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A B S T R A C T   

Background: Depression is highly prevalent among individuals with chronic back pain. Internet-based in-
terventions can be effective in treating and preventing depression in this patient group, but it is unclear who 
benefits most from this intervention format. 
Method: In an analysis of two randomized trials (N = 504), we explored ways to predict heterogeneous treatment 
effects of an Internet-based depression intervention for patients with chronic back pain. Univariate treatment- 
moderator interactions were explored in a first step. Multilevel model-based recursive partitioning was then 
applied to develop a decision tree model predicting individualized treatment benefits. 
Results: The average effect on depressive symptoms was d = − 0.43 (95 % CI: − 0.68 to –0.17; 9 weeks; PHQ-9). 
Using univariate models, only back pain medication intake was detected as an effect moderator, predicting 
higher effects. More complex interactions were found using recursive partitioning, resulting in a final decision 
tree with six terminal nodes. The model explained a large amount of variation (bootstrap-bias-corrected R2 = 45 
%), with predicted subgroup-conditional effects ranging from di = 0.24 to − 1.31. External validation in a pilot 
trial among patients on sick leave (N = 76; R2 

= 33 %) pointed to the transportability of the model. 
Conclusions: The studied intervention is effective in reducing depressive symptoms, but not among all chronic 
back pain patients. Predictions of the multivariate tree learning model suggest a pattern in which patients with 
moderate depression and relatively low pain self-efficacy benefit most, while no benefits arise when patients' self- 
efficacy is already high. If corroborated in further studies, the developed tree algorithm could serve as a practical 
decision-making tool.   

1. Background 

Major depression is a common mental disorder. It is linked to 
numerous adverse outcomes including loss of quality of life, excess 

mortality, and large economic costs (James et al., 2018; Kessler and 
Bromet, 2013). Depressive disorders are highly prevalent in chronic 
back pain patients (Bair et al., 2003), leading to worse treatment out-
comes and increased pain-related disability (IsHak et al., 2018; Linton 
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and Bergbom, 2011; Nicholas, 2007). Interventions to treat and prevent 
comorbid depression are needed to improve mental health care in this 
patient group. 

There is evidence that cognitive-behavioral therapy (CBT) is effec-
tive in chronic pain patients with comorbid depression, including back 
pain patients (Hoffman et al., 2007; IsHak et al., 2018). However, 
routine provision of specialized psychotherapeutic treatment remains 
rare (Bair et al., 2009; Driscoll et al., 2021). Indicated depression pre-
vention programs are underused in the general population (Cuijpers 
et al., 2010), and they are also not part of routine care for pain patients. 

Internet-based interventions have been discussed as a promising way 
to reduce the treatment gap among patients with chronic pain (Buhrman 
et al., 2016). Digital interventions may be helpful, for example, to pro-
vide direct access to specialized treatment formats for comorbid 
depression, as well as to qualified clinicians. They are also highly scal-
able and may allow to increase the dissemination of interventions 
among patients who already suffer from subthreshold depressive 
symptoms, and are therefore at risk of developing a full-blown comorbid 
depressive disorder (Ebert et al., 2017). 

Internet-delivered CBT interventions have been found to be effective 
in chronic pain patients, both for depression and pain-related outcomes 
(Gandy et al., 2022). However, until 2020, only few published trials 
were conducted in chronic back pain patients specifically (Buhrman 
et al., 2004, 2011; Carpenter et al., 2012; Chiauzzi et al., 2010). Sample 
sizes were often small, and no trial specifically focused on patients with 
a comorbid depression diagnosis. Furthermore, no trial had examined if 
Internet-based interventions can prevent depression in chronic back 
pain patients. 

The WARD-BP (Baumeister et al., 2021) and PROD-BP (Sander et al., 
2020) trials closed this gap by examining the effect of an Internet-based 
intervention addressing depressive symptoms among patients with 
chronic back pain. Sander et al. (2020), including only patients with 
subthreshold depressive symptoms at baseline, found that the Internet- 
based intervention reduced the incidence of major depression over 12 
months, as well as depressive symptoms 9 weeks post-randomization. 
Results of the WARD-BP trial were less conclusive. Focusing on in-
dividuals with comorbid depression, this study found effects on self- 
reported PHQ-9 and clinician-rated QIDS, but not on clinician-rated 
HAMD depressive symptom severity after 9 weeks (Baumeister et al., 
2021). 

