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The physical basis of osmosis
Gerald S. Manning1 and Alan R. Kay2

Osmosis is an important force in all living organisms, yet the molecular basis of osmosis is widely misunderstood as arising
from diffusion of water across a membrane separating solutions of differing osmolarities, and hence different water
concentrations. In 1923, Peter Debye proposed a physical model for a semipermeable membrane emphasizing the repulsive
forces between solute molecules and membrane that prevent the solute from entering the membrane. His work was hardly
noticed at the time and slipped out of view. We show that Debye’s analysis of van ’t Hoff’s law for osmotic equilibrium also
provides a consistent and plausible mechanism for osmotic flow. A difference in osmolyte concentrations in solutions
separated by a semipermeable membrane leads to different pressures at the two water–membrane interfaces because the
total repulsive force between solute molecules and the membrane is different at the two interfaces. Water is therefore driven
through the membrane for exactly the same reason that pure water flows in response to an imposed hydrostatic pressure
difference. In this paper, we present the Debye model in both equilibrium and flow conditions. We point out its applicability
regardless of the nature of the membrane with examples ranging from the predominantly convective flow of water through
synthetic membranes and capillary walls to the purely diffusive flow of independent water molecules through a lipid bilayer
and the flow of a single-file column of water molecules in narrow protein channels.

Introduction
Osmosis is one of the most powerful forces that organisms must
counteract to survive. An index of its importance is that animal
cells, of all kinds, spend about a quarter of their energy resisting
the osmotic challenge induced by the presence of impermeant
molecules in cells (i.e., the Donnan effect, Appendix 1; Rolfe and
Brown, 1997; Kay, 2017). An unchecked Donnan effect would
lead to a continuous influx of water until the cell bursts. The
need to maintain osmotic balance is unrelenting, interrupted
neither by sleep nor hibernation. Furthermore, osmosis is quite
literally at the root of plant physiology (Niklas and Spatz, 2012).

The phenomenological thermodynamics of osmosis has long
been clear, at least for osmotic equilibrium. van ’t Hoff’s equa-
tion for the equilibrium pressure difference can be derived by
equating the chemical potentials of the water in the two com-
partments (Dill and Bromberg, 2003; Phillips et al., 2012) sepa-
rated by a semipermeable membrane, but this thermodynamic
derivation provides no insight into the molecular mechanism
that generate the pressure difference. Indeed, the molecular
basis of osmosis continues to be widely mischaracterized and
hence misunderstood, although a consistent mechanistic un-
derstanding was presented 100 yr ago (Debye, 1923b).

In this paper, wewill showwhy amolecular basis for osmosis
that is most often given in biology textbooks is invalid. This

misconception consists in the belief that the osmotic water flux
is driven by a gradient in water concentration across the
membrane. We will show how the osmotic and diffusive fluxes
of water can be separately measured across a semipermeable
membrane. This can then be used to demonstrate that diffusion
alone cannot account for the osmotic flux across membranes
with aqueous pores. We will then show how a physical mecha-
nism that was first presented by Peter J.W. Debye in 1923 can
generate a macroscopic pressure and provides the most plausi-
ble account of osmosis. We refer to it as the “Debye model.”
Debye was perhaps the first to recognize that osmosis arises
from the mechanical interaction of an impermeant solute with a
semipermeable membrane but does not depend on the precise
chemical nature of the solute or the solvent. We believe that the
Debye model has failed to take hold in biology for several rea-
sons, inter alia, a lack of understanding of the physical argu-
ment, its requirement for mathematical explication, and the
availability of other simple, seemingly plausible, but flawed
arguments. In addition, textbooks, besides omitting the Debye
model, have not raised any inconsistencies in the conventional
approach. There has hence seemed little need to question what
at first blush seems a simple phenomenon.

There have been several attempts primarily directed at bio-
logists to set the record straight on the physical basis of osmosis
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(Stein, 1966; Kramer andMyers, 2012), as well as accounts of the
Debyemodel in journals (Manning, 1968; Oster and Peskin, 1992;
Borg, 2003 Preprint; Marbach and Bocquet, 2019; Song et al.,
2021) and textbooks (Villars and Benedek, 1974; Weiss, 1996;
Baumgarten and Feher, 2011; Nelson, 2014), but despite these
efforts, misconceptions have persisted. The apparent simplicity
of osmosis may have masked what is at bottom a rather subtle
phenomenon with enormous implications for biology (Dick,
1966; House, 1974; Andersen, 2015). It is, we think, worth
readdressing the physical basis of osmosis because it may open
new ways of looking at water and solute transport that have
remained hidden because of flawed beliefs, and it is important to
ensure that our understanding is firmly rooted in well-
established physical principles.

The osmotic flux of water is important in several biological
disciplines; indeed, it is a challenge to find one where it is not.
However, different branches of science have developed unique
terminologies, which may confuse someone familiar with the
terms of one field in reading the literature of another. The
unified view and terminology presented here may help to bring
consilience to the study of osmosis.

We first provide a review of the basic empirical information
about osmosis, including a discussion of some misconceptions.
Then, we give an account of the Debye model, both as presented
by Debye himself to derive van ’t Hoff’s law for osmotic equi-
librium, and as extended to apply to osmotic flow (Manning,
1968). The seminal contributions of the Norwegian physicist
Lars Vegard are integrated into this account (Vegard, 1908).
Finally, we discuss water flow across biological membranes in
the context of Debye’s model.

The rudiments of osmosis and common misconceptions
To illustrate the process of osmosis, we will consider a semi-
permeable membrane, namely, one that is permeable to water
but completely impermeable to solute molecules, separating two
solutions. We will restrict our discussion to water, but it also
applies to any other solvent. If the osmolarities (i.e., the total
concentrations of solutes in moles per unit volume) of the sol-
utions differ, water flows from the solution with the lower os-
molarity to that with the higher osmolarity. In the situation
diagrammed in Fig. 1, themovement of water can be prevented if
the piston exerts excess pressure on the solution with higher
osmolarity equal, if the solutions are dilute, to RTΔcs, where Δcs
is the osmolarity difference. This experimental observation is
encapsulated by van ’t Hoff’s equation,

ΔP � RTΔcs, (1)

where ΔP is the pressure difference under no-flow, equilibrium
conditions between two solution chambers separated by a
semipermeable membrane.1 The definitions of symbols in the
equations can be found in Table 1.

The term RTcs in a free-standing solution with solute con-
centration cs is often referred to as the “osmotic pressure” of the
solution. However, this imprecision is the source of some

confusion since an actual pressure difference can only arise
between two solutions with different osmolarities separated by
a semipermeable membrane. It is worth emphasizing that os-
motic pressure is not a physical property of a free-standing
aqueous solution.

