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Abstract

Several advances in fluid and tissue-based biomarkers for use in Parkinson’s disease (PD) and other synucleinopathies have
been made in the last several years. While work continues on species of alpha-synuclein (aSyn) and other proteins which
can be measured from spinal fluid and plasma samples, immunohistochemistry and immunofluorescence from peripheral
tissue biopsies and alpha-synuclein seeding amplification assays (aSyn-SAA: including real-time quaking induced conversion
(RT-QuIC) and protein misfolding cyclic amplification (PMCA)) now offer a crucial advancement in their ability to iden-
tify aSyn species in PD patients in a categorical fashion (i.e., of aSyn +vs aSyn —); to augment clinical diagnosis however,
aSyn-specific assays that have quantitative relevance to pathological burden remain an unmet need. Alzheimer’s disease
(AD) co-pathology is commonly found postmortem in PD, especially in those who develop dementia, and dementia with
Lewy bodies (DLB). Biofluid biomarkers for tau and amyloid beta species can detect AD co-pathology in PD and DLB,
which does have relevance for prognosis, but further work is needed to understand the interplay of aSyn tau, amyloid beta,
and other pathological changes to generate comprehensive biomarker profiles for patients in a manner translatable to clinical

trial design and individualized therapies.
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Introduction

Parkinson’s disease (PD) is pathologically characterized by
inclusions of alpha-synuclein (aSyn) that compose Lewy
bodies and Lewy neurites [1]. These inclusions are found
in fairly stereotyped patterns that progress from brainstem
nuclei, to limbic regions and lastly to neocortical areas [2].
At this time, a definitive diagnosis of PD can only be ren-
dered after neuropathological assessments are performed,
with levels of clinically established and clinically probable
certainties being attainable during life [3]. Clinical diag-
nostic accuracy for PD has varied among studies over the
last several decades and ranges from 50% to greater than
90% [4-9]. Factors that tend to relate to lower diagnostic
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accuracy are an older age at onset and a shorter degree of
disease duration at time of assessment or a lower amount of
clinical follow-up time [4, 9]. Thus, the diagnostic stand-
ard remains postmortem neuropathological diagnosis until
a method to reliably detect aSyn in vivo is developed. Most
biomarker studies rely on patients who have been clinically
diagnosed with PD who do not go on to have autopsy valida-
tion. While this creates some uncertainty regarding the accu-
racy of diagnosis and this may be problematic in developing
novel biomarkers, the current clinical criteria for PD are felt
to have high specificity [9]. Furthermore, because there is no
currently accepted quantitative aSyn biomarker, studies of
these candidate biomarkers are compared to clinical metrics
like motor severity or cognition which can be influenced by
many factors and are fundamentally indirect measures of
disease activity. While aSyn-specific biomarkers remain a
critical unmet need for the field, they are especially needed
for application in early disease when clinical diagnostic
accuracy is at its lowest and also when disease-modifying
interventions may have the greater utility.

Over the last decade, there has been considerable
advancements in fluid and tissue-based assays in PD. Early
work focused on CSF aSyn species including total aSyn,
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phosphorylated aSyn, and oligomeric aSyn species using
immunoassays [10-12]. Plasma aSyn assays are under devel-
opment as well [13, 14]. More recently, aSyn deposits have
been noted in a variety of peripheral tissues of PD patients,
including skin, submandibular glad, colon, and nasal mucosa
and these observations have led to the development of meth-
ods to detect these deposits through immunohistochemistry
or immunofluorescence methods [15, 16]. Additionally, the
observations that pathologically misfolded aSyn species
may induce sequential templating of normal monomeric
aSyn in a prion-like fashion, has led to the development of
aSyn-seeding amplification assays (aSyn-SAAs), which use
these properties to identify patients who harbor pathogenic
aSyn seeds in spinal fluid and peripheral tissues [17-21].
While some of these assays are still under development in
the research setting, others are reaching levels of standardi-
zation and interlaboratory variability rapidly approaching
possible acceptable levels for clinical use.

aSyn aggregates in Lewy bodies and Lewy neurites are
the primary neuropathology and gold-standard for diagno-
sis of PD and their burden is roughly related to severity of
disease and certain disease features like dementia [22-26].
However, multiple biological factors, even sex, can influ-
ence phenotypic expression of pathological burden [27, 28].
Additionally, it is exceedingly common in autopsy stud-
ies that other co-pathologies aside from aSyn are found;
approximately 35-50% of PD patients with dementia with
have moderate to high levels of AD neuropathologic change
[29-33]. This number is considerably higher in DLB, where
rates of moderate or severe AD co-pathology can reach 70%
or greater [34, 35]. The presence of the AD co-pathology is
well described to be related to older age of onset, faster time
to dementia, decreased overall survival, greater likelihood
of an akinetic-rigid motor phenotype, and specific cogni-
tive features [31, 32, 36—42]. AD biomarkers are established
using a framework for biological classification of AD based
on positivity for amyloid-beta, tau, and neurodegeneration
(A/T/N) [43]. A similar approach is understudied in PD and
related synucleinopathies, but early work suggests that CSF
AD biomarkers can be used to detect the presence of these
AD co-pathologies in PD and predict cognitive and over-
all prognostic outcomes which could have utility in clini-
cal care and trial design [44-51]. However, the application
of AD CSF biomarkers in clinical care for PD is unclear,
as biological factors related to aSyn may influence AD
biomarkers in a manner independent from AD pathology,
necessitating PD-specific diagnostic cut-points, but further
studies with autopsy-confirmation are needed [46, 47, 52].
The presence of AD co-pathology is not universal, nor is it
exclusively linked to worse prognosis; there are many cases
of “pure” aSyn cases with fulminant presentations and pre-
cipitous clinical courses [38, 53, 54]. Finally, neuropathol-
ogy of aging is complex and often includes additional mixed

pathologies in PD and related disorders such as cerebro-
vascular disease, TDP-43 inclusions, age-related glial tau
inclusions (ARTAG) and others which cannot be reliable
measured through fluid assays at this time [55-57]. Here, we
review the state of the science for aSyn related biomarkers
in CSF, plasma, biopsy detection from peripheral tissues,
and aSyn seeding amplification assays for PD with a focus
on autopsy-confirmation which is a critical to help translate
biomarker research into clinical practice.