These findings underline the need to identify those patients for 
whom Internet-based interventions to treat or prevent comorbid 
depression provide added benefits, and for whom they do not. Previous 
research has identified various factors that may influence the effec-
tiveness of psychological interventions for chronic pain patients. For 
instance, Goossens et al. (2005) report that higher treatment expectancy 
predicted larger effects of CBT on negative affect, quality of life, motoric 
behavior and pain coping in patients with chronic back pain and fi-
bromyalgia. This finding aligns with other research emphasizing the 
importance of expectations as both a predictor and working mechanism 
of treatment success in psychological interventions (Colloca and Miller, 
2011; Rief et al., 2015). Similarly, it has been found that improvements 
in perceived pain control and self-efficacy predict better pain-related 
outcomes of face-to-face CBT in patients with chronic pain (Turner 
et al., 2007), and that self-efficacy moderates the effects of a digital pain 
coping skills training (Lawford et al., 2018). It has also been found that 
patients' commitment to using an online intervention for chronic pain 
moderates the effect on post-intervention pain self-efficacy (Chiauzzi 
et al., 2010). Lastly, Probst et al. (2019) found that psychological 
inflexibility, which refers to the inability to focus on the present moment 
and regulate behavior to achieve goals and values (Hayes et al., 2006), 
moderated the effects of an Internet-based Acceptance and Commitment 
Therapy (ACT) program on pain interference at post-test and 6-month 
follow-up, with lower inflexibility predicting higher treatment effects. 

Despite these promising results, systematic reviews and meta- 
analyses have revealed significant limitations in the current literature 

on working mechanisms of psychological treatments for chronic pain 
patients. Gilpin et al. (2017), synthesizing results of k = 20 studies, 
found that findings on moderators of CBT for chronic pain were highly 
inconsistent and inconclusive, as well as hampered by methodological 
limitations. Murillo et al. (2022), examining 28 mediation and 11 
moderator analyses of psychological interventions for chronic muscu-
loskeletal pain, concluded that available evidence was conflicting and 
did not support a robust moderating effect for any of the examined 
constructs. Overall, there is still a very limited understanding about 
effect moderators and working mechanisms involved in psychological 
interventions, both digital and face-to-face (Cuijpers et al., 2019; 
Domhardt et al., 2021). Therefore, patients often must undergo several 
courses of treatment before an effective format is found (Kessler, 2018). 

Several approaches have been proposed to address this issue. 
Cuijpers et al. (2022) suggest pooling patient data from multiple trials to 
explore moderators, since this increases statistical power to detect sig-
nificant treatment-covariate interactions and decreases the risk of false 
positive findings. Additionally, there is a growing body of research that 
combines several putative effect moderators within multivariable pre-
diction models, rather than evaluating them on a univariate basis (Kent 
et al., 2020; Kessler et al., 2019). Especially if integrated into practical 
“precision medicine” decision-making tools (Terhorst et al., 2023), these 
predictive models could greatly improve treatment selection in practice. 
Such tools are increasingly developed for Internet-based interventions, 
typically using machine learning. They are employed, for instance, to 
assign individual patients to formats with the largest expected benefits 
(Wallert et al., 2022), to identify patients with low levels of adherence 
(Chien et al., 2020), or to detect and assist intervention participants at 
risk of non-response (Forsell et al., 2019). However, we are not aware of 
any readily available decision-support models to determine which 
chronic back pain patients are expected to benefit from an Internet- 
based intervention for depressive symptoms as studied in the WARD 
and PROD-BP trials, and for whom this format is less suited. 

In this study, we therefore aim to identify patient characteristics that 
modify the effect on post-test depressive symptoms of the Internet-based 
intervention for back pain patients evaluated in the WARD-BP and 
PROD-BP trials. Furthermore, our goal is to derive a model that allows to 
assess expected benefits of the intervention based on identified effect 
modifiers. We focus on univariate associations first, and then apply a 
multivariate model-based machine learning approach to construct a 
decision tree predicting individualized treatment effects. 

2. Material and methods 

We analyzed patient data of two large randomized controlled trials 
evaluating the efficacy of an Internet-based depression intervention in 
patients with chronic back pain (“eSano BackCare”; Baumeister et al., 
2021; Sander et al., 2020). Both trials have been pre-registered in the 
German Clinical Trials Register (DRKS00009272, registered September 
14th, 2015; DRKS00007960; registered August 12th, 2015), and have 
been approved by the ethics committee of the University of Freiburg 
(297/14, September 10th, 2014; 297/14_150513, June 23rd, 2015). All 
participants gave their written informed consent to participate in the 
studies. The secondary analyses presented in this article have been 
preregistered using the Open Science Framework (OSF; osf.io/sfv5a; 
registered February 3rd, 2022). Recommendations of the Predictive 
Approaches to Treatment Effect Heterogeneity (PATH; Kent et al., 2020) 
statement are followed where applicable. 