We will lay out our argument in terms of the osmolarities of
the solutions. However, to understand the osmotic flux of water
in cells, it is important to consider that macromolecules in both
the cytoplasm and extracellular solutions may exclude water.
The osmotically active solute concentration within a cell is de-
termined by the number of moles of solute per mass of freely
exchangeable water molecules, namely, the osmolality (Boron
and Boulpaep, 2016). For dilute solutions, which we are con-
sidering, the osmolarity and osmolalities are essentially
identical.

Our objective is now to understand what generates such a
pressure difference across a semipermeable membrane sepa-
rating solutions with different osmolarities. To begin our

Figure 1. Classical demonstration of osmosis. (a) A U-tube with a semi-
permeable membrane separating pure water on the left from an aqueous
solution with an impermeant solute of concentration cs on the right. (b)With
time, water will move from left to right, elevating the column of solution on
the right, until its gravitational weight stops the flow. (c) Alternatively, the
flow of water can be prevented if a piston applies a pressure equal to RTcs (in
the dilute regime).

Table 1. Symbols used in the text

Symbol Description

cs Solute concentration, moles per unit volume

D Solute diffusion coefficient

F Force exerted from the membrane on the solute

Lp Hydraulic permeability of the membrane

P Fluid pressure

P d Diffusional permeability coefficient

P f Osmotic permeability coefficient

R Universal gas constant

T Absolute temperature

μ Solute mobility

vi Partial molar volume of species i

v0w Molar volume of pure water

ΦV Volume flux of water per unit area of membrane

ϕw Molar flux of water per unit area of membrane

1van ’t Hoff’s equation Eq. 1 holds for sufficiently dilute solutions. There are different ways of indicating
effects caused by interactions among solute molecules at higher concentrations. For simplicity, we
discuss dilute solutions only.
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analysis, we review first the hydraulic flow of water in response
to a hydrostatic pressure difference and relate this motion to
that induced by a difference in osmolarity. We consider a
membrane with pure water on both sides when a transmem-
brane hydrostatic pressure difference ΔP is imposed (for ex-
ample with a piston). The volume of water flux per unit area of a
membrane is given by the empirical relationship (Weiss, 1996).

ΦV � −LpΔP, (2)

with the water flux being directed to the side with lower pres-
sure and Lp is the hydraulic permeability. The value of Lp de-
pends on the specific composition and structure of the
membrane that allows water to move across it. Eq. 2 is Darcy’s
law, which can be derived from the Navier-Stokes equation for
the convective flow of a liquid.2

The volume water flux across a semipermeable membrane
subject to both a hydrostatic pressure difference and a difference
in osmolarity can be derived by combining Eqs. 1 and 2,

ΦV � −Lp(ΔP − RTΔcs). (3)

Eq. 3 has a long history and has been proposed by many
scientists in different fields, sometimes only in words. It is
sometimes called Starling’s equation in physiology (Starling,
1896; Blaustein et al., 2019), and for dilute solutions with im-
permeable solutes, it is part of the Kedem and Katchalsky (1958)
equations, but it could without exaggeration be called the
“Fundamental Law of Osmosis.”

A remarkable feature of Eq. 3 is that two physically distinct
driving forces, an imposed hydrostatic pressure difference ΔP
and an osmolarity difference RTΔcs, produce the same flux of
water. The connection between force and flow is given by the
same coefficient Lp in both cases. The implication for the un-
derlying physical mechanisms of pressure and osmotic flow is
that these mechanisms must be one and the same.

Note also that van ’t Hoff’s law at equilibrium is recovered from
the Fundamental Law by setting the flux ΦV equal to zero. If the
coefficients for the two driving forces were different, van ’t Hoff’s
equation would be violated.

When the volume flux is carried only by the water, the
number of moles of water flowing across a unit area of mem-
brane can be derived for dilute solutions from the molar volume
of water v0w (Finkelstein, 1987):

ϕw � ΦV

�
v0w. (4)

Substituting Eq. 3 into Eq. 4 gives an alternative form of the
Fundamental Law of Osmosis,

ϕw � −P f ΔP/RT − Δcs( ), (5)

where P f is the osmotic permeability coefficient,

P f � RTLp
v0w

. (6)

P f can be determined from the measurement of water fluxes
induced either by a hydrostatic pressure difference or a differ-
ence in osmolarity across a membrane (Fettiplace and Haydon,
1980; Finkelstein, 1987).

The foregoing observations give rise to several questions,
which we will pick up later. What is the physical reason for the
observed equivalence of hydraulic and osmotic flow? It is
counterintuitive that the same coefficient, Lp orP f , should apply
to both. Why, from a molecular point of view, must an imper-
meable solute concentration be balanced at equilibrium by a
difference in hydrostatic pressure, and why should van ’t Hoff’s
law be so similar to the equation of state of an ideal gas?

How water moves across membranes
The flow of water is composed of two components, a convective
component and a diffusive component (Truskey et al., 2009).
Both may be present simultaneously but to different degrees
depending on the nature of the flow. For macroscopic flow, the
convective movement dominates, but we will give an example of
flow through a lipid bilayer that is entirely diffusive. We will
describe the convective and diffusive contributions in turn.

Convection is the bulk flow of liquid induced by a force. It is
what we are able to see when water runs in a brook or through a
pipe and is described mathematically by the Navier-Stokes
equation (Truskey et al., 2009; Phillips et al., 2012). At the mo-
lecular level, in convective flow, clusters of closely packed water
molecules move in concert in the direction of the force. How-
ever, because molecules in a liquid can move relative to each
other, they are always in randommotion, which drives diffusive
movement. If, in addition to thermal motion, a mechanical force
F acts on the molecules, their randommovements are biased in
the direction of the force, and each molecule acquires a drift
velocity μF in the direction of the force. The proportionality
constant μ is called the diffusional mobility of the molecule,3 and
it is connected to the diffusion constant D through the Einstein
relation μ = D/RT. Molecules within a liquid flowing con-
vectively under a force therefore simultaneously exhibit diffu-
sive motion that is superimposed upon the convective flow.
More specifically, the average velocity of a molecule in a flowing
liquid is the sum of the convective velocity and the diffusive
drift velocity.

As an example, a pressure gradient in water simultaneously
induces both convective flow according to the Navier-Stokes
equation and a diffusive drift of water molecules along the
gradient. Clusters of water molecules move as a whole along the
pressure gradient, while each individual molecule responds to
the gradient by drifting stochastically away from regions of
higher pressure and toward regions of lower pressure. The
reason that an individual molecule drifts toward a region of
lower pressure is that less work is required at lower pressure to
accommodate the molecular volume.

For flow through membranes, we can quantify the relative
importance of the convective and diffusive contributions with
the dimensionless P f /P d ratio. The overall permeability P f

2Darcy’s law, however, has a more general validity. As follows from the very notion of pressure-volume
work, application of a ΔP across a membrane that is permeable to water while supporting the pressure
must give rise to a transfer of water volume regardless of the physical nature of the water flow inside
the membrane.

