycomb repressive complex 2 (PRC2), enhancer of zeste
homolog 2 (EZH2) and its homolog EZH1, deposit the repressive
H3K27me3 mark at both promoters and enhancers [4]. The histone
demethylase, ubiquitously transcribed tetratricopeptide repeat gene
on the X chromosome (UTX), also known as KDM6A, specifically

removes di- and tri-methyl groups from H3K27 thus antagonizing
PRC2-mediated transcriptional repression [5]. UTX was identified as a
critical regulator of reprogramming in induced pluripotent stem cells
(iPSCs) through its catalytic activity by partnering with Oct4, Sox2,
and KIF4 reprogramming factors [6]. In addition to its H3K27
demethylase activity, UTX possesses catalytic-independent functions.
It contributes to embryonic viability, differentiation, and certain
aspects of development in mouse embryonic stem cells (ESCs)
independently of its demethylase activity [7–9]. Importantly, UTX is
an integral component of the MLL3 and MLL4 COMPASS (complex of
proteins associated with Set1) complexes, which monomethylate
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H3K4 at enhancers [10]. UTX mediates the conversion of enhancers
from an inactive to an active state by direct recruitment and coupling
of p300/CBP histone acetyltransferases (HAT) and MLL4 [11].
Recent studies revealed that UTX is frequently mutated in

different kinds of cancer, including hematological malignancies;
however, the pathological role of UTXmutations in tumorigenesis is
not yet fully understood [12]. UTX is often inactivated, exclusively in
males, in T-cell acute lymphoblastic leukemia (T-ALL), where it
functions as a tumor suppressor [13, 14]. UTX also suppresses the
development of myeloid leukemia, in which it functions indepen-
dently of its demethylase activity, through remodeling of enhancers
and chromatin accessibility of oncogenes and tumor suppressor
genes [15]. In multiple myeloma (MM), UTX inactivating mutations/
deletions were detected in 1.5–4% of patients [16–18] and more
frequently in established cell lines [19], suggesting a tumor
suppressor role for UTX in MM and its implication in disease
progression. Importantly, UTX inactivating lesions were associated
with adverse overall survival [17]. UTX-null MM cell lines were
more sensitive to EZH2 inhibitors compared to UTX-wild type (WT)
MM [19].
To investigate the role of UTX insufficiency in the pathogenesis

of MM, we generated a novel mouse model that had concurrent
Utx loss and the activating BrafV600E mutation. The activating
mutations in the RAS/RAF/MEK/ERK/MAPK pathway are identified
in up to 50% of newly diagnosed MM patients [16], and the serine-
threonine kinase BRAF is mutated in 8-12% of MM patients at
diagnosis, with V600E as the most common BRAF mutation
[16, 20]. In this study, we demonstrated the tumor suppressor
function of Utx in mature B cell malignancies including MM.

MATERIALS AND METHODS
Mice
All animal procedures were conducted in accordance with the Chiba
University guidelines for the use of laboratory animals and approved by
the Review Board for Animal Experiments of Chiba University (approval ID:
30-56) and Tokyo University (approval ID: PS18-02). Mice with conditional
expression of BrafV600E (LSL-Braf V600E) from its endogenous locus were
previously described [21]. Utx conditional knockout mice were recently
reported [22]. Utxfl;BrafV600E mice were backcrossed at least 6 times onto a
C57BL/6 (CD45.2) background and were crossed to Cγ1-Cre mice [23]. Cγ1-
Cre-negative mice were used as controls. We immunized six- to eight-
week-old mutant Utx/Braf, Cγ1Cre+ and control mice using intraperitoneal
injection of 50 µg NP-CGG (Biosearch Technologies) emulsified in complete
Freund’s adjuvant (Sigma) and then 4–6 weeks later we gave them a
second dose of NP-CGG in incomplete Freund’s adjuvant (Sigma). NOD.Cg-
PrkdcscidIl2rgtm1Sug/Jic (NOG) and NOD.Cg-PrkdcscidIl2rgtm1Sug Tg (CMV-IL6)/
Jic (NOG-hIL-6) [24] mice were purchased from Central Institute for
Experimental Animals (CIEA, Kawasaki, Japan). C57BL/6 mice congenic for
the Ly5 locus (CD45.1) mice were purchased from Sankyo-Lab service,
Tokyo, Japan.