CSF aSyn Assays

In vivo CSF aSyn levels have been studied extensively, but
due to conflicting results and significant overlap in values
with healthy controls and other disease states their current
utility in PD is limited until further refinement occurs [11].
There are several technical considerations which make
measuring CSF aSyn challenging. First, there is relatively
little aSyn that is present in spinal fluid, on the orders ng/
ml. There is high amounts in peripheral blood in red blood
cells which can easily contaminate specimens [58]. In many
studies, samples have had to be discarded if there are signifi-
cant degrees of hemoglobin contamination in CSF samples
[59, 60]. Polypropylene collection tubes are recommended
for use in some assays to prevent loss of CSF aSyn, and
there is variability even amongst different tube vendors in
their effects on aSyn levels [61]. Time to storage, number of
freeze—thaw cycles and other pre-analytic variables affects
measured CSF aSyn levels [61, 62]. Most of these studies
have used ELISA assays or the bead-based Luminex xMap
platform which are calibrated against measurements made
with recombinant aSyn (Table 1). ELISA assays may use
different aSyn antibodies for capture and detection which
may account for some degree of variability observed. For
ELISA protocols, there tends to be relatively high intra-
assay precision on repeated measurements (< 10%CV);
however, there is less consistency between assays [62, 63].
Using these methods, several studies report that total CSF
aSyn levels are lower in PD patients than normal controls or
patients with other non-degenerative neurological diseases
[45, 64-66]. In two meta-analyses, the sensitivity and speci-
ficity for distinguishing PD samples from normal controls
were 72% and 88%, and 65% and 40% with modest positive
predictive values and area under the curve values [67, 68].
The majority of these studies have been cross-sectional stud-
ies performed in early- to mid-stage, clinically defined PD
(Table 1), although lower levels of CSF total aSyn is noted in
prodromal PD as well in some patients with RBD and hypos-
mia [69]. While statistically significant group differences are
observed, there is substantial overlap in individual values
of PD patients and healthy controls, which limits the use of
CSF total aSyn currently as a diagnostic tool. Furthermore,
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Table 1 (continued)

&

Clinical correlates
t-aSyn |PD DLB MSA PSP and No correlations of t-aSyn with

Group comparisons

Assay specifics
ELISA t-aSyn

PD duration
Not recorded

Subjects
PD: 151

Biomarker
t-aSyn

Schulz et al. [87]

Study

Springer

UPDRS or HY
Tp-aSyn associated with worse

CBS v HC
No differences in p-aSyn or

aSyn 118-122/
aSyn 103-108
(Biolegend)

DLB: 45

p-aSyn
t-tau

NfL

MSA: 17
PSP: 38

MMSE

serum aSyn
AUC PD v HC
t-aSyn 0.746

p-aSyn Erenna Immunoassay

AD: 11

Serum aSyn
others

system
SIMOA tau, NfL (Quanterix)

CBS: 16

p-aSyn 0.604

FTD/ALS: 15
HC: 20

serum aSyn 0.564

t-aSyn total alpha-synuclein, o-aSyn oligomeric alpha-synuclein, p-aSyn phosphorylated alpha-synuclein, ¢-fau total tau, p-tau phosphorylated tau, HC healthy controls, OND other neurologi-

cal disease, AUC area under curve, DLB dementia with Lewy bodies, MSA multiple systems atrophy, PSP progressive supranuclear palsy, CBS corticobasal syndrome, FTD/ALS frontotemporal

dementia/amyotrophic lateral sclerosis, HY Hoehn and Yahr scale, UPDRS Unified Parkinson’s disease rating scale, MMSE Mini Mental Status Exam, ELISA enzyme linked immunosorbent

assay, SIMOA single molecule array

lower average levels of CSF total aSyn compared to controls
are also found in DLB, progressive supranuclear palsy, and
multiple systems atrophy as well which would make cur-
rent assays of limited value in the differential diagnosis of
parkinsonism [68, 70-72]. As PD progresses, aSyn levels
in some patients rise and there is some correlation between
these higher CSF aSyn levels and cognitive and motor dys-
function [46, 73—77], but this finding is not universal [60].
However, higher levels of CSF aSyn are also noted in Alz-
heimer’s disease, other neurodegenerative disease, such as
Creutzfeldt Jakob disease [78—82], suggesting levels of this
analyte degenerating synapses/neurons. Therefore, it is dif-
ficult to disentangle which processes may be PD-specific,
and which may be due to non-specific neurodegeneration.
As far as the association of CSF total aSyn and specific dis-
ease features, some studies have documented lower amounts
of CSF total aSyn in non-tremor-dominant phenotypes than
tremor dominant PD cases [45, 46, 60]. PD patients with
RBD have higher CSF total aSyn than PD patients with-
out RBD [83]. There are conflicting reports about whether
lower [45] or higher [73, 75] CSF total aSyn relates to worse
cognitive outcomes in PD. In summation, on average, CSF
total aSyn is lower in PD than healthy controls, especially
early in the disease course but there is significant overlap
of CSF total aSyn levels with healthy controls and other
neurological diseases and therefore current assays cannot
acceptably function as a single test to aid in the diagnosis of
PD. Ratios of CSF total aSyn and other analytes discussed
below may offer some improvement in diagnostic utility [64,
80], but more work, especially longitudinal measurements
are needed to clarify the utility of this biomarker in PD in
relations to other conditions..

Other CSF aSyn species that have been studied in PD
include phosphorylated and oligomeric forms of aSyn
[75, 84]. Phosphorylated aSyn assays have focused on the
pSer129 epitope which is a well described post-translational
modification acidic tail near the C-terminal end of the pro-
tein in Lewy pathology [85]. In some studies, there is a
U-shaped associated with disease severity with lower phos-
phorylated aSyn being associated with worse initial clinical
presentations but later, higher levels being associated with
worse motor and cognitive function [84, 86, 87].

The precise species of aSyn which contributes to neuronal
dysfunction and neurodegeneration is not entirely clear, but
the formation smaller oligomeric aggregations of aSyn may
confer damage to synapses [88]. Higher levels of oligomeric
aSyn from CSF samples compared to AD and healthy con-
trols has been noted in PD and DLB [89]. Thus, there may be
PD-specificity for oligomeric aSyn species detected in CSF
as opposed to total aSyn measurements summarized above.
Early studies suggest correlations of levels with CSF oligo-
meric aSyn with motor symptoms and may be useful as part
of an oligomeric/total CSF aSyn ratio but replication in other
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laboratory settings is needed [90-93]. Early work in these
studies use immunoassays which relay on epitope-specificity
of the capture antibody used to detect oligomeric confirma-
tions of aSyn. More recently, a study using a newer technique
of single molecule counting technology was unable to detect
pSer129 aSyn in CSF samples from PD patients, raising ques-
tions about epitopes specificity of immunoassays for different
forms of aSyn in CSF [94]. Thus, these assays remain explor-
atory for PD research at the moment until further validation
is performed.