3μ = 1/ζ, where ζ is the friction coefficient of the molecules. For a spherical particle with radius r, in a
solution with viscosity η, the Stokes equation holds true ζ = 6πηr.
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has already been defined as characterizing the flow observed
when a pressure or osmolarity difference is imposed on the two
sides of the membrane in accordance with the Fundamental Law
of Osmosis, Eq. 5. The diffusional permeability coefficient P d is
what the permeability would be in the absence of convection.
Then, only the diffusion of the water molecules is effective in the
transport. Significantly, P d can actually be measured in a sep-
arate experiment from the observed diffusional flux ϕ∗

w of trace
concentrations of isotopically labeled water (Mauro, 1957;
Fettiplace and Haydon, 1980), in the absence of either a pressure
or osmolarity difference,

ϕ∗
w � −P dΔc∗w, (7)

and Δc∗w is the difference in concentration of the water isotope
across the membrane.4 That the P d in this equation is the same
P d appearing in the P f /P d ratio requires proof, which is
provided in Appendix 2.

It is likely that the diffusional and convective flows of water
are additive, so we write P f � P c +P d, where P c is the con-
tribution from convection, and then when we divide both sides
by P d, we find that for the P f /P d ratio,�

P f

�
P d

� − 1 � P c

�
P d, (8)

from which a useful interpretation of P f /P d emerges. From its
meaning, convection is represented by a positive value of P c,
the smallest possible value of P f /P d is unity, and then the flow
is entirely determined by the diffusion of the water molecules.
But if P f /P d is much greater than unity, convection dominates
osmotic flow through the membrane.

Mauro (1957) and Robbins and Mauro (1960) measured P f

and P d for a series of synthetic collodion membranes of in-
creasing density in polymer material. For the most open mem-
brane, the diffusive component of water flow was a small
fraction, 1/730 of the overall observed flow, while for the most-
dense membrane, the diffusive contribution was somewhat
more important, but still just 1/36 of the total. Their experiments
showed conclusively that the water flow in these membranes is
dominated by convection, like water running in a brook, per-
haps obstructed in its course by rocks (in the membrane, by
polymer material).

Unlike most synthetic membranes, biological membranes are
heterogeneous, with protein channels like aquaporin spanning
the lipid bilayer (White et al., 2022). Water is transported in-
dependently through both the bilayer and the channels, as il-
lustrated in Fig. 2. The P f /P d ratio provides insight in the
biological case also. For isolated lipid bilayers, measurements
show P f /P d � 1 (Fettiplace and Haydon, 1980), so there is no
convective flow component. Water crosses the lipid bilayer
diffusively as dispersed independent molecules. However, the
measurements of Hevesy et al. (1935) in frog skin many years
ago showed that P f was greater than P d. This inequality was
also found to be true in red blood cells (Paganelli and Solomon,
1957). These experiments provided the first evidence of water

channels; however, it took a long time to identify and isolate
aquaporin channels (Agre et al., 1995).

There is no convective (Navier-Stokes) water flow in the
strict sense through aquaporin channels since the water mole-
cules move in a single file. Nonetheless, the molecules are
thought to be in close proximity in the channel, and observed
values greater than unity of the P f /P d ratio could reflect their
influence on each other during osmotic flow.

Common misconceptions about osmosis
Diffusion is not the primary driver of osmosis. Amajor obstacle

bedeviling our understanding of the molecular level of osmotic
pressure and osmosis, for well over a century, is the belief that
diffusion is the sole driver of osmosis. Here is a typical statement:
“Water spontaneously moves ‘downhill’ across a semipermeable
membrane from a solution of lower solute concentration (relatively
high water concentration) to one of higher solute concentration
(relatively low water concentration), a process termed osmosis or
osmotic flow. In effect, osmosis is equivalent to ‘diffusion’ of water
across a semipermeable membrane” (Lodish et al., 2021). Or,
“…water moves slowly into or out of cells down its concentration
gradient, a process called osmosis” (Alberts et al., 2015).

Although water diffusion may seem to provide a reasonable
mechanism for osmosis, measurements from membranes with
aqueous water channels show conclusively that diffusion alone
cannot account for the osmotic flux. The fact that P f > P d

demonstrates that there is a significant convective component to
osmotic water fluxes that cannot arise by diffusion. This disparity
points to the need for a driver in addition to the water gradient.
This is precisely what the Debye model does, showing how the
collision of the solute molecules with the membrane generates a
pressure drop that drives water across the membrane.

It is incorrect to characterize the osmotic flow of water as es-
sentially a Fick’s law diffusion of water molecules between aqueous
solutions of differing water concentrations. The difference in

Figure 2. Schematic of the passage of a water molecule by diffusion
through the bilayer (top) or through a water channel (bottom).

4The measurement of P d is technically challenging because of the effect of unstirred (unconvected)
layers in the juxta-membrane space, which distort the measurement of the permeability coefficients.
However, it is possible to estimate the size of the unstirred layers and to correct for their influence
(Levitt et al., 1978; Barry and Diamond, 1984; Finkelstein, 1987).
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water concentration (moles per unit volume) in pure water and
in an aqueous solution is not simply a function of solute con-
centration alone. A straightforward calculation shows that it
also depends on the ratio of the partial molar volume of the
solute species to the molar volume of pure water (see Appendix
3). This ratio is specific to the particular solute species. The
same concentration of solute, but for different solute species,
leads to water concentration differences between the two
solutions that are specific to the specific solute species. If the
osmotic flow were caused by the difference in water con-
centrations, the water flux would then be specific to the solute
species used to establish it. Such a dependence on imperme-
able solute species is not observed for dilute solutions, and
moreover, would contradict both van ’t Hoff’s equation and
the Fundamental Law of Osmosis.

The mechanism of osmosis cannot be inferred from the prop-
erties of free-standing solutions. Another misconception arises
from a focus on the bulk properties of the solutions bathing the
membrane, while ignoring the physical implications of the most
obvious property of the membrane itself, namely, its mechanical
interaction with the solute making it impermeable to the solute
molecules. The most common mistake, which has recurred
persistently, is the idea that in a free-standing solution, the
solute and solvent possess independent pressures, just like a
mixture of ideal gases. Modern thermodynamic and statistical
mechanical ideas of liquid solutions have fortunately taken root,
and today this erroneous picture is only rarely invoked.

The modern thermodynamic analysis of osmotic pressure is
correct but provides no information about the mechanism. It
compares the chemical potentials of water in a free-standing so-
lution with the chemical potential of water in pure water with no
reference to the physical interaction of membrane with solute.