2.1. Participants 

For both trials, patients with chronic back pain were recruited. 
Recruitment took place either (i) in person, by clinic staff at discharge 
from eight orthopaedic rehabilitation clinics, or (ii) online, via infor-
mation forms distributed by 74 German orthopaedic rehabilitation 
clinics after client discharge. All included participants reported 
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persistent depressive symptoms as measured by the Patient Health 
Questionnaire (PHQ-9; Kroenke et al., 2001; at least two assessments 
with scores ≥ 5). Patients who met the DSM-5® (Falkai and Wittchen, 
2018) criteria for a mild to moderate depressive episode or persistent 
depressive disorder were included in the WARD-BP trial (Baumeister 
et al., 2021). Individuals who did not meet these criteria were included 
in the PROD-BP trial by Sander et al. (2020). 

Individuals in both studies also had to meet the following criteria to 
be included: (i) 18 years or older, (ii) back pain (diagnosed by the 
treating physician or medical records) and self-reported pain chronicity 
of at least six months, (iii) sufficient German language skills, (iv) 
Internet access. Exclusion criteria were: (i) an ongoing or planned psy-
chotherapy, or psychotherapy within the previous six months, (ii) cur-
rent suicidality or suicidal attempts within the past five years, (iii) a 
severe depressive episode. A more detailed description of the partici-
pants and procedures can be found elsewhere (Baumeister et al., 2021; 
Lin et al., 2017; Sander et al., 2017, 2020). For the present study, there 
were no additional eligibility criteria beyond the ones applied in the 
original trials. 

2.2. Intervention 

In both studies, participants in the intervention group received 
“eSano BackCare”, a guided Internet- and mobile-based intervention 
(IMI), as well as unrestricted access to treatment as usual (TAU). Par-
ticipants allocated to control received TAU only. The “eSano BackCare” 
training consists of six obligatory modules and three optional modules 
which should be completed weekly. The intervention is based on CBT 
and includes psychoeducation, behavioral activation, and pain-related 
elements. After each session, semi-structured written feedback was 
delivered by trained and supervised psychologists (E-Coaches). Partici-
pants could additionally receive automated text messages which were 
intended to maintain motivation. E-Coaches could be contacted on de-
mand. Booster sessions were offered two, four or six weeks after the last 
module. A more detailed description of the intervention can be found 
elsewhere (Baumeister et al., 2021; Lin et al., 2017; Sander et al., 2017, 
2020). 

2.3. Target outcome 

The target outcome in this study, self-rated depression severity at 9- 
week post-test, was measured using the PHQ-9 (Kroenke et al., 2001). 
The PHQ-9 is a reliable and valid instrument for the criteria-based 
assessment of depressive symptom severity. It consists of nine items 
that are rated from 0 (“not at all”) to 3 (“nearly every day”). This results 
in a 0–27 range of total scores, where higher scores indicate higher 
depressive symptom severity. 

2.4. Moderator variables 

As putative moderators, we included baseline sociodemographic 
variables, measures of the symptom severity and health-related quality 
of life, as well as pain-related risk factors. The set of analyzed predictors 
was determined a priori (see “measured variables” section in the 
preregistration). 

2.4.1. Sociodemographic variables 
As sociodemographic indicators, we selected age, gender, marital 

status, level of education, Internet affinity, method of recruitment, and 
amount of social support. Regarding baseline healthcare utilization, 
intake of depression and back pain medication, sick leave, and previous 
claim of psychotherapy for depression were included (all self-reported). 
Presence of a clinician-rated lifetime Structured Clinical Interview for 
DSM-5® (SCID; Beesdo-Baum et al., 2019) diagnosis was included as 
well. 

2.4.2. Symptom severity & quality of life 
Symptom severity variables included baseline depressive symptoms, 

as measured by the clinician-rated Hamilton Depression Scale (HAM-D- 
17; Hamilton, 1960) and PHQ-9 self-report; as well as pain intensity 
measured by a numerical rating scale (total score range: 0–10; self- 
report). The Assessment of Quality of Life (AQoL-6D; Richardson 
et al., 2012; total score range: 0–100; self-report) was selected as a 
quality of life measure. 