Plasma aSyn Measurements

Plasma aSyn measurements in PD have yielded differing results,
with most studies reporting higher plasma total aSyn levels
than healthy controls [13, 95-101], but other report no differ-
ence [102, 103] and still others reporting lower amounts in PD
patients compared to controls [14, 60, 104]. There also similarly
remains substantial overlap in the ranges observed between PD
patients and healthy controls, which make would make plasma
aSyn difficult to use as a single diagnostic test for PD. Similar
to CSF assays, these studies use different capture and detection
antibodies and this and other sources of variability may influ-
ence results (aSyn levels in red blood cells from hemolysis, age
variation, etc.). Initial studies largely have used ELISA-based
assays but more sensitive assays like single molecule arrays
or immunomagnetic reduction assays may provide improved
clarity on these relationships with both diagnosis and clinical
features [13, 14, 95-97, 101] (Table 2). There is conflicting
evidence about whether increasing levels correlate with worse
motor dysfunction [60, 95, 100, 102, 105, 106], but higher lev-
els have been reported to be associated with worse cognitive
function [13, 95, 101, 102]. One longitudinal study had noted
an increase in plasma total aSyn over time in PD patients [106].
Heterogeneity in cohorts, sample size and methodological issues
of sample collection and analysis could contribute to conflict-
ing results across studies, necessitating further studies in large
multicentered cohorts using standardized operating procedures.
Future longitudinal studies in deeply phenotyped cohorts will
provide further clarity on the use and evolution of plasma aSyn
biomarkers although some likely changes over time can be sur-
mised from the prior studies (Table 3).

ASyn Immunohistochemistry
and Immunofluorescence from Tissue Samples

aSyn deposits are found in autonomic nerves that inner-
vate a variety of peripheral tissues including, skin, olfac-
tory mucosa, submandibular glands, and the colon in PD
[16, 107-110]. Thus, the presence of these phosphorylated
deposits in peripheral tissues could potentially aid the tissue
diagnosis of living PD and other synucleinopathies.

Given that aSyn deposits likely occur early in the dorsal
motor nucleus of the vagus nerve and the olfactory bulb,
Heiko Braak and others posited that environmental factors
could cause aSyn changes that could propagate to the central
nervous system either from the gut via the vagus nerve or
from the olfactory epithelium [111, 112]. Moreover, model
systems find evidence to suggest pathological aSyn can
propagate from the gut to the brain, which is abolished by
vagotomy [113]. However, human autopsy studies do not
find clear evidence of “incidental” peripheral aSyn in tissues
(i-e., isolated aSyn in peripheral tissues without involvement
of the brain), which argue against a peripheral origin of aSyn
in PD and related synucleinopathies and instead peripheral
aSyn may spread from early brainstem pathology [114]. It
is very difficult to definitively define the epicenters or ori-
gins of neurodegenerative pathologies using cross-sectional
autopsy tissue alone, but the findings of peripheral aSyn in
PD and DLB offer an important minimally invasive method
to obtain tissue diagnosis in living patients.

Given the regularity of colonoscopies as screening tests
for colon cancer, investigations at assessing for aSyn pathol-
ogy in colonic biopsies were performed but initial results
were highly discordant with varying sensitivities in detect-
ing pathological aSyn deposits in PD patients [115-117].
Multi-site studies were performed that showed good inter-
rater reliability and helped to optimize methods, but results
indicate that biopsies must include submucosal layers and
be assessed by trained neuropathologists to determine if
adequate neuronal elements and aSyn deposits are present
[118, 119]. The submandibular glands of PD patients also
demonstrate aSyn inclusions but there is a higher morbidity
associated with needle biopsies compared to other periph-
eral tissue sampling and, because of inadequate sampling
and immunohistochemical methods, sensitivity remains
suboptimal in many studies [110, 116, 120-122]. aSyn
deposits in skin biopsies are currently the most promising
and least invasive tissue-based biomarker with optimization
of methods that has occurred over the last several years. Ini-
tial studies discovered that different biopsy sites could yield
different sensitivities in detecting phosphorylated aSyn
deposits, with the abdomen and scalp showing lower rates
of positivity but higher rates being shown in paracervical
and lower leg sites in PD and DLB patients [16, 107-109,
123-125]. Different fixative methods influence results, with
formalin fixed paraffin embedded tissue not performing as
well as Zamboni fixation methods [15, 116, 124, 126—-132].
The main reason for this may be that formalin may cause
more extensive protein cross linking, making it more dif-
ficult for antibodies to attach to aSyn epitopes and the heat
or chemically based retrieval methods may decrease aSyn
signal if used too aggressively [116, 133, 134]. Depth of
biopsy and section thickness affects yield as well [133].
Immunofluorescence using double labelling with antibodies
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against phosphorylated aSyn and neuron specific protein
gene product (PGP) appears to perform better than bright
field immunohistochemistry using diaminobenzamide chro-
magen (DAB) [15, 123, 127, 129-131, 135, 136]. The DAB
chromagen is a staple of immunohistochemistry and creates
a dark brown signal when detecting epitopes. However, in
skin samples, it can be difficult to discern DAB signal from
artifact and diffuse non-specific staining in small peripheral
nerves and immunofluorescence facilitates double labelling
to identify the overlap of small neurons innervating the skin
and the presence of small phosphorylated synuclein inclu-
sions simultaneously in the same tissue section [134, 137].
The most current methodologies using Zamboni fixative,
cryosectioning, and immunofluorescence show 90% sen-
sitivity and > 90% specificity for PD and DLB subjects in
some studies [15, 125, 132, 138, 139]. Thus, standardiza-
tion of pre-analytical factors, including sample handling
are critical for the development of these tests for clinical
use [140].