Osmotic transport is not different from transport induced by
pressure differences. Another misconception is to deny the reality
of the pressure underlying the movement of water across a
semipermeable membrane. Here is an example: “The relationship
(van ’t Hoff) however arises directly from the parallels in the
thermodynamic relationships and should not be interpreted in the
molecular mechanistic sense since the osmotic pressure is in fact a
property ensuring equilibrium of the solvent and solute, and has
its effect only via its reduction of the chemical potential of this
solvent” (Tombs and Peacocke, 1974). The identification of hy-
drostatic pressure-driven flow and flow driven by a concentration
imbalance of impermeable solute is embodied in the Fundamental
Law of Osmosis, and we will demonstrate how the Debye model
explains this equivalence in a physically transparent way.

A mechanistic model for osmosis: The Debye model
Several different mechanisms have been proposed to explain
how osmosis arises, with Guell (1991) listing 14.5 We will argue
that there is in fact a parsimonious explanation for osmosis that
relies on the mechanical interaction between the membrane and

impermeable solute molecules, and that we will refer to as the
Debye model as it was first proposed by Debye in 1923. Despite
Debye’s reputation, the model made little impact on our un-
derstanding of osmosis—disappearing for decades, probably
because biologists were not aware of it and chemists and
physicists were largely uninterested—until the 1960s. Unfor-
tunately, the connection to the original work was lost and we re-
establish it here (see Box 1 for a short history).

Debye recognized that the physical principles underlying the
development of an osmotic pressure must be centered on the
interactions of the membrane with the solute molecules since
osmotic pressure is not observed in the absence of a membrane.
As Debye put it in his 1923 paper, “We express the quality of
semi-permeability of the membrane by saying that the potential
energy of a solute molecule increases from zero to infinity when
it is transported across the membrane from the solution side.”
An equivalent statement would be that the membrane exerts a
repulsive force F on a solute molecule that is strong enough to
prevent the solute molecule from entering the membrane and
crossing over to the pure solvent side.

The Debye model leads to van ’t Hoff’s law
Debye was concerned only with osmotic equilibrium, so we
begin by following his derivation of van ’t Hoff’s law for osmotic
pressure at equilibrium. Afterward, we discuss steady-state
osmotic flow as a straightforward extension of his model
(Manning, 1968). Consider a semipermeable membrane sepa-
rating two chambers at equilibrium, with the x coordinate in-
creasing from left to right, the semipermeable membrane
perpendicular to the x axis, the solution compartment with
solute concentration cs,r to the right of the membrane, and the
pure solvent to the left (Fig. 3 A). We are in effect looking at an
infinite 2-D membrane, with all values isotropic in the y and z
directions.

Our first goal is to obtain an equation characterizing the
solute concentration profile cs(x). For that, we write an equation
for the flux js of solute molecules in the absence of applied
pressure,

js � −Ddcs
dx

+ csμF , (9)

where the first term on the right-hand side of the equation is
Fick’s law for solute flux in the presence of a solute concentra-
tion gradient in dilute conditions, and the second term is the
contribution to the solute flux from the mechanical force F
exerted by the membrane on nearby solute molecules. Einstein’s
relation D = RTμ (Einstein, 1905) will allow us to convert the
solute mobility μ to its diffusion coefficient D. The semiperme-
ability property of the membrane means that passage of solute
into and through the membrane is completely blocked by the
force F . Therefore, there must be a gradient of solute concen-
tration across the membrane–solution interface where from left
to right the solute concentration increases steeply from zero
just inside the membrane to the constant value cs,r of solute
concentration in the solution chamber. Moreover, since the
membrane excludes the solute, the solute flux across the inter-
face must vanish. Setting js = 0 and then using Einstein’s relation

5Guell’s list: (1) solvent diffusion, (2) solute-membrane collisions, (3) solute suction forces, (4) pore
mouth vibration, (5) vaporization and condensation in the membrane pores, (6) solute solvent forces,
(7) solute adsorption to the membrane, (8) enhanced solvent tension, (9) reduced solvent activity, (10)
free surface solute pressure, (11) solute dissolution in the membrane, (12) membrane steric forces, (13)
diffusion pressure, and (14) reflection zones.
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and canceling D, we obtain an equation to characterize the solute
concentration profile cs(x),

RT
dcs
dx

� csF . (10)

To connect this equation to the pressure that develops across
the membrane, we can visualize a volume element of the solu-
tion near the membrane as a thin slice of thickness dx parallel to
the membrane (see rectangular blue box in Fig. 3). When the
system is at equilibrium, the slice, in particular, must be in
mechanical equilibrium, meaning that all of the forces acting on
and inside the slice must balance out to zero. The intermolecular
forces among the molecules inside the slice cancel each other as
a consequence of Newton’s law of action–reaction, leaving the
requirement that the forces on the slice originating from outside
it must balance it to zero. These forces are the repulsive force F
from the membrane acting on each solute molecule in the slice
and the hydrostatic pressures from the fluid surrounding the
slice and pushing from outside the slice on each of the side
surfaces of the slice. With P(x), the pressure at x, the zero bal-
ance is expressed by the equation dP/dx − csF � 0 or7

dP
dx

� csF . (11)

Eq. 10 and Eq. 11 can be combined:

dP
dx

� RT
dcs
dx

. (12)

The van ’t Hoff equation for osmotic equilibrium,

Pr − P0 � RTcs,r, (13)

follows after integration from left to right (pure solvent to so-
lution) with Pr the pressure in the solution compartment, P0 the
pressure in the pure solvent compartment, and of course cs,l = 0
in the pure solvent compartment.

We are now in a position to recognize the genius of Debye’s
insight, simple as it is. At the heart of his derivation is the
membrane-solute force F , which would be different for every
membrane and every solute. How can it lead to van ’t Hoff’s
equation, which is applicable generally to any membrane-solute
pair? The reason, as we have just seen, is that it produces com-
pensating physical effects, and F cancels from the final result.

It is worthwhile considering an alternative approach, first
used by Ehrenfest (1915) and then by others (Kiil, 1982; Borg,
2003 Preprint; Bowler, 2017) to employ the virial theorem to
understand osmosis. The virial theorem from the statistical
mechanics of a fluid is a relation between the pressure of the
fluid and its total time-averaged energy, kinetic plus potential.
The potential energy accounts for the forces of interaction
among the particles of the fluid. For a real gas, the virial theorem
was developed by Mayer (Uhlenbeck and Ford, 1963) into his
virial expansion, an infinite series for the pressure in which the
first term gives the ideal gas equation of state and the higher-
order terms account successively for corrections due to inter-
actions among the gas molecules. The McMillan and Mayer
(1945) theory gives an analogous virial expansion for the os-
motic pressure that arises when a solution is separated from

Box 1. A short history of the Debye model
The investigation of osmosis has an interesting history that has been told by others (Smith and Smith, 1960; Hammel and Scholander, 1976; Mason, 1991). In this
section, we will focus on the history of the Debye model.