RESULTS
Utx loss cooperates with BrafV600E to induce B-cell neoplasms
To conditionally delete Utx in GC B cells, we crossed Utxfl mice, in
which exons 11 and 12 were floxed [22], with Cγ1-Cre mice, which
express Cre recombinase in GC B cells, class switched memory B
cells, and plasma cells in response to immunization [23]. The Utx
allele that lacks exons 11 and 12 encoding a part of the TPR
domain generates a frame shift mutant that fails to code for the
C-terminal domains including the JmjC catalytic domain [22]. We
crossed Utxfl mice with LSL-BrafV600E mice, in which the BrafV600E

allele is expressed from the endogenous Braf locus after Cre-
mediated deletion of a lox-stop-lox (LSL) cassette [21]. We
confirmed the efficient conditional deletion of Utx and LSL
cassette using genomic polymerase chain reaction (PCR) of DNA
extracted from spleen plasma cells (Supplementary Fig. 1A). Utx
mRNA levels were significantly reduced in Utx-deficient plasma
cells compared to control, possibly because of the activation of

the nonsense-mediated mRNA decay pathway (Supplementary
Fig. 1B). We hereafter refer to Cγ1-Cre;Utxfl/fl;BrafV600E/+,
Cγ1-Cre;Utxfl/+;BrafV600E/+, and Cγ1-Cre;Utxfl/Y;BrafV600E/+ mice as
UtxΔ/ΔBrafV600E, UtxΔ/+BrafV600E, and UtxΔ/YBrafV600E, respectively
(Fig. 1A).
During a long-term observation period, UtxΔ/+ females did not

develop any lethal diseases, while UtxΔ/Δ female and UtxΔ/Y males
developed lethal B cell malignancies, including plasma cell
neoplasms, B-cell lymphoma, and lymphoproliferative disease
(LPD) at low frequencies (Fig. 1B left panel and Supplementary
Table 1). BrafV600E mice also developed LPD and plasma cell
neoplasms at low frequencies after a long latency (Fig. 1B left
panel and Supplementary Table 1). Importantly, concurrent Utx
loss and BrafV600E expression significantly shortened the survival of
mice compared to Cre negative control, single Utx loss, and single
BrafV600E expression (Fig. 1B left panel). UtxΔ/ΔBrafV600E females
succumbed to disease earlier than UtxΔ/YBrafV600E males and
UtxΔ/+BrafV600E females. Notably, UtxΔ/ΔBrafV600E, UtxΔ/YBrafV600E,
and UtxΔ/+BrafV600E mice displayed heterogeneous phenotypes
that included plasma cell neoplasms, B cell lymphoma, and LPD,
with plasma cell neoplasms having the highest frequencies in
UtxΔ/ΔBrafV600E and UtxΔ/YBrafV600E mice (Fig. 1B right panel).
Among the compound mice, UtxΔ/YBrafV600E male mice developed
plasma cell neoplasms at a higher frequency than compound
heterozygous and homozygous Utx females (Fig. 1B right panel).
Sick mice showed splenomegaly and advanced anemia irrespec-
tive of the disease type (Fig. 1C).

Development of B-cell lymphoma in Utx insufficient BrafV600E

mice
A significant number of UtxΔ/YBrafV600E, UtxΔ/+BrafV600E, and
UtxΔ/ΔBrafV600E mice developed B cell lymphoma with marked
lymphadenopathy, splenomegaly, and hepatic involvement
(25%, 6%, and 29%, respectively) (Fig. 1B right panel and
Supplementary Table 2). Pathological examination of the spleen
from UtxΔ/ΔBrafV600E (BU-159) mouse revealed expansion of
B220+BCL6+ GC B-lymphocytes, giving a picture resembling
follicular lymphoma (FL) (Fig. 2A left panel). Flow cytometric
analysis of a mesenteric LN from the same mouse confirmed
clonal expansion of GC B cells (B220+CD95+GL7+) (Fig. 2A right
panel). Immunohistochemical analyses of the spleen and lymph
nodes (LNs) from BU-322 and BU-434 mice revealed loss of the
normal architecture with follicular and diffuse expansion of
neoplastic B220+Pax5+ B-lymphocytes, showing FL- and diffuse
large B cell lymphoma (DLBCL)-like appearance, respectively
(Fig. 2B left panel). Flow cytometric analysis confirmed the clonal
B cell expansion in the spleen and enlarged LNs (Fig. 2B right
panel). Detailed flow cytometric analysis of B-cell subsets in the
spleens of lymphoma mice showed a decrease in the percentage
of follicular B cells (FO; B220+CD23+CD21low) and an increase in
transitional B cells (TR; B220+CD23−CD21−) or GC B cells
(Supplementary Table 2).
While UTXmutations are rare in GC B-cell lymphomas [25], a high