Aside from clinically manifest PD, skin aSyn deposits
can be demonstrated in patients with REM sleep behavior
disorder (RBD) and patients with pure-autonomic failure
(pAF), both thought to be prodromal states that are highly
likely to phenoconvert into PD or other synucleinopathy
where presumably central nervous system pathology is
more restricted [123, 126, 131, 137, 141-144]. It is not
clear yet whether a positive skin biopsy predicts pheno-
conversion in RBD subjects but studies with longitudinal
follow up are underway [137, 145]. Interestingly, there also
may be differences in the characteristics of aSyn deposits
between MSA and PD patients where MSA patients had
phosphorylated aSyn deposits in somatic nerves whereas
PD patients with orthostatic hypotension had deposits in
autonomic nerve fibers in one study [146]. Furthermore,
in PD patients, aSyn positive skin biopsies appear to have
a rostro-caudal gradient, with more positive samples being
noted from paracervical biopsy sites than limb sites; in
MSA, however, there is a more uniform distribution of aSyn
positivity in the different biopsy sites and higher density of
phosphorylated aSyn in those biopsies [147]. Orthostatic
hypotension is a common but not universal symptom of
PD and its presence signifies autonomic involvement which
may have relevance for skin biopsies in PD [148, 149]. One
study found that PD patients with orthostatic hypotension
had a more widespread and homogenous distribution of
aSyn deposits whereas PD patients without orthostatic
hypotension has aSyn pathology restricted to paracervical
biopsy sites [150]. While these biopsies are likely useful
in a categorical fashion, there are no features that corre-
late well with disease severity; however, one study of an
MSA patient who underwent serial skin biopsies did note
sequentially more skin structures affected, implying an evo-
lution of skin aSyn deposits over time [146, 151]. aSyn skin

| t-aSyn associated with worse HY,

UPDRS scores, and cognitive

status in men only
cognition and with higher HY

1 t-aSyn PDD > PD with normal
stage

1 t-aSyn associated with worse

UPDRSIII scores

No correlation of aSyn with HY
or age

Clinical correlates

HC
t-aSyn correlates with hemolysis

No difference in t-aSyn between

PD and HC or PD men v

t-aSyn | EO and LO PD v HC
women

t-aSyn correlates with IL-1p

Group comparisons
t-aSyn 1PD v HC
t-aSyn 1PD v HC

t-aSyn PD

Assay specifics
Quantitative WB
aSyn211/ aSyn1-140

aSyn 97/8

covery)
No information on antibodies

Invitrogen KHB0061
UPlex Assay (Mesoscale Dis-
Immunomagnetic reduction

4B12/4D6

ELISA
ELISA

5y
Not reported

PD duration
10.8y+7.3
23y+0.3
7.5y+5.2

>

Subjects
13 EOPD
14LOPD
11 HC

69 PD
110 HC
43 PD

24 HC

80 PD

34 HC

20 PD

20 HC

Biomarker
t- aSyn
t-aSyn
t-aSyn
NLRP3
t-aSyn
t-aSyn

disease, AUC area under curve, HY Hoehn and Yahr scale, UPDRS Unified Parkinson’s disease rating scale, MMSE minimental status exam, ELISA enzyme linked immunosorbent assay, SIMOA

t-aSyn total alpha-synuclein, o-aSyn oligomeric alpha-synuclein, p-aSyn phosphorylated alpha-synuclein, ¢-fau total tau, p-tau phosphorylated tau, HC healthy controls, OND other neurological
single molecule array, EO PD early onset PD, LO PD late onset PD, LRRK?2 leucine rich repeat kinase 2, PDD parkinson’s disease dementia

Table 2 (continued)
Lietal. [14]

Caranci et al. [102]
Fan et al. [100]
Linetal. [101]

Shim et al. [103]

Study
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Table 3 Changes in biomarkers compared to healthy control popula-
tions. As PD progresses, there is heterogeneity in the change in bio-
marker profiles such that some patients may increase or decrease in
certain biomarkers, but others may remain stable (f =or | =). There
are competing articles about the changes seen in oligomeric aSyn
over time (| 1)

Biomarker Prodromal PD Early PD Mid/late PD
CSF
t-aSyn l= ! =
0-aSyn il T
p-aSyn 1 1
Ap42 l =
t-tau l 1
p-tau ! 1=
Plasma
t-aSyn 1 1
Skin IF + +
aSyn-SAA + + +

t-aSyn total alpha-synuclein, o0-aSyn oligomeric alpha-synuclein,
p-aSyn phosphorylated alpha-synuclein, /F immunofluorescence,
aSyn-SAA alpha-synuclein seeding amplification assay

deposits from PD patients with LRRK2, GBA, and SNCA
mutations have also been demonstrated [152—-155]. Given
the pathological heterogeneity associated with LRRK?2
mutations and the limited degree of central nervous system
aSyn deposits in patient with PRKN mutations, further stud-
ies in autopsy validated subjects will be of interest [156,
157]. See Table 4 for selected studies of skin aSyn immu-
nofluorescence in PD.

Peripheral biopsy testing for PD is nearing clinical use
as there is a commercially available aSyn skin biopsy assay,
the Syn-One test (CND Life Sciences). The SynOne test
suggests obtaining samples using 3 mm punch biopsy tools,
Zamboni fixative and requires double-immunostaining thick
cryosection for neuronal elements (PGP 9.5) and phospho-
rylated aSyn (pSer129) using immunofluorescence [158].
Unpublished data using the Syn-One test has been presented
at the American Academy of Neurology meeting in 2020
and the Lewy Body Disease association Biofluid/Tissue
Biomarker symposium in 2021 reporting high sensitiv-
ity (74% from one biopsy site and 96% from three biopsy
sites) and 99% accuracy of distinguishing synucleinopathies
from controls [159]. This test is not FDA approved but is
being further validated in a large multicentered clinical trial
(NCTO04700722) with a plan to enroll over 300 patients
with synucleinopathies (PD: 105, MSA: 40, DLB: 90, pure
autonomic failure: 65) and 200 healthy controls who will
undergo three skin biopsies at the paracervical, distal thigh,
and lower leg sites to determine sensitivity, specificity, accu-
racy, and precision of the current test [158].