Although the experimental demonstration of osmosis by Jean-Antoine Nollet (1748) predates that of diffusion by Thomas Graham (1828), the development
of the theoretical basis of diffusion proceeded with little controversy (Einstein, 1905; Jacobs, 1935; Berg, 1993). In contrast, the theoretical underpinnings of
osmotic pressure proved contentious from the start.6

There is a fascinating story recounted by Wald (1982) that it was Hugo de Vries (a botanist and one of the rediscoverers of Gregor Mendel’s work) who told
van ’t Hoff about Pfeffer’s experiments (Pfeffer, 1890) on semipermeable membranes when their paths crossed while walking in Amsterdam. van ’t Hoff was
awarded the first Nobel Prize in Chemistry in 1901 largely for his work on osmosis. At our historical remove, it may seem strange to award the prize for what seems
like such a simple finding. However, it provided one of the first experimental confirmations of atomic theory. What we have called the Debye model was first
proposed by Peter J.W. Debye in a paper first published in French (Debye, 1923b) and then in German (Debye, 1923a), and primarily devoted to further devel-
opments of Debye’s theory of ionic solutions. Debye remarks in a footnote “Among the large number of authors who have already dealt with the kinetic theories of
osmotic pressure, we must cite above all: L. Boltzmann, H.A. Lorentz, Ph. Kohlstamm, C. Jäger, O. Stern, P. Langevin, J.J. van Laar, P. Ehrenfest,” but does not cite
any of their papers, because they failed to pin down the mechanism.

In the intervening years, there have been very few references to Debye’s paper. Joos developed a simplified derivation of the mechanism in what is es-
sentially a didactic paper (Joos, 1941), acknowledging that his work was derived from an idea in a paper by Debye (1923b). The derivations were included in Joos’s
influential textbook of physics (Joos and Freeman, 1959). Manning (1968) was probably the first to rederive the Debye model in the second half of the 20th century.
Manning based his derivation on a textbook by Rutgers (1954), who said that his argument was derived from Debye, but Rutgers does not quote the paper. It is
worth noting that Debye provided a foreword to the Rutgers textbook.

The textbook by Villars and Benedek, 1974 is the source most often quoted for the solute–membrane repulsion model, but it has no references at all. In the
biological literature, Mauro (1979) appears to be the first to have referred to Manning and to Villars and Benedek in the context of osmosis.

It is puzzling that Debye’s work on osmosis made little impact since he was a major figure in the development of physics in the 20th century, receiving the
Nobel Prize in 1936. It is even more so because he was a professor at Cornell University (Ithaca, NY, 1939–66) during the period when the debate about the
molecular origins of osmosis was revived. Indeed, from the mid-1950s to the 1990s, several theories competed about the origin of osmotic pressure (Hammel, 1979;
Hildebrand, 1979; Mauro, 1979; Soodak and Iberall, 1979; Yates, 1979; Essig and Caplan, 1989). Prominent among the contesting theories was the controversial
solvent tension theory (Hammel and Scholander, 1976). However, the Debye model never seemed to have made an appearance in the debate, at least in its
quantitative form. In an interview in 1964, Debye himself provides a possible key to this enigma. When asked which periods of his work stand out to him “…I think
they are important at the moment when I am doing them. Later I forget about them. So it’s only during the time that I have fun with them that they seem
important” (Corson et al., 1964).

6“Again we have the basically pointless question: What exerts osmotic pressure? Really, as already
emphasized, I am concerned in the end only with its magnitude; since it has proved to be equal to the
gas pressure one tends to think that it comes about by a similar mechanism as with gases. Let he,
however, who is led down the false path by this rather quit worrying about the mechanism.”-van ’t Hoff
(1892) translation from Weiss (1996).
7If this equation is multiplied on both sides by the volume Adx of the slice, with A as the surface area of
the slice, and if the units are then checked while remembering that pressure is force per unit area, it
becomes a force balance even more transparently.
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pure solvent by a semipermeable membrane. The first term of
the expansion gives the van ’t Hoff equation and the higher-
order terms account successively for solute–solute interactions
as mediated by the solvent. However, this approach cannot
provide any insight into the membrane–solution forces that
generate pressure. It is effectively equivalent to the thermody-
namic analysis of osmosis using the chemical potential of water
(see above).

The Vegard pressure profile
We now move from considering osmotic equilibrium to the
situation where the pressures in the chambers are constrained

to be the same and both chambers are very large and well stir-
red. Under these conditions, which we will refer to as the
osmotic steady state, an osmolarity gradient across the
semipermeable membrane will drive a steady flow of water
across the membrane. We will show that extension of the
Debye model to osmosis demonstrates that there must be a
pressure drop from the solution to just inside the mem-
brane equal to RTcs. Since the pressure is lower on the so-
lution side (just inside the membrane) than on the pure
solvent side, there is necessarily a pressure gradient across
the membrane. In a simple 1-D visualization, the expected
pressure profile is shown in Fig. 3 a. However, the pressure
gradient within the membrane may have a more compli-
cated form shaped by the molecular structure of the
membrane.

In a prescient 1908 paper, Lars Vegard, who was a student of
J.J. Thompson at the time, appears to have been the first to
propose this pressure profile (Vegard, 1908). He suggested,
based on osmotic transport measurements with synthetic
membranes, that somehow the solute generated a pressure
gradient within the membrane but did not propose a mech-
anism. Such pressure profiles were rediscovered by several
workers (Dainty, 1965; Mauro, 1965; Manning, 1968) in the
1960s. Manning first made the connection between the
profile and the Debye model (see Fig. 3 C of Manning [1968]).
We term this peculiar pressure profile the Vegard pressure
profile and the pressure drop in the narrow interface region
on the solution side the Vegard pressure drop.

The Vegard pressure profile provides a graphic descrip-
tion of the force that drives the osmotic flow of water. The
intramembrane pressure gradient drives water from the side
with the lower osmolarity (pure solvent in Fig. 3) to the side
with the higher osmolarity. In the narrow interface region on
the high osmolarity side, the pressure drop by itself would
drive water back toward the membrane, but in this region the
Debye model shows that it is balanced by the forces from the
membrane that drive the impermeable solute molecules
away.