2.4.3. Pain-related risk factors 
As back pain-related risk factors, we included pain self-efficacy 

measured by the Pain Self-Efficacy Questionnaire (PSEQ; Nicholas, 
2007; total score range: 0–60; self-report). In clinical settings, a PSEQ 
score <17 can be regarded as low, while a score >40 can be interpreted 
as high pain self-efficacy (Nicholas, 2007). Furthermore, we selected 
disability in relation with back pain, assessed by the Oswestry Disability 
Index (ODI; Fairbank and Pynsent, 2000; total score range: 0–100; self- 
report) and subjective prognosis of the working capacity, as assessed 
with the 3-item Subjective Prognostic Employment Scale (SPE; Mittag 
et al., 2003; total score range: 0–3; self-report). 

2.5. Risk of bias assessment 

Risk of bias in both studies was assessed by independent reviewers 
who were not involved in the original studies (see Acknowledgements). 
Judgements were based on criteria of the Cochrane Collaboration risk of 
bias assessment tool 2.0 (RoB; Sterne et al., 2019). The RoB tool 2.0 
assesses risk of bias in randomized trials regarding five domains, three of 
which were considered in the present study (bias due to randomization 
procedure, deviations from intended interventions, and measurement of 
the outcome). The domains “missing outcome data” and “selection of 
reported results” were not assessed since the original study data was 
available. 

2.6. Statistical analyses 

All statistical analyses were conducted using the statistical 
computing software R, version 4.1.0 (R Core Team, 2021) with the 
significance level set to α = 0.05. Code used for the analyses has been 
made publicly available in an OSF repository (osf.io/xz5nj). 

2.6.1. Missing data handling 
Our analyses follow the intention-to-treat principle, meaning that all 

participants who were randomized to the treatment conditions were 
subsequently analyzed. Missing data at baseline and post-assessment 
were estimated via Multivariate Imputation by Chained Equations 
(MICE; fully conditional specification) under a missing at random 
(MAR) assumption. To develop the imputation model, we first examined 
missingness patterns and predictors of missingness in the target variable 
(Carpenter and Smuk, 2021; see S1 and S2 in the Supplement). We then 
included baseline covariates (demographic variables, treatment history, 
risk factors, pain- and symptom-related measures) as auxiliary variables 
into the imputation model. Variables were removed from the predictor 
matrix when their correlation with the imputed variable was below r =
0.05. The final imputation predictor matrix is presented in S3 in the 
Supplement. 

Imputations were generated separately for the intervention and 
control group (groupwise imputation). Since the substantive analysis 
models employed in this study are hierarchical (patients-in-trials), a 
multilevel imputation model was developed. Numeric variables were 
estimated using a two-level normal model (Schafer and Yucel, 2002), 
while predictive mean matching (PMM) was used for categorical values. 
The imputation model was implemented using the R packages “mice” 
(Van Buuren and Groothuis-Oudshoorn, 2011) and “miceadds” 
(Robitzsch and Grund, 2022). Due to the small number of clusters (viz. 
trials), we used a maximum penalized likelihood (MPL)-based approach 
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to estimate the heterogeneity variances τ2. This method can be seen as 
equivalent to estimating τ2 by its posterior mode conditional on a 
weakly informative Wishart prior. This estimation method was chosen 
because non-zero heterogeneity variances were assumed to be unlikely, 
with the MPL approach allowing to a priori rule out boundary fits during 
imputation. A total of m = 50 imputation sets was generated. Analyses 
were conducted within the multiply imputed data, and parameters were 
pooled using Rubin's rules (Barnard and Rubin, 1999). The Rubin 
combination rules are not directly applicable to nonparametric ap-
proaches such as random forests and model-based recursive partition-
ing. These algorithms were therefore applied in an aggregated data set 
based on the multiply imputed data. 

2.6.2. Average treatment effect 
A one-stage meta-analysis model was used to calculate the overall 

effect of the intervention on depression severity at post-assessment. To 
circumvent issues of singularity and downward-biased standard errors, 
the same “pseudo-Bayesian” MPL estimation framework as used in the 
imputation model was applied. For the random effects variance- 
covariance matrix, we set a Wishart prior with ν=4 and an identity 
matrix multiplied by 0.05 on the scale parameter to generate a 
maximum a posteriori estimate in all analyses. This prior is designed to 
avoid boundary fits while still being largely uninformative. In the model 
formula, depression severity at post-test was regressed on the treatment 
indicator while adjusting for baseline depression symptom severity, 
which was stratified by trial. Additionally, we also calculated the rates of 
participants achieving reliable improvement in depressive symptom 
severity at post-test based on the reliable change index (RCI; Jacobson 
and Truax, 1992), and tested if they differed between groups. 