@ Springer

Alpha Synuclein Seeding Amplification Assays

aSyn seeding amplification assays (aSyn-SAA) began as
adaptations of prion disease assays and make use of the abil-
ity of aSyn seeds to template normal monomeric aSyn spe-
cies to oligomeric and fibrillar forms in a prion-like fashion
[160-162]. In these assays, a biological sample is added to a
well containing monomeric aSyn with a fluorescent tag thio-
flavin-T. If a pathological aSyn seed is present, it will induce
templating of the monomers and after a certain amount of
time, the newly created fibrils will be broken down by shak-
ing the plate allowing for more monomers to be recruited.
After several hours, this creates an exponential rise in the
fluorescence which can be detected. The standard diagnostic
metrics collected is a binary positive or negative readout
above a certain fluorescence threshold defined by the labo-
ratory, but additional metrics including the time to positive
signal (or lag time), maximum fluorescence, and the time to
reach 50% of maximum fluorescence can also be reported
if fluorescence measurements are captured at regular inter-
vals (Fig. 1). In initial studies, remarkably high sensitiv-
ity and specificity (>90%) was demonstrated in detecting
aSyn seeding from CSF samples of patients with manifest
PD and DLB [17, 163]. In the years since, multiple studies
in independent laboratories have confirmed these findings
[18, 20, 160, 163—-166]. aSyn seeds are readily apparent in
early PD when subjects within 2 years of diagnosis who had
not started medications from the Parkinson’s Progression
Marker Initiative were studied [166, 167], and high rates of
positivity are also observed in prodromal patients with REM
sleep behavior disorder and pure autonomic failure, condi-
tions which have a high likelihood of underlying alpha-synu-
clein and phenoconverting into PD or DLB [165, 168-170].
In the case of REM sleep behavior disorder, it is not entirely
clear if a positive aSyn-SAA results predicts phenoconver-
sion to one of these syndromes. Some of the uncertainty is
due to lack of longitudinal studies with serial sampling and
differences in baseline rates of aSyn-SAA positivity in RBD
cohorts studied [169, 170].

This body of work suggests that these assays are
extremely sensitive and specific for detecting the categori-
cal presence/absence of aSyn seeds in CSF of patients with
manifest disease and prodromal states where presumably
aSyn pathology is more restricted. It is less clear whether
the quantitative metrics collected by these assays have quan-
titative value in relation to clinical variables in PD. Aside
from MSA, there are no major differences in maximum fluo-
rescence, time to positivity, or area under the curve between
PD, DLB, pure autonomic failure or REM sleep behavior
disorder patients [165]. In the majority of studies conducted,
there have been no strong correlations with time to positiv-
ity, maximum fluorescence or time to 50% fluorescence with
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Table 4 Selected studies in aSyn-SAA and skin immunofluorescence/immunohistochemistry

Study

Assay Sample

Subjects

PD duration

Results

aSyn-SAA

Fairfoul et al. [17]

Shahnawaz et al. [19]

Groveman et al. [20]

Bargar et al. [174]

Iranzo et al. [169]

Siderowf et al. [197]

Rossi et al. [168]

Russo et al. [167]

0.1 mg/ml rec aSyn BH and CSF
WT (Stratech)

1 mg/ml rec aSyn BH and CSF
WT + 6hist (local)

0.1 mg/ml rec aSyn BH and CSF

K23Q+ 6hist (local)

1 mg/ml rec aSyn WT BH, CSF, Saliva,
(rPeptide) Skin, colon

0.1 mg/ml rec aSyn CSF
WT (Sigma)

0.3 mg/ml rec aSyn CSF
WT + 6hist

0.1 mg/ml rec aSyn CSF
WT

AbbVie RT-QuIC: CSF
0.1 mg/ml rec aSyn
WT (local),
Caughey RT-QuIC:
0.1 mg/ml rec aSyn
K23Q
PMCA:
0.3 mg/ml rec aSyn
WT + 6hist

Discovery: DLB:29

PD:2
AD:30
PSP:2
CBS:3
ILBD:13
HC: 20

Validation: PD:20

HC:15
RBD: 3

PD: 76
OND: 65
NDG: 18
AD: 14

PD: 12
DLB: 17
Non-aSyn: 31
PD: 88

DLB: 58
Controls: 68

RBD: 52
HC: 40

PD: 545
HC: 163
SWEDD: 54

Clinical
RBD: 18
PAF: 28
PD: 71
DLB: 34
OND: 135
Path-validated
LB+:21
LB-: 101
PD: 30

HC: 30
SWEDD: 20

Not provided

Not provided

2.9y

Not Provided

NA

Sporadic PD
0.6y +0.5
LRRK2 PD
3.0y+2.1
GBA PD
35y+2.4

Clinical PD:
56.8 m+45.8

PPMI:
6.7m=+6.5

SAA:9.0m=+8.4

DLB v HC: Sns 0.92, Spc:
1.00

PD v HC: Sns 0.95, Spc:
1.00

3/3 RBD patients +aSyn-
SAA

PD v disease controls: Sns:
0.89 Spc: 0.94

Time to reach 50%
maximum aggregation
inversely correlated with
HY stage

PD and DLB v non-aSyn:
Sns: 0.93, Spc: 1.00

CSF: PD and DLB v con-
trols: Sns 0.98, Spc 1.00

Sns and Spc not analyzed
for other tissues

RBD v HC: Sns 0.90 Spc
0.90

During 7y follow up 32
photoconverted to PD or
DLB (31/32+aSyn SAA)

All PD cases v HC: Sns
0.88 Spc: 0.96

Sporadic PD v HC: Sns:
0.93, Spc: 0.96

LRRK2 PD v HC: Sns:
0.68, Spc: 0.96

GBA PD v HC: Sns: 0.96,
Spc 0.96

Neuropathologically vali-
dated cases with aSyn
Sns: 0.95 Spc: 0.98
Clinical diagnoses aSyn v
OND: Sns: 0.95, Spc 0.98
18/18 RBD +aSyn SAA,
26/28 PAF +aSyn-SAA

PD v HC at baseline:

AbbVie: Sns:0.89, Spc: 1.00

Caughey: Sns: 0.86, Spc:
0.97

Amprion: Sns: 0.96, Spc:
0.97

PD v HC Year 3

AbbVie: Sns: 0.93, Spc:
0.93

Caughey: 0.89, Spc: 0.97

Amprion: 0.96, Spc: 0.93
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Table 4 (continued)

Study Assay Sample Subjects PD duration Results
Poggiolini et al. 1 mg/ml rec aSyn WT CSF PD: 74 PD 2.1y + 1.4y PD v HC: Sns: 0.89 Spc
[170] MSA: 24 0.96
RBD: 45 No major correlations of
HC: 55 kinetic parameters and
clinical features in PD

MSA v HC: Sns: 0.75 Spc
0.96 (longer TS50, lower
Fmax)