The Vegard pressure drop drives osmosis
With reference to Eq. 11 and the discussion above it, we have
explained that the difference dP/dx − csF represents the net
force on a volume element of the solution near the membrane–
solution interface and at equilibrium it equals zero. When the

system is not in equilibrium, the difference
�

dP
dx − csF

�
dV is still

the total net force on a volume element dV at the membrane–
solution interface, but it is not zero and gives rise to a volume
flux ΦV. If the flux is not too large, we can set down a linear
relationship between the net force and the volume flux,

ΦV � −hLp
�
dP
dx

− csF
�
, (14)

where we will verify the identification of the proportionality
constant as hLp, where h is the width of the membrane and Lp is
the permeability in Darcy’s law, Eq. 2. The relation between the
membrane force F and the solute concentration gradient at the

Figure 3. An illustration of the Debye model and the Vegard pressure
profile. (a) Schematic view of the cross-section of a membrane illustrating
the expected pressure profile (red), with solute molecules (gray) on the right,
for the osmotic steady state. (b and c) Magnified views of the solute side of
the membrane–solution interface. The blue squares depict a volume element
of the solution, with the expected forces shown for the case of (b) the os-
motic equilibrium and (c) the osmotic steady state. (d) The forces operating
on the volume elements.
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membrane–solution interface, Eq. 10, remains valid in the
steady-state case since we assume well-stirred conditions at
the interface so that this expression for ΦV becomes

ΦV � −hLp
�
dP
dx

− RT
dcs
dx

�
. (15)

Now, we integrate both sides of this equation across the
membrane–solution interface from just inside to just outside.
The integral involving the volume flux ΦV is small because it is
proportional to the narrow width of the interface. But the in-
tegrals of the pressure and concentration derivatives do not de-
pend on the width of the interface. The integral of the pressure
derivative across the interface equals the pressure difference
across the interface. The integral of the derivative of solute con-
centration equals the difference of solute concentrations across
the interface. This latter difference equals the bulk solute con-
centration in the solution because the concentration of imper-
meable solute just inside the membrane is zero. The result then of
integrating both sides of Eq. 15 across the membrane–solution
interface is that from outside to inside there is a pressure drop
equal to RTcs,r at the interface. In other words, the pressure just
inside the membrane on the solution side is lower by this amount
than the pressure P0 of the solution outside. Since the pressure is
P0 in both chambers outside the membrane, there must be a
pressure gradient across the entiremembrane from P0 on the pure
solvent side to P0−RTcs,r on the solution side, and hence we have
produced the Vegard pressure profile and pressure drop.

We can take the derivation one step further, and in doing so,
both illuminate the action of the pressure gradient and verify the
choice of coefficient hLp. The solute concentration is zero inside
the membrane and so its gradient is also zero there. Setting dcs

dx �
0 in Eq. 15, we see that inside the membrane,

ΦV � −hLpdPdx , (16)

an equation that explicitly exhibits the volume flux as driven by
a pressure gradient inside the membrane when the pressures in
both solution and pure solvent compartments are equal. More-
over, with these coefficients, this equation is equivalent to
Darcy’s law (Eq. 2).

Applications of the Debye model to osmotic flow through
biological membranes
Stiff porous membranes
The Debyemodel, based as it is on fundamental physical principles,
should be applicable to osmotic flow across any pressure-bearing
membrane, including synthetic polymer-based membranes, the
copper-ferrocyanide membrane used by Vegard, and the collodion
membranes inMauro’smeasurements. In the latter, aP f /P d ratio
much greater than unity suggests a pressure-driven bulk water
flow inside the membrane with Debye–Vegard pressure drops at
the solution–membrane interfaces and a pressure gradient tra-
versing the membrane of the Vegard type (see Fig. 3).

These synthetic membranes should be realistic models for
biological structures such as the walls of microvessels. The
smallest pores crossing capillary walls are about 5 nm wide
(Michel and Curry, 1999), much larger than a water molecule

(∼0.3 nm), thus carrying water in more or less its ordinary bulk
liquid form. The osmotic water flow across capillary walls is
hence expected to be consistent with the Debye–Vegard model.

Cell membranes
Plant cell membranes are supported by a pressure-bearing cell
wall and the Debye model for osmotic flow is expected to hold
true. Although animal cell membranes lack a cell wall, they are
reinforced by a submembrane cytoskeletal network (Kapus and
Janmey, 2013).

The lipid bilayer in some biological cell membranes is span-
ned by aquaporin water channels (Preston et al, 1992; Walz et al,
1997). Lipid bilayers are very permeable to water (Fettiplace and
Haydon, 1980); however, in particular cells, the water flux is
accelerated by specific aquaporins, but not all cells express
aquaporins (Verkman, 2012). Since proteins are relatively stiff
(Krieg et al., 2018), the Debye model is expected to account for
the osmotic flow through aquaporins, just as it does through any
pressure-bearing semipermeable membrane. There are Debye–
Vegard pressure drops at both ends of the channel, with the
larger drop occurring at the end abutting the solution of greater
osmolarity. The two ends of the channel could face unequal
pressures and the water molecules in the interior of the channel
are therefore subjected to a force directed toward the lesser of
the two pressures.

Aquaporin channels are very narrow with cross-sectional
areas just sufficient to accommodate a single water molecule.
The single-file movement of a column of water through such
channels cannot be described as bulk convective flow, even
though experimental measurements show that the P f /P d ratio
is significantly greater than unity. Although the osmotic move-
ment of water across these channels may be pressure-driven, a
precise description of the dynamics of the water molecules in-
side the channel is a subject of current investigation (Kavokine
et al., 2020).

Lipid bilayers
Lipid bilayers self-assemble in vitro and may be studied in iso-
lation. Their P f /P d ratios are found to be equal to unity, in-
dicating that water inside them exists, and flows, as independent
molecules. Although the parallel arrangement of hydrocarbon
tails permits their diffusion within the plane of the bilayer, fa-
cilitating the passage of water, out-of-plane movements of the
tails are more constrained and thereforemay be compatible with
an internal pressure gradient. Since the external pressures on
the two sides of a bilayer membrane may be equal when water
transport occurs in response to a difference in osmolarity, we
think the possibility of the Debye–Vegard pressure drop and
interior pressure gradient are realistic.

We show in Appendix 4 that the Debye model for a lipid
bilayer leads to the result P f � KD/h, where K is the partition
coefficient (the ratio of water concentration inside the mem-
brane to that outside), D is the self-diffusion constant of inde-
pendent water molecules inside the membrane, and h is the
thickness of the membrane. Since it is clear from inspection that
the same result holds for P d, we conclude that P f /P d � 1, in
agreement with experimental measurements.
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Discussion
Our primary objective in this paper is to provide a persuasive
argument for the Debye model grounded in well-established
principles of physics. It begins with the Fundamental Law of
Osmosis which implies that whatever happens to drive water
across a membrane in the presence of an osmotic gradient must
be the same as for the pressure-driven flow in the absence of an
osmotic gradient. The Vegard pressure drop, on the side of the
membrane adjacent to the solution with the higher osmolarity,
provides a plausible mechanical basis for the law, since the os-
motic flow is then also pressure driven.