incidence of inactivatingmutations in the components of COMPASS
and its partner HATs, including KMT2D, CREBBP, and EP300, has been
reported [26, 27]. Correspondingly, the deletion of Kmt2d, Crebbp,
and Ep300 in GC B cells has been found to promote lymphomagen-
esis in mice [28–30]. UTX deletion in Eμ-Myc mice not only
accelerates lymphomagenesis, but also promotes tumor progres-
sion [31]. In addition, lymphomas with low UTX expression are
associated with poor patient survival [31]. These findings suggest
that Utx loss in GC B cells deregulates COMPASS/HAT, thereby
promoting lymphomagenesis in mice. BRAF and KRASmutations are
identified relatively frequently (6.1 and 4.9%, respectively) in GCB
type DLBCL [25]. Although a cooperative effect between COMPASS
components and RAS-RAF cascade mutations has yet to be
reported, our results suggest that their potential combined impact
on the pathogenesis of GCB DLBCL is worth investigating.
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Development of plasma cell neoplasia in Utx insufficient
BrafV600E mice
The most frequent neoplasm that developed in Utx insufficient
BrafV600E mice was plasma cell neoplasm: 60%, 31.3%, and 35.3% in
UtxΔ/YBrafV600E, UtxΔ/+BrafV600E, and UtxΔ/ΔBrafV600E mice, respectively
(Fig. 1B right panel). These mice showed significant increase in the
percentage of plasma cells in the BM and spleen (Fig. 3A) and many
of them had splenomegaly and advanced anemia (Fig. 1C). Flow
cytometric analysis and immunohistochemistry revealed the diffuse
infiltration of CD138+ plasma cells in the BM, spleen, LNs, and
peritoneal cavity (Fig. 3B left and middle panels and Supplementary
Table 3). Genomic PCR analysis of purified plasma cells revealed that
they were of clonal origin showing a monotonous pattern of
rearrangement of the immunoglobulin heavy chain (Igh) gene
(Fig. 3B upper right panel). M-spike was detected in serum protein
electrophoresis (SPEP) assays in half of the mice with plasma cell
neoplasms (Fig. 3B lower right panel and Supplementary Table 3).
Some mice showed focal expansion of plasma cells, mimicking
plasmacytoma (Fig. 3C). BM and spleen plasma cells from moribund
mice showed typical plasma cell morphology (Fig. 3B middle panel,
C, and D). These results indicate that the mice with plasma cell
neoplasms recapitulate the major characteristics of human multiple
myeloma (MM), however, most of the plasma cell neoplasms
involved extramedullary organs (Supplementary Table 3).
We next performed transplantation assays. We purified CD138+

plasma cells by magnetic column-based purification (average
purity 70%). We then transplanted them into CD45.1 (Ly5.1)

congenic B57BL/6 mice or NOD.Cg-PrkdcscidIl2rgtm1Sug/Jic (NOG)
immunocompromised mice via tail vein (Supplementary Table 4).
We also performed transplantation using bulk cells from BM and
spleen. Most of the mice developed lethal LPD-like disease, but
only a fraction of recipient mice showed evident expansion of
malignant plasma cells (Supplementary Table 4), suggesting that
the engraftment and expansion of clonal plasma cells were less
efficient than polyclonal Utx-null post-GC B-cells.

Modeling MM by using Utx insufficient myeloma cells
To perform detailed characterization of Utx insufficient plasma cell
neoplasms, we established several cell lines from plasmacytic
ascites. One cell line was obtained from a moribund
UtxΔ/ΔBrafV600E mouse (BU-749, Supplementary Table 3) with an
MM-like disease (Fig. 4A). The CD138+B220− malignant plasma
cells grew on TSt-4 stromal cells [32] in the presence of
interleukin-6 (IL-6), and were of clonal origin showing monoclonal
Igl gene rearrangement (Fig. 4A right panel). These cells,
designated as MM/BU749, successfully engrafted in sublethally
irradiated NOG mice, which subsequently developed deadly
disease (Fig. 4B). Mice with advanced disease showed paralysis
of the hindlimbs and body weight loss (data not shown).
Importantly, the secondary recipients developed lethal disease
much earlier than the primary recipients (Fig. 4B).
To understand the collaborating somatic mutations acquired by