Some correlations of kinetic
parametiers and clinical
features in MSA

RBD v HC: Sns: 0.64 Spc
0.96

14/45 phenoconverted in
the 0.2-7.9 y of followup.
9/14 +aSyn SAA at
baseline

Kang et al. [166] RT-QuIC: 0.1 mg/ CSF PD: 105 8 (4-17) RT-QuIC: PD v HC Sns:
ml rec aSyn WT HC: 79 0.95 Spc: 0.96
(Sigma) PMCA: PD v HC Sns 0.90
PMCA: 0.3 mg/ml rec Spc: 0.82
aSyn WT + 6hist
Kuzkinaetal. [172]  RT-QulC Skin: 5 mm. C7, T12, PD: 34 11.7y +6.9 Sns: 0.91, Spc 0.87
Cleveland thigh, lower leg HC: 30 K =0.86 for patient results
aSyn rec WT (rPep- between labs
tide)
RT-QuIC
Wurzburg
5 mg/ml
aSyn rec WT (in
house)
Manne et al. [21] 0.1 mg/ml Skin Frozen Not described Frozen
aSyn rec WT PD: 25 Sns 0.96 Spc 0.96
HC: 25 Fixed
Formalin fixed Sns: 0.75 Spc: 0.83
PD: 12
HC: 12
De Lucaetal. [177] 5 mg/ml aSynrec WT Olfactory Mucosa PD: 18 10.1y +5.1 PD Sns: 0.56
MSA: 11 MSA Sns: 0.82
OND: 18 Spc: 0.83
Skin IF/IHC
Donadio et al. [138]  IF Zamboni 3 mm C7, thigh, leg  IF reproducibility Not available aSyn v non aSyn
pSer129 aSyn/PGP CSF PD: 4 Skin IF: Sns: 0.90 Spc: 1.00
Cryosectoining MSA: 4 CSF RT-QulIC: Sns 0.78
CSF and skin DLB: 1 Spc 1.00
RT-QulC: 0.1 mg/ OND: 12 Skin RT-QuIC: Sns 0.86
ml rec aSyn WT IF v RT-QuIC Spc 0.80
(rPeptide) PD: 17
DLB: 5
MSA: 8
PAF: 3
OND: 38
HC: 24
Gibbons et al. [15] IF: Zamboni, pSer129 3 mm distal leg, PD: 28 PD nAF Sns 0.95 Spc 0.91
aSyn/PGP proximal/distal HC: 23 43y+5.1
Cryosectioning thigh, forearm PD AF 8.6y+7.3
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Table 4 (continued)

Study Assay Sample Subjects PD duration Results
Wang et al. [133] IF: Zamboni, pSer129 3 mm distal leg or dis- PD: 29 5.5y+5.1 50 um sections: Sns 1.00,
aSyn/PGP tal/proximal thigh HC: 21 20 pm sections: Sns: .90,
Cryosectioning 10um sections: Sns:73
Spc: 1.00
Donadio et al. [124] IF: Zamboni 3 mm C7 2xor C7 PD: 28 15 patients uni- Sns 1.00 from C7
pSer129 aSyn/PGP and T12 lateral symp- Sns 0.62 from T12 site
Cryosectioning toms 3y +2 No differences in lateral-
13 patients bilat- ity in spite of lateralized
eral symptoms motor symptoms
10y +6
Donadio et al. [132]  IF: Zamboni 3 mm C8, thigh, distal PD: 21 PD: 13y +6 Sns 1.00 Spc 1.00
pSer129 aSyn, PGP leg Other Parkinsonism:
Cryosectioning 20
HC: 30
Doppler et al. [126] IF: PFA 4% 5 mm PD: 25 PD Sns: 0.80, RBD Sns:
pSer129 aSyn PGP Proximal and distal RBD: 18 0.56 Spc:1.00
Cryosectioning leg, T12, C7 HC: 20
Doppler et al. [136] IF: PFA 4% 5 mm, proximal and  PD: 31 9.0y (range PD v HC Sns 0.52 Spc: 1.00
pSer129 aSyn, PGP. distal leg, T12, HC 35 0.3-27)
Cryosectioning finger
Al-Qassabi et al. IF: FFPE pSer129 3-5 mm Leg or C8 PD: 20 PD 8.4y+4.4 PD Sns 0.70, RBD Sns:
[137] aSyn/PGP RBD: 28 0.82, Other parkinsonism
Other parkinsonism: 0.20. Spc 1.00
10
HC: 21
Chahine et al. [116]  IHC: FFPE aSyn. 3 mm C7-8, mid thigh PD: 58 4.8y+4.6 Sns 0.24 Spc 1.00
Proteinase K HC: 21

For aSyn-SAA studies, the type of aSyn used for reactions is detailed and for skin immunofluoresence/Immunohistochemistry, basic aspects of

these assays are reported along with biopsy sites and type

RT-QulC real-time quaking induced conversion, PMCA protein misfolding cyclic amplification, rec aSyn recombinant alpha-synuclein, WT wild
type, 6hist histidine tag, BH brain homogenate, CSF cerebrospinal fluid, PD Parkinson’s disease, DLB dementia with Lewy bodies, AD Alzhei-
mer’s disease, PSP progressive supranuclear palsy, CBS cortico basal syndrome, HC healthy controls, OND other neurological disorders, NDG
other neurodegenerative diseases, MSA multiple systems atrophy, Sns sensitivity, Spc specificity, HY Hoehn and Yahr stage, RBD REM sleep
behavior disorder, PAF pure autonomic failure, /F immunofluorences, /HC immunohistochemistry, PFA paraformaldehyde, FFPE formalin fixed

paraffin embedded, PGP neuron specific protein gene product

clinical aspects of Parkinson’s disease such as motor burden
[166, 167]. There was one study where mild to moderate
correlations of time to threshold and maximum fluorescence
were observed with disease duration and motor burden on
the unified Parkinson’s disease rating scale but this has not
been replicated [167]. While not routinely performed in clin-
ical assays, serial dilution of biological samples can be used
to calculate an SD50 value, the seeding dose at which 50%
of wells will turn positive, using a Spearman-Karber method
[171] (Fig. 1). In two studies, aSyn-SAA SD50 values cor-
related with disease duration and higher SD50 values were
noted with higher degrees of pathological aSyn deposits in
postmortem autopsy analyses [160, 167, 172]; however, it
has not been consistently related to other disease features and
such methods are time consuming and unlikely to be scaled
for routine use. Regarding pure autonomic failure, subjects
with this condition may phenoconvert to PD, DLB, or mul-
tiple systems atrophy (MSA) and there is some evidence
that the kinetics of the aSyn-SAA curve (i.e., maximum

fluorescence and time to positivity) and additional infor-
mation from neurofilament light chain testing in CSF may
offer prognostic information about which synucleinopathy
a subject is likely to phenoconvert to [163, 165]. Samples
from patients with MSA in some studies have a faster time
to positive but lower maximum fluorescence and this may
reflect properties of different aSyn strains in these associated
diseases as numerous biochemical and structural differences
between the aSyn species in MSA and Lewy body disorders
have been described [163, 165, 168].