A number of scientists have given verbal accounts that accord
well with the Debye mechanism and are worth recalling: “To the
extent that it is possible to visualize molecular events, this
process could perhaps be pictured (at least for narrow pores) as a
molecular piston pump, with solutemolecules playing the role of
the piston” (Dainty and Ferrier, 1989). And from the great epi-
thelial physiologist Hans Ussing: “The pore contains pure water
all the way through, so the driving force cannot be a difference
in the chemical activity. Obviously, the driving force is the
‘suction’ created by the osmotic pressure difference at the dotted
line. But suction is only another word for hydrostatic pressure
difference” (Ussing and Andersen, 1955).

Physiologists often refer to what is termed the “colloid os-
motic (or oncotic) pressure,” which is the osmotic pressure that
can be attributed to blood plasma proteins (Boron and Boulpaep,
2016). As blood flows into a capillary bed, the hydrostatic
pressure filters plasma into the interstitial fluid leaving behind
the impermeant proteins in the blood. This has the effect of
decreasing the osmolarity of the interstitial fluid relative to the
blood. As blood flows out of the capillaries, the hydrostatic
pressure declines and now the osmotic gradient across the
capillary wall drives interstitial fluid back into the blood. This
interaction between hydrostatic and osmotic gradients, which is
of immense importance in clearing the interstitial space, was
first postulated by Starling. Although the term “colloid osmotic
pressure” is useful in physiology, its mechanistic origins can also
be accounted for by the Debye model. However, it is worth
noting that a protein molecule contributes more than a small
solute molecule to the osmolarity through an excluded volume
effect (Guttman and Anderson, 1995).

Our focus has primarily been on the physical basis of os-
mosis, but there are several allied phenomena and concepts
that we have not touched on which are worth mentioning for
readers interested in exploring further ramifications of os-
mosis, namely: depletion forces (Asakura and Oosawa, 1958),
diffusioosmosis (Marbach and Bocquet, 2019), osmotic stress
(Parsegian, 2002), reflection coefficients (Finkelstein, 1987),
and virial coefficients (Neal et al., 1998).

The history of attempts to find a molecular basis for osmosis is
surprisingly long and tangled for what on the surface seems like
a simple phenomenon. One of the primary difficulties with es-
tablishing the physical basis of osmosis is setting up the initial
scenario and isolating the essential forces at play. The picture that
emerged from the Debye model raised hackles and unfounded
thermodynamic arguments were used to counter it. What made
this situation even more complicated is that there appeared to be

no way of testing the predictions of the theories. After a flurry of
activity with no resolution, the debate died out, leaving the er-
roneous water concentration gradient model uncontested in some
textbooks. An odd element that added to the confusion is that even
wrong arguments led to the van ’t Hoff equation.

It is worthwhile comparing the evolution of our under-
standing of diffusion to that of osmosis. In the case of diffusion,
Einstein’s explanation in 1905 was rapidly confirmed by Jean
Perrin’s experiments in 1909 (Perrin, 1909, 1910). In contrast, it
has taken a very long time for a consistent mechanistic account
of osmosis to emerge. To add to that the absence of experiments
addressing the osmotic mechanisms at the nanometer scale has
perhaps retarded the acceptance of the Debye model.

Molecular dynamics provides a method for exploring what
occurs at a molecular level in a phenomenon like osmosis (Roux,
2021). In molecular dynamics, which is now a well-established
discipline in molecular physics, Newton’s laws of motion are
used to computationallymodel the collisions of individualmolecules.
Molecular dynamic simulations using simple particles to represent
the solvent and solute together with an energy barrier to model the
membrane successfully recapture van ’t Hoff’s law (Murad and
Powles, 1993; Zhu et al., 2002; Luo and Roux, 2010; Lion and Allen,
2012). This confirms that the nature of the solvent and solute
are irrelevant in generating an osmotic flux. However, molec-
ular dynamics has not been used to model the Vegard pressure
profile in steady-state osmosis but has been used to predict
P f /P d from the molecular structure of aquaporins (Zhu et al.,
2002; Portella and De Groot, 2009) and to visualize the pres-
sure drop within a polyamide membrane when hydrostatic
pressure is applied across it (Wang et al., 2023)

With the development of techniques that allow one to probe
below the nanometer scale, the precise molecular mechanics of
osmotic transport and the validity of the Debye model should be
within reach of experiments. It is not inconceivable thatmolecular
sensors could be designed to detect the pressure gradient’s pres-
ence and extent. It should therefore be possible to probe the
pressure profile first postulated by Vegard in 1908, to confirm a
simple and unified view of the physical basis of osmosis.

Appendix 1
The Donnan effect
Since the Donnan effect plays an important role in water
transport in cells, it is worthwhile delving into its nature. To do
this, we consider a simplified model introduced by Post and Jolly
(1957). Let us consider a spherical “cell”with a pliant membrane
that is permeable to an uncharged molecule A and water. If we
place the cell in an infinite bath with A at a concentration of [A]e,
and assume that the passage of A into and out of the cell is
governed by the same first-order rate constant k, then:

d[A]
dt

� k[A]e − k[A]. (17)

Therefore, at equilibrium

[A] � [A]e. (18)

Since the osmolarities inside and outside the cell are bal-
anced, at equilibrium the water flux will be zero and hence the
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cell will be stable. Now, if we introduce bmoles of an uncharged
impermeant molecule B into the cell, Eq. 17 remains unchanged,
but the equation for osmotic equilibrium becomes:

[A] + [B] � [A] +
�
b
w

�
� [A]e, (19)

where w is the volume of the cell. The cell must follow the osmotic
constraint and the kinetic constraint, and the onlyway that it can do
this is if w→∞. So, water flows in continuously and the cell volume
grows without ceasing. Although we have shown the case for an
uncharged molecule, the same holds true for charged solutes. The
volume can be stabilized by introducing an impermeantmolecule in
the extracellular space. However, this is not what animal cells do;
instead, they pump molecules out of the cell to stabilize cellular
volume (Tosteson and Hoffman, 1960). In the case of the toy model
that we have introduced here, it can be shown that if A is pumped
out of the cell, the volume can be stabilized in the presence of B.

Appendix 2
Identification of P d

Eq. 7 is a statement of Fick’s law for the diffusion of tracer
molecules when there is a concentration gradient of the tracer.
Therefore, P d � D/h, where D is the self-diffusion constant of
water molecules in the membrane and h is the membrane
thickness. The question is whether this P d also characterizes
the diffusive component ϕw,d of water flux, not tracer molecules,
when a force per molecule f is imposed. The answer is yes, as we
show here. Note that an arbitrary multiplicative factor, such as a
partition coefficient, does not affect the conclusion.