Utx-insufficient BrafV600E plasma cell clones during disease initiation
and progression, we performed whole exome sequencing (WES)
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using DNA of plasma cells purified from BM, spleen, and ascitic fluid
of mice with plasma cell neoplasms and MM/BU749 cell line. DNA of
corresponding tail or PB B cells was used as a control (Supplemen-
tary Table 5A). The mean depth of WES was 50X and the mean
coverage of target sequences with an average depth of more than
10X was greater than 95% (Supplementary Tables 5A and B). A total
of 153 somatic mutations were identified in 112 genes in 8 samples
(Fig. 4C and Supplementary Tables 5C and D). Missense mutations
were recurrently detected in at least 2 cases, in only three genes:
E2f1, Muc4, and Vmn2r114. Other mutations included 5 nonsense
mutations, 5 frameshift indels, 1 splice-site mutation, and 139
missense mutations (Fig. 4C and Supplementary Tables 5C and D).

Unexpectedly, none of these mutations were major driver muta-
tions in MM [16].
UTY is the Y chromosome homolog of UTX with weaker tumor-

suppressive activity compared to UTX [33]. It has been reported
that Uty expression protects Utx-/Y male mice from leukemogen-
esis [15]. In addition, UTY is frequently lost or mutated in
pancreatic tumors with squamous differentiation in male patients
[34]. Genomic loss of UTY in male cancer cell lines with
inactivating UTX mutations (13/16, 81%) is significantly more
frequent than UTY loss in UTX wild-type cancers (153/307, 49%)
[18]. These findings support a tumor suppressive function of UTY
in a setting of UTX insufficiency. However, our WES for male mice
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that developed MM-like disease did not show any abnormalities in
Uty or Y-chromosome. Of interest, the mutation profiles of splenic
and ascitic plasma cells from BU749 mouse were totally different,
indicating the clonal heterogeneity of malignant plasma cells in
the same mouse. These results indicate that Utx loss and BrafV600E

are the main drivers of tumorigenesis in this MM model.

Catalytic activity is dispensable for the tumor suppressor
function of UTX in MM
Making use of our Utx-deficient plasma cell line, we evaluated the
impact of UTX add-back on Utx-null MM/BU749 cell growth. We
conditionally overexpressed human UTX in MM/BU749 cells using
a Tet-on lentivirus system. Exogenous UTX significantly impaired
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eosin or anti-CD138 antibody. Right panel: genomic PCR analysis of Igh rearrangement in BM plasma cells from a Cre-negative control and BU-
415 (upper), and SPEP (Serum protein electrophoresis) performed on WT, BU333 (UtxΔ/+BrafV600E), and BU415 mice (lower). The positions of
albumin and the different globulins are indicated. Arrowhead indicates an M-spike. C BM and spleen sections from BU-044 (UtxΔ/+BrafV600E)
mouse stained with hematoxylin and eosin or anti-CD138 antibody. D Flow cytometric plot of PI− BM cells from BU-959 (UtxΔ/ΔBrafV600E) (left)
and cytological features of BM cells from BU-959 observed by Wright-Giemsa staining (right). Arrowheads indicate malignant plasma cells.
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the proliferation of MM/BU749 in suspension culture in the
presence of doxycycline (DOX) (Fig. 5A upper left panel). Growth
suppressive effects of UTX add-back correlated well with the
expression levels of exogenous UTX (Fig. 5A upper right panel). We
next transplanted MM/BU749 cells with DOX-regulated exogenous
UTX into NOG mice. In this experiment, we used NOD.Cg-
PrkdcscidIl2rgtm1Sug Tg (CMV-IL6)/Jic (NOG-hIL-6) mice [24] to
facilitate plasma cell engraftment. Induction of UTX in MM/
BU749 clearly prevented the development of lethal disease in
recipient mice and prolonged their survival (Fig. 5A lower panels),

confirming the deleterious effects of UTX add-back on Utx-null
plasma cell expansion in vivo. UTX add-back in UTX-null human
MM cell line (RPMI8226) also impaired their growth (Fig. 5B left
panel) and prolonged the survival of recipient mice in xenotrans-
plantation assays (Fig. 5B right panel) as previously reported [19].
To investigate the role of the demethylase activity of UTX in