In the last few years, several attempts have been made to
adapt aSyn-SAA assays from CSF above to peripheral tis-
sue and fluid samples, which could potentially offer a less
invasive manner of diagnosing the presence of aSyn seeds
(Fig. 2). Much of this initial work was pursued because of
the well documented observations of abnormally phospho-
rylated aSyn deposits in skin, colon, submandibular gland,
and other tissues in PD patients both at autopsy and in vivo
from biopsy studies discussed above [116, 134]. aSyn-SAA
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Fig. 1 aSyn-SAA metrics. Tissue or fluid samples are analyzed with
fluorescence measurements read at given intervals which can be used
to establish curves shown in (a). From these curves, a variety of met-
rics can be derived including maximum fluorescence, time to thresh-
old (or time lag), time to 50% of maximum fluorescence (T50) or area
under the curve calculations; however, these metrics have not consist-
ently been shown to relate to clinical characteristics or pathological

from skin biopsies appear to offer similarly high sensitivity
and specificity comparable to CSF in several studies in PD
and RBD patients [21, 172-176]. Olfactory mucosa samples
may be useful as well, but sampling requires accessing very
deep structures, often using a rigid scope and with an otolar-
yngologist operator, which may limit feasibility [177]. Seed-
ing from olfactory mucosa samples in PD, MSA, DLB, and
REM sleep disorder patients has been demonstrated though
[174, 177-179]. aSyn seeding activity has also been demon-
strated from not only submandibular gland biopsies but also
from saliva itself [180—182]. Lastly, seeding activity can be
demonstrated from colonic biopsies, where phosphorylated
aSyn has been known to deposit [116, 134, 174, 183]. See
Table 4 for selected aSyn-SAA studies.

The majority of the above studies have been performed in
clinically defined cohorts, and in those studies where neuro-
pathological confirmation has been performed, co-pathologies
are not typically assessed in a standardized fashion [17, 160].
While aSyn aggregates in Lewy bodies and Lewy neurites
are noted in brainstem, limbic and neocortical areas in PD
and DLB, Lewy bodies, and Lewy neurites are present in
the amygdala and nearby limbic structures in about 50% of
sporadic Alzheimer’s disease patients and around 90% of
familial Alzheimer’s disease cases with presenilin mutations
[184—187]. Such cases are unlikely to exhibit PD or DLB like
clinical phenotypes [24]. Two studies recently have addressed
whether current CSF assays can detect aSyn seeds in these
amygdala-predominant cases and both found that CSF assays
detected aSyn seeds in these cases at much lower rates than in
cases with limbic or neocortical stage Lewy pathology [188,
189]. Both studies also show that positivity of these assays
is dependent on aSyn stage and not masked or significantly
influenced by the co-occurrence of Alzheimer’s pathology
[188, 189]. Direct seeding assays from frozen amygdala
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burden within PD patients. If a sample undergoes serial dilution and
is analyzed at these different dilutions as shown in (b), the dilution at
which 50% of well remain positive can be used to estimate the SD50
which may have more relevance to disease activity in some studies. In
this example the estimated -log(SD50)=7. Created with Biorender.
com

samples from amygdala-predominant cases also showed a
mix of positive and negative reactions in one of these stud-
ies [189]. Further studies are needed to understand whether
this variability in seeding activity is due to a lower overall
dose of aSyn seeds or if there are differences in the aSyn
species in amygdala-predominant cases that result in lower
seeding activity. Such studies are important to understand the
interpretation of aSyn-SAA results when applied to a larger
population where subjects may harbor incidental Lewy bodies
or amygdala predominant Lewy bodies. Furthermore, sev-
eral population-based cohorts would suggest that the baseline
prevalence of aSyn pathology is around 20-30%, and in some
cases, this pathology can be widespread without causing clini-
cal symptoms [23, 35, 190-193]. While it appears that these
assays may be somewhat less sensitive to detect these cases
of incidental Lewy body disease and amygdala-predominant
disease, further studies will be needed [168, 188]. Addition-
ally, some patients with (LRRK2 mutations and most, if not
all, patients parkin PBR E3 ubiquitin protein ligase (PRKN)
will not have pathological aSyn accumulations at autopsy
[156, 194] and therefore will be less likely to exhibit seeding
activity or aSyn deposits [153, 195-197]. Therefore, there is
likely a role of integrating genetic testing information into the
application of these assays in PD.

At this time, there is also a commercially available CSF
aSyn-SAA assay SynTAP (Amprion Laboratories) that is not
FDA approved but did receive FDA breakthrough designa-
tion in 2019. In the SynTAP assay, which is a slightly modi-
fied version of Amprion’s research assay (formerly referred
to as PMCA), samples are run in triplicate using glass beads
with fluorescence measured less frequently than the research
assay to allow for higher throughput [189, 198]. The Syn-
Tap assay has shown similarly high accuracy to Amprion’s
research assay [189].
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As noted previously, autopsy studies of PD patients typi-
cally reveal 35-50% of PD patients with dementia and
more than 70% of DLB patients have moderate to high
levels of AD neuropathologic change [29-35]. AD co-
pathology in PD has been associated with older age of
onset, shorter disease duration, faster time to dementia,
greater likelihood of amnestic memory deficits and greater
likelihood of an akinetic rigid motor phenotype in several
studies [31, 32, 36-42]. These findings are not universal
however, and in cluster analyses of PD, no major changes
in rates of AD co-pathology of CSF AD biomarkers in
studies comparing so called diffuse-malignant subtypes of
PD with mild motor-predominant forms [199, 200]. Still,
understanding the interplay of aSyn, AP, and tau pathol-
ogy in PD and DLB is of interest as it will inform the
interpretation of AD biomarkers in these populations as
these assays become more widely available and stratify-
ing clinical trials by the presence or absence of AD co-
pathology may be of interest [201].