2.6.3. Univariate treatment-moderator interactions 
To investigate potential moderator variables, we first examined in-

dividual treatment-covariate interactions. For each moderator variable, 
a separate linear mixed model with random trial intercepts and trial- 
specific group slopes was used, which incorporated an interaction 
term with the treatment indicator. To fit the models, we employed the 
same MPL-based estimation framework implemented in the “blme” 
package (Chung et al., 2013) that was also used to impute missing values 
(Section 2.6.1) and calculate the average treatment effect (Section 
2.6.2). To compare the results to a model without random effects, we 
also conducted a sensitivity analysis in which treatment-covariate in-
teractions were examined using OLS regression models. The intercept of 
these sensitivity analysis models was stratified by trial, and cluster- 
robust variance estimation was used to test the interaction (“CR2” 
estimator by Pustejovsky and Tipton, 2018). The exact specification of 
the main and sensitivity analysis models is described in S4 in the Sup-
plement. Additionally, we also conducted a change score analysis in 
which continuous moderator variable scores were grouped by percentile 
ranges (<20th, <40th, 40th to 60th, >60th, >80th percentile). In this 
analysis, means and change scores as well as their standard error were 
calculated for each percentile group or moderator category. This was 
done to examine treatment effect patterns across different levels of the 
analyzed moderators. Analyses were performed in the multiply imputed 
data. As a further sensitivity analysis, we also examined the results of 
both models when only complete cases were considered. 

2.6.4. Multivariate treatment-moderator interactions 
In a next step, the putative moderators were assessed for their rele-

vance in higher-order interaction analyses by calculating variable per-
mutation importance indices. This was achieved using the model-based 
random forest methodology proposed by Garge et al. (2013). In this 
approach, multiple (in our case n = 300) model-based trees are con-
structed. One-third of the included moderators are randomly selected as 
splitting variables in each tree, leading to more stable and less sample- 
specific predictions. Nodes in each tree were considered for further 
splitting if the Bonferroni-corrected p-value of any partitioning variable 

in that node fell below α = 0.05, allowing a minimum of 20 observations 
in each node. The underlying objective was to preselect a more parsi-
monious set of variables for the subsequent multivariate analysis 
(Genuer et al., 2010). In the node model, symptoms of depression at 
post-test were regressed on the treatment condition and all potential 
moderators were included as partitioning variables on their raw scale. 
Variables with a positive importance index and/or significant modera-
tors of the univariate moderation analysis were included as partitioning 
variables in the subsequent analysis. 

Model-based recursive partitioning (MOB) trees as introduced by 
Zeileis et al. (2008) were then used to explore more complex treatment- 
moderator interactions. MOB trees allow to apply decision tree learning, 
a common machine learning method, to parametric models fitted using 
M-type estimators (e.g. OLS or maximum likelihood; Fokkema et al., 
2021; Zeileis et al., 2008) assuming that a single global model does not 
fit the data well. In our case, MOB trees were fitted using a multilevel 
linear model in the tree nodes, in which we also used the “pseudo- 
Bayesian” estimation framework as employed in the models described 
above. As a stopping rule, the significance level for parameter stability 
tests was set to α = 0.05 and p-values were Bonferroni-corrected (“pre- 
pruning”). Cohen's d was calculated as a standardized measure of the 
“individualized” conditional average treatment effect (CATE) prediction 
in each terminal node subgroup. We also calculated the rates of reliable 
improvement and calculated effect sizes in the complete case subsample 
in each terminal node as a sensitivity analysis. Furthermore, to explore 
the robustness of our results, we additionally fitted a multivariable 
linear mixed model with a LASSO penalty (Groll and Tutz, 2014). This 
model included all putative moderator variables that were also consid-
ered for the tree model, which were included both as simple “prog-
nostic” and “prescriptive” treatment-covariate interaction terms. The 
penalty parameter λ of this model, which controls the shrinkage applied 
to estimated parameters, was determined using the Bayesian Informa-
tion Criterion (BIC). 

The optimism-corrected performance of the resulting tree was 
calculated using the bootstrap bias correction approach by Harrell Jr 
et al. (1996), with B = 1000