MM, we transduced RPMI8226 cells with WT and a demethylase-
inactive mutant UTX. Point mutations at amino acid residues of the
Fe(II)-binding motif in the JmjC domain (H1146 and E1148) abolish
the demethylase activity of UTX (Fig. 5C upper panel) [35, 36]. Of
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note, add-back of H1146A/E1148A mutant impaired the growth of
RPMI8226 cells in a manner similar to WT UTX (Fig. 5C lower
panel). We then performed western blot analysis of histone
modifications in plasma cells from UtxΔ/Δ mice and found no
significant changes in both H3K27me3 and H3K27ac levels
(Fig. 5D). In addition, ChIP-seq analysis did not reveal any
significant change in H3K27me3 levels in UtxΔ/ΔBrafV600E plasma
cells compared to BrafV600E plasma cells (Fig. 5E). These results
indicate that UTX exerts a tumor suppressor function in a
demethylase activity-independent manner.
Recently, it has been proposed that the tumor suppressor

function of UTX largely relies on UTX condensation, higher-order
assembles that are mediated by a core intrinsically disordered
region (cIDR) [33]. We therefore tested the add-back of
ΔcIDR UTX mutant in UTX-null MM cells. A UTX mutant lacking
cIDR mostly failed to suppress the growth of the cells
(Supplementary Fig. 2A, B). These results suggest that the cIDR
domain is largely responsible for the tumor suppressor function
of UTX in MM.

Utx loss with BrafV600E induces myeloma-like gene signature in
plasma cells
To understand the impact of UTX loss on the plasma cell
transcriptome, we performed RNA-seq of plasma cells from young
(20 ~ 25-week-old) and old (40 ~ 50-week-old) Cγ1-Cre negative
control mice, BrafV600E mice (31-week-old), young UtxΔ/ΔBrafV600E

mice (20 ~ 25-week-old), Utx/BrafV600E mice with overt MM (MM1-3,
20 ~ 50-week-old), and BU749 (UtxΔ/ΔBrafV600E) cells. A Uniform
Manifold Approximation and Projection (UMAP) analysis revealed
that Utx loss together with BrafV600E readily induced moderate
transcriptomic reprogramming of plasma cells towards MM-like
transcriptome (Fig. 6A). Gene set enrichment analysis revealed
activation of gene sets associated with cell cycle, Myc targets, and
ribosome biogenesis and downregulation of gene sets associated
with B lymphocytes and CD40 signal in Utx/BrafV600E mice (Fig. 6B).
The change in the expression levels of these gene sets was
moderate in UtxΔ/ΔBrafV600E mice without overt MM compared with
those in Utx/BrafV600E mice with overt MM (Supplementary Fig. 3,
Supplementary Tables 6A and B). We then defined differentially
expressed genes (DEGs) between young UtxΔ/ΔBrafV600E, MM,
and control plasma cells (FDR q < 0.01, Supplementary Table 7).
Utx/BrafV600E plasma cells before and after overt MM showed
gradual up-regulation and down-regulation of DEGs (Fig. 6C upper
panel), including representative myeloma signature genes with
upregulation of Myc, Ccnd2, E2f3, and Irf4 and downregulation of
Cd19 and Ikzf3 (Fig. 6C lower panel, D). MYC is one of the key genes
in the pathogenesis of multiple myeloma. Of interest, neither
BrafV600E nor UtxΔ/Δ mice showed Myc activation in plasma cells.
Intriguingly, UtxΔ/ΔBrafV600Emice before overt MM showed very mild
albeit significant up-regulation of Myc compared to a mouse with
overt MM (Fig. 6E). These results indicate that the myeloma-like
transcriptional landscape develops gradually in Utx/BrafV600E plasma
cells leading to growth advantage in vivo.

Characteristics of chromatin accessibility in Utx-null myeloma
cells
To understand the transcriptional networks operating in Utx-null
myeloma cells, we performed ATAC-seq in plasma cells from young
Cγ1-Cre negative control, BrafV600E and UtxΔ/Δ mice (24-27-week-
old), and BU749 (UtxΔ/ΔBrafV600E) plasma cells. UMAP analysis and
hierarchical clustering of ATAC-seq data revealed that BU749 cells
had largely different chromatin accessibility from control, BrafV600E,
and UtxΔ/Δ plasma cells, while the changes among control, BrafV600E,
and UtxΔ/Δ plasma cells were mild (Fig. 7A). We next defined
differentially accessible regions (DARs) between control plasma cells
and BU749 cells using DEseq2 and biological duplicates (n= 2). We
found that 1422 and 907 DARs were open and closed in BU749 cells