Olfactory Mucosa

aSyn SAA
o Moderate sensitivity and specificity in PD
¢ Methods developing

Submandibular Gland
IHC a|

¢ Low-moderate sensitivity and
specificity in biopsies

aSyn SAA

e T sensitivity, T specificity

AEs often reported with sampling

Saliva

aSyn SAA
e moderate sensitivity, T specificity
¢ Replication needed

Colon

IHC
o Initially Discordant sensitivity and specificities
e Haromonized methods show improved results

aSyn SAA
¢ some seeding activity, further development needed.

Fig.2 aSyn assays from biofluids and tissue. Summary of static aSyn
assessments, peripheral tissue immunohistochemistry, immunofluo-
rescence and aSyn-SAA assays in different tissues and fluids studied

PD and DLB patients tend to have lower levels of CSF
AP42 and tau species than normal controls in groupwise
comparisons early in the disease [45, 46, 49, 73, 202-204].
In PD, lower levels of CSF AP42 is related to worse cog-
nition cross-sectionally, longitudinally, and is related to
higher likelihood of AD co-pathology at death [44, 46, 47,
64,73, 202, 204, 205]. Interestingly, one study showed an
increase in CSF Af42 in PD patients with freezing of gait
compared to PD patients who did not [206]; thus, clinical
heterogeneity of PD may influence biomarker interpreta-
tion as well. While total and p-tau 181 is on average lower
than controls in early PD, levels may increase later in the
disease in some patients which is also associated with a
greater likelihood of dementia [207-210]. While optimal
cut-offs for these AP42, t-tau, and p-tau 181 and their
ratios have been well established in Alzheimer’s disease,
it is not clear if the same cutoffs apply in PD and other
Lewy body disorders [211, 212]. Indeed, in rare autopsy-
confirmed work, there is data to suggest CSF AP42 may
be associated with increasing aSyn pathology independent
of plaque burden in LBD [47].

Skin
IHC

¢ less sensitive and specific than IF

IF
e T sensitivity, T specficity with
current methods
o Often positive in prodromal states

aSyn SAA
o T sensitivity, T specificity in PD

Paracervical and leg > scalp or abdomen

CSF
Static aSyn
e total aSyn: lin PD
e pasSyn: | inearly PD,
Tlate PD
e oligomeric aSyn: T with
PD severeity. Replication
needed.

aSyn SAA

e >90% sensitivity and specifity
in multiple laboratories.

U o Often positive in prodromal
states

o Detects limbic or neocortical
aSyn regardless of co-
pathology or phenotype

currently with spinal fluid aSyn-SAA and skin aSyn-SAA and immu-
nofluorescence assays showing the greatest accuracy to date but with
many other assays still in development. Created with Biorender.com
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More recently, plasma assays (Ap1-42, t-tau, p-tau 181,
p-tau 217, and p-tau 231) are being developed for use in
AD but are already being studied in PD as well [213-216].
Plasma Ap42 may be related to more severe gait impair-
ment and severity of akinetic rigid symptoms [217, 218].
Plasma p-tau 181 and p-tau 217 levels correlate with
degree of tau PET and AP PET status [219]. In studies of
DLB, where tau co-pathology is more likely, plasma p-tau
181 and 231 have been associated with faster cognitive
declines [219, 220]. Higher levels of plasma p-tau 181 are
reported in PD patients when compared to healthy con-
trols and these levels correlate with plasma aSyn markers
[221]. However, in some studies plasma p-tau 181 has not
clearly been linked to cognitive decline in PD and plasma
t-tau and neurofilament light chain measurements have had
stronger correlations with cognitive dysfunction [95, 105,
222]. In DLB, in particular, where rates of AD co-pathol-
ogy are often quite high, stratification by the presence of
these AD biomarkers may prove especially important for
clinical trial enrollment of more biologically homogenous
patients or those who may benefit from combination thera-
pies [201].

Conclusion

aSyn-specific biomarkers have long been an unmet need
in the field of neurodegenerative medicine. While the
search for biomarkers with strong associations with dis-
ease pathology continues, several new fluid and tissue
based biomarkers are being developed which offer the
ability to detect aSyn species in patients with PD, DLB,
and also in prodromal states, which is critical for thera-
peutic trials targeting aSyn mechanisms. CSF aSyn and
plasma aSyn species detected by current assays may be
limited but further development with newer second-gen-
eration immunoassays or other methods of detection may
provide additional opportunities for biomarker develop-
ment. Please see Table 3 for a summary of CSF (Table 1),
plasma (Table 2), and aSyn-SAA and immunofluorescence
(Table 4) biomarker data findings in PD. aSyn immunoflu-
orescence from skin samples and aSyn-SAA assays both
from CSF and peripheral tissues appear promising and will
likely be of imminent use in clinic and research settings
which will likely provide accurate methods of categori-
cally assessing for the presence of aSyn deposits and aSyn
seeds [138]. More work will be needed to determine of
more labor-intensive methods like calculating SD50 will
provide quantitative readouts of aSyn seeding that have
relevance for disease activity, but initial studies suggest
some significant correlations with disease duration and
pathological burden. Most studies of aSyn-SAA to date
have been done in clinically defined cohorts of PD and

@ Springer

other synucleinopathies, some with autopsy validation
[164, 167, 168]. However, given the sensitivity of some
of these assays in detecting aSyn seeds or clinicians may
have to grapple shortly interpretation of a positive result
in patients without a defined synucleinopathy syndrome,
and it is not entirely clear if these patients are universally
destined to phenoconvert. The integration of other bio-
markers like hyposmia, polysomnograms for RBD, and
DAT scans will likely further be of use to stratify those
aSyn positive cases who are more likely to develop a par-
kinsonian syndrome. When combined with CSF or plasma
biomarkers for AD, a more comprehensive picture of both
primary and commonly occurring AD co-pathologies can
be constructed for PD patients. These assays will likely
prove useful in augmenting enrollment of homogenous
populations into clinical trials. Focuses for future work to
bring these skin immunofluorescence and aSyn-SAAs to
clinical use include assay standardization and research in
autopsy-confirmed cohorts to clarify the complex relation-
ships between pathology in the brain and those detected
from peripheral tissues and biofluids. aSyn assays that
have quantitative value for disease activity remain a major
unmet need, but the exciting development of these assays
will allow for clinical assessments to be augmented by
aSyn-specific biomarkers in a manner which has not been
previously available for living patients.
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