Using the Einstein relation between diffusion constant and
diffusional mobility, we have ϕw,d = (D/RT) (Nw/Ah)f, where Nw

is the number of water molecules in the membrane and Ah is the
volume occupied by the membrane, A being the cross-section
area and h the membrane thickness. The total force F on the
water in the membrane is Nwf, and D/h � P d. Then,
ϕw,d � P d(F/A)/RT), where we use a molar flux. The net force
per unit area can be imposed by a pressure difference and then
ϕw,d � −P dΔP/RT, completing the proof.

Appendix 3
Relation between water and solute concentrations
The sum of the water and solute concentrations cw + cs is (nw + ns)/
V, where ni is the number of moles of species i and V is the volume
of solution, equal to (nwvw + nsvs), where vi is the partial molar
volume of species i. A straightforward rearrangement leads to

cw + cs � 1

vw
h
1 + Xs

	
vs
vw
− 1


i , (20)

where Xs[=ns/(nw + ns)] is the mole fraction of solute. Only if the
solute species is essentially identical to water, for example, D2O,
can we say vs � vw � v0w, where the latter is the molar volume of
pure water, and thus obtain from this equation the simple result
cw + cs = 55.5 M. In this situation, the water concentration de-
pends only on the solute concentration and is independent of the
specific solute species. In general, however, the concentration of
water and that of solute are not simply related.

Appendix 4
Transport of water as independent molecules
Consider a membrane that allows water to move only as inde-
pendent molecules. To start, the membrane is bathed on both
sides by chambers of pure liquid water at the same pressure. The
uniform equilibrated concentration of water molecules inside
the membrane is denoted by cw,m. Now let a pressure difference
ΔP be imposed between the two chambers so that there is a
pressure gradient dP/dx across the membrane. The force on a
water molecule inside the membrane is −v0w(dP/dx). Here, we
havemade a simplifying assumption in the spirit of amechanical
theory. Instead of using a thermodynamically rigorous partial
molar volume for water, we have assumed that each water
molecule possesses a definite volume and that this volume inside
the membrane is equal to the molecular volume v0w of pure water
(the volume of some portion of bulk liquid water divided by the
number of water molecules in it).8 Using the Einstein relation
between the mobility coefficient and the diffusion constant D
of water molecules in the membrane, the water flux is
−(D/RT)cw,mv0w(dP/dx). Multiply and divide this expression by
c0w, the concentration of pure bulkwater (i.e., 55.5M), and notice
that c0wv

0
w � 1. Finally, the molar water flux ϕw is obtained on

integration across the membrane of thickness h,

ϕw � −
�
KD
h

��
ΔP
RT

�
, (21)

where K is the partition coefficient, that is, the ratio cw,m/c0w of
water concentrations inside and outside themembrane. The sign
indicates that the water flows from high to low pressure.

Next, we consider osmotic water flow. The chamber on one
side of the membrane is a dilute aqueous solution with solute
concentration cs, the solute molecules being impermeable to the
membrane. The chamber on the other side is pure water. The
water inside the membrane exists as before as independent
molecules. There is no pressure difference between the cham-
bers with common pressure P0, but there is a Vegard pressure
drop at the membrane–solution interface equal to RTcs.
Therefore, there is a pressure gradient in the membrane
from low-pressure P0−RTcs at the membrane–solution in-
terface to high-pressure P0 at the interface between mem-
brane and pure water chamber. The water flux must then be
identical to the pressure-driven flux with ΔP replaced by
RTcs,

ϕw � (KD
�
h)cs. (22)

The sign shows that the water flow is into the solution.
In agreement with the Fundamental Law of Osmosis, (Eq. 5),

the permeability coefficient P f is seen to be the same either
from Darcy’s law (Eq. 21) or from the osmotic flux equation (Eq.
22),

P f � KD
�
h. (23)

Moreover, it is clear by inspection that the diffusive perme-
ability P d must also be equal to KD/h, so that P f /P d � 1.

8A more elaborate calculation that does not use this simplification yields exactly the same result.
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Debye, P. 1923b. Théorie Cinétique des Lois de la Pression Osmotique des

Électrolytes Forts. Recl. Trav. Chim. Pays Bas. 42:597–604. https://doi
.org/10.1002/recl.19230420711

Dick, D.A.T. 1966. Cell Water. Butterworths, New York, NY.
Dill, K.A., and S. Bromberg. 2003. Molecular Driving Forces; Statistical

Thermodynamics in Chemistry and Biology. Garland Science, New
York, NY. 666.

Ehrenfest, P. 1915. On the kinetic interpretation of the osmotic pressure.
KNAW. Proceedings. 17:1914–1915.

Einstein, A. 1905. Über die von der molekularkinetischen theorie der
wärme geforderte bewegung von in ruhenden flüssigkeiten sus-
pendierten teilchen. Ann. Phys. 17:549–560. https://doi.org/10.1002/
andp.19053220806

Essig, A., and S.R. Caplan. 1989. Water movement: Does thermodynamic in-
terpretation distort reality? Am. J. Physiol. 256:C694–C698. https://doi
.org/10.1152/ajpcell.1989.256.3.C694

Fettiplace, R., and D.A. Haydon. 1980. Water permeability of lipid mem-
branes. Physiol. Rev. 60:510–550. https://doi.org/10.1152/physrev.1980
.60.2.510

Finkelstein, A. 1987. Water Movement through Lipid Bilayers, Pores, and
Plasma Membranes. Theory and Reality. John Wiley and Sons, New
York, NY. 228

Guell, D.C. 1991. The Physical Mechanism of Osmosis and Osmotic Pressur-
e-Aa Hydrodynamic Theory for Calculating the Osmotic Reflection
Coefficient. Massachusetts Institute of Technology, Boston, MA.

Guttman, H.J., C.F. Anderson, and M.T. Record Jr. 1995. Analyses of thermody-
namic data for concentrated hemoglobin solutions using scaled particle
theory: Implications for a simple two-state model of water in thermody-
namic analyses of crowding in vitro and in vivo. Biophys. J. 68:835–846

Hammel, H.T. 1979. Forum on osmosis. I. Osmosis: Diminished solvent ac-
tivity or enhanced solvent tension? Am. J. Physiol. 237:R95–R107.

Hammel, H.T., and P.F. Scholander. 1976. Osmosis and Tensile Solvent.
Springer Verlag, New York, NY. https://doi.org/10.1007/978-3-642
-66339-0

Hevesy, G., E. Hofer, and A. Krogh. 1935. The permeability of the skin of frogs
to water as determined by D2O and H2O. Skand. Arch. Physiol. 72:
199–214. https://doi.org/10.1111/j.1748-1716.1935.tb00423.x

Hildebrand, J.H. 1979. Forum on osmosis. II. A criticism of “solvent tension” in
osmosis. Am. J. Physiol. 237:R108–R109. https://doi.org/10.1152/ajpregu
.1979.237.3.R108

van ’t Hoff, J.H. 1892. Zur theorie der Lösungen. Z. Phys. Chem. 9:477–486.
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