(p < 10−10, log2FC (fold change) >1), respectively (Fig. 7B, Supple-
mentary Table 8). The majority of DARs were localized at the
intergenic or intron regions that generally represent active or
poised enhancers, or promoter regions. (Supplementary Fig. 4A).
However, only a few DARs were detected that matched the strict
criteria of p < 10−10, log2FC > 1 in BrafV600E and UtxΔ/Δ plasma cells
(Fig. 7B).
We then compared the frequencies of the transcription factor

binding motifs at open DARs in BU749 cells using hypergeo-
metric distribution of Homer software and calculated the p-
values of enrichment. The combined peaks detected in all
samples were used for the background to remove imbalance in
the sequence content. This motif analysis revealed that the
binding motifs of PU.1-IRF, PU.1-IRF8, PU.1, and SpiB were highly
enriched in open DARs in BU749 cells (Fig. 7C and Supplemen-
tary Fig. 4B). PU.1-IRF motif was most frequently identified in
open DARs in BU749 compared with control plasma cells
(Fig. 7D). Importantly, Irf4 was one of the Irf genes with high
expression in MM mice cells. In addition, Spi1 encoding Pu.1 was
also highly expressed in MM cells (Supplementary Fig. 4C). The
transcription factor IRF4 (interferon regulatory factor 4) is
required for the development, maintenance, and function of
plasma cells [37–39]. IRF4 is also a key regulator of multiple
myeloma and directly activates MYC in myeloma cells [40]. IRF4
binds with low affinity to interferon sequence response
elements (ISREs). In contrast, it binds with high affinity to ETS-
IRF composite motifs (EICE) through interaction with the
transcription factors PU.1 or SpiB [41, 42]. In addition, IRF4 also
cooperatively assembles with BATF on composite AP-1-IRF (AICE)
motifs [43]. To assess the correlation between changes in
chromatin accessibility and transcription, DARs were connected
to the nearest genes based on their distance to TSSs. The genes
linked to open DARs, including those linked to DARs with PU.1-
IRF motif, showed significantly higher levels of expression in
BU749 cells than control plasma cells (Supplementary Fig. 4D).
To understand the epigenomic status of DARs, we profiled the

acetylation status of H3K27 (H3K27ac) in plasma cells from control,
BrafV600E, UtxΔ/Δ, and UtxΔ/ΔBrafV600E mice and BU749 (UtxΔ/
ΔBrafV600E) plasma cells. The H3K27ac status followed a similar
pattern to the chromatin accessibility profile, only a few
differential H3K27ac peaks were detected in BrafV600E, UtxΔ/Δ,
and UtxΔ/ΔBrafV600E plasma cells compared to control (Fig. 8A). In
contrast, we found that the read counts of 1,352 and 3,252 peaks
were increased and decreased in BU749 cells (q < 0.05), respec-
tively (Fig. 8B, Supplementary Table 9). The majority of differential
H3K27ac peaks were localized at the intergenic or intron regions
that generally represent active or poised enhancers, or promoter
regions. (Fig. 8C). The status of H3K27ac modification was well
correlated with that of chromatin accessibility, particularly in the
intergenic regions (Fig. 8D).
We then compared open DARs in BU749 cells with the

published ChIP-seq data of IRF4 and PU.1 in plasmablasts [44].
As expected, many of the open DARs with PU.1-IRF motif
overlapped with the IRF4 and PU.1 ChIP peaks in plasmablasts
(Supplementary Fig. 4E). PU.1-IRF motif was identified at the Myc
locus (Fig. 8E), a direct target of IRF4 [40]. However, chromatin
accessibility at the Myc locus appeared to be already open with
the presence of H3K27 acetylation in control plasma cells and
showed no significant changes in UtxΔ/Δ plasma cells (Fig. 8E). This
was in line with the insignificant change in Myc expression
observed in UtxΔ/Δ plasma cells (Fig. 6E). In contrast, BU749 cells
showed increased chromatin accessibility with the presence of
H3K27 acetylation, particularly at +13 kb of the Myc locus that
contained PU.1 and IRF4 binding sites (Fig. 8E). These data suggest
that epigenomic reprogramming gradually proceeds in the
absence of UTX and plasma cell clones that acquire myeloma-
like properties are selected over time.
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Sensitivity of UTX insufficient cells to pharmacological
inhibition
UTX inactivating lesions in MM were associated with adverse
overall survival, suggesting the association of UTX insufficiency
with resistance to conventional therapy [17]. We therefore
investigated the susceptibility of UTX insufficient myeloma cell

lines to a proteasome inhibitor, bortezomib (BTZ); an immuno-
modulatory drug, lenalidomide; and a bromodomain inhibitor,
JQ1. UTX insufficient cell lines (RPMI8226 and U266) required
nearly a twofold higher concentration of BTZ to inhibit cell
viability by 50% (cytotoxic concentration; CC50). Of note, UTX
insufficient cell lines were highly resistant to lenalidomide and
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JQ1 compared with MM cell lines with WT UTX (Supplementary
Fig. 5).

DISCUSSION
In this study, we investigated the impact of conditional deletion of
Utx in germinal center and post-germinal center B cells and
plasma cells. Conditional deletion of Utx in a BrafV600E setting
induced mature B cell malignancies including B cell lymphomas

and multiple myeloma with the shortest survival being observed
in UtxΔ/ΔBrafV600E mice. Our mouse model recapitulated the
cardinal features of plasma cell neoplasms such as increased
percentage of plasma cells in the BM, anemia, and large M spikes
in SPEP. The main limitation was the absence of myeloma-like lytic
bone lesions. Importantly, we did not find any major MM driver
gene mutations or mutations in Uty in MM cells from moribund
mice by WES. This well corresponded to the murine UtxΔ/Δ acute
myeloid leukemia data that showed no recurrently mutated
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Fig. 7 Characteristics of chromatin accessibility in Utx-null myeloma cells. A Left panel: UMAP plot based on ATAC peak profiling of plasma
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genes, with the exception of Skint11 (two of seven samples) [15].
These findings indicate that UTX insufficiency is a strong driver of
myeloma development. Re-expression of UTX in both our Utx-
deficient murine cell line (BU749) and human UTX-null RPMI8226
cells significantly inhibited the growth of the cells in vitro and
in vivo. This is in agreement with the observations in human MM
cell lines by Ezponda et al. [19]. Importantly, an enzymatically
inactive UTX variant also suppressed the growth of UTX-null
human RPMI8226 cells and this together with the insignificant
change in H3K27me3 in UtxΔ/ΔBrafV600E plasma cells compared to

control by ChIP-seq, suggests that the demethylase activity is
dispensable for the tumor suppressor function of UTX in MM.
While the H3K27-demethylase activity of UTX is thought to be
essential for its tumor suppressor role in T-ALL [13, 14], it is
deemed to be redundant in acute myeloid leukemia and
pancreatic cancer [15, 34]. Recently, Shi et al. [33] reported that
the tumor suppressor function of UTX largely relies on the TPR
domain and the ability to form condensates via cIDR. Our results
confirmed the essential role of the cIDR domain in the tumor
suppressor activity of UTX in MM cells. In addition to the UTX

E

A
TA

C
C

hI
P PU.1

PU.1-IRF motif

IRF4

BU749

Control

UtxΔ/Δ

61,980 kb 61,990 kb 62,000 kb

Control

UtxΔ/Δ

BrafV600E

UtxΔ/ΔBrafV600E
BU749

Myc

[0 - 2.00]

[0 - 2.00]

[0 - 2.00]

[0 - 2.00]

[0 - 2.00]

H
3K

27
ac

0 500 1000 1500 2000 2500 3000 3500

H3K27ac differential peak number (q<0.05)

Up Down
0

20

40

60

80

−10 −5 0 5 10
log2FC

−l
og

10
(q

)

8

14

11
14

Up Down all

NA
TTS

exon

Intergenic

intron

promoter
-TSS

IntergenicPromoter-TSSAll regions

−20

−10

0

10

20

−10 −5 0 5 10
H3K27ac (BU749/CTR log2FC)

AT
AC

 p
ea

k 
(B

U
74

9/
C

TR
 lo

g2
FC

)

−10 −5 0 5 10
H3K27ac (BU749/CTR log2FC)

−10 −5 0 5 10
H3K27ac (BU749/CTR log2FC)

0

0

3252
1352

UtxΔ/Δ vs. CTR

BV600E vs. CTR

UtxΔ/ΔBrafV600E
vs. CTR

BU749 vs. CTR

BU749 cells vs. Controls BU749 cells vs. Controls

0

20

40

60

80

100

D
is

tri
bu

tio
n 

(%
)

A B C

D

[0 - 30]

[0 - 30]

[0 - 30]

[0 - 30]

[0 - 8.00]

[0 - 8.00]

BrafV600E

Fig. 8 Relationship between chromatin accessibility, H3K27 acetylation and transcription in Utx-null myeloma cells. A Number of
differential H3K27ac peaks in BrafV600E, UtxΔ/Δ, and UtxΔ/ΔBrafV600E plasma cells and BU749 cells compared to control. B Volcano plot of
differential H3K27ac peaks in BU749 cells compared with control plasma cells (q < 0.05). C Percentage of each genomic annotation of H3K27ac
peaks. D Correlation of H3K27ac and ATAC peaks in all genomic regions, promoter-TSS, and intergenic regions. P, p-value and R2, adjusted
R-squared of the regression model. E Snapshots of ATAC-seq signals and H3K27ac modification at the Myc locus in control, BrafV600E, UtxΔ/Δ and
UtxΔ/ΔBrafV600E plasma cells, and BU749 cells. The localization of PU.1-IRF motifs is indicated. The ChIP peaks of PU.1 and IRF4 in plasmablasts
[44] are also depicted.

O. Rizq et al.

1905

Leukemia (2023) 37:1895 – 1907



inactivating mutations/deletions found in MM, inactivating muta-
tions have also been detected in the components of COMPASS
and its partner HATs, including KMT2C, CREBBP, and EP300 [16],
further implicating dysregulated COMPASS activity in MM.
Interestingly, the cooperativity between Utx loss and BrafV600E

mutation in our mouse model points out the probable synergism
between mutations in the COMPASS components and activation
of the RAS-RAF-MEK-ERK/MAPK cascade in MM.
UTY has weaker tumor-suppressive activity than UTX. How-

ever, it functions as a tumor suppressor in a setting of UTX
insufficiency [15, 18, 34]. Our WES for male MM mice did not
show any abnormalities in Uty or Y-chromosome. The residual
Uty function in UtxΔ/YBrafV600E males may explain the histological
bias observed between male and female compound mice and
the fact that UtxΔ/ΔBrafV600E females developed disease earlier
than UtxΔ/YBrafV600E males. It would be intriguing to explore the
role of Uty in this mouse model.
Our RNA-seq analysis revealed that the oncogene Myc was

dramatically upregulated in UtxΔ/ΔBrafV600E MM cells but not in UtxΔ/
Δ and UtxΔ/ΔBrafV600E plasma cells at early time points post-Utx
deletion. Activation of MYC is common in MM [45] and over-
expression of Myc in late B cells induced MM-like disease in mice
[46]. In addition, Irf4, which is essential for the survival of MM cells
[40], was also upregulated in mice with MM-like disease. Importantly,
an autoregulatory loop between IRF4 and MYC has been described
in MM [40]. Although GSEA revealed that gene sets related to
Myc, multiple myeloma, and cell cycle were activated in young
UtxΔ/ΔBrafV600E mice, the changes appeared to be very mild.
Consistently, ATAC-seq and CUT&TAG data indicated very mild
changes in chromatin accessibility and H3K27ac modification in
UtxΔ/Δ plasma cells at an early time point post-Utx deletion. The
PU.1-IRF motif most highly enriched in open DARs in UtxΔ/ΔBrafV600E

MM cells was not enriched in open DARs in UtxΔ/Δ plasma cells.
These results suggest that while UTX loss does not immediately
induce drastic phenotypic changes in plasma cells, it allows them to
undergo gradual genome-wide re-organization and transcriptional
reprogramming. Subsequently, plasma cell clones that acquired
MM-like properties are selected over time. This process could involve
re-organization of epigenetic regulators such as histone modifiers, as
we observed changes in chromatin accessibility and H3K27ac at the
Myc locus. Alternatively, it is possible that UTX loss induces severe
phenotypic changes in selected plasma cells, which expand to overt
MM over time. Further analyses are needed to clarify the mechanism
of myelomagenesis in our mouse model.
MM patients with a UTX deletion or mutation have a worse

overall survival (OS) compared with those with WT UTX [17]. We
confirmed that UTX insufficient cell lines were highly resistant to
lenalidomide and JQ1 compared with MM cell lines with WT UTX.
Bromodomain inhibitors negatively regulates promoter and
enhancer activity, including those of well-known oncogenic
transcription factor genes such as MYC and FOSL1 [47–49]. This
suggests that UTX insufficiency induces enhancer reorganization
at critical oncogenic gene loci and stabilizes their active
enhanceosome. This is consistent with the marked activation of
MYC in UTX insufficient myeloma cells in our MM mouse model.
In summary, we established a novel myeloma mouse model in

which Utx loss and BrafV600E are combined. This study clearly
demonstrates a catalytic activity-independent tumor suppressor
function of UTX in MM and implicates its insufficiency in the
transcriptional reprogramming of plasma cells. Our mouse model
could be a useful tool for understanding the role of epigenetic
dysfunction in mature B cell malignancies and studying novel
therapeutic agents for MM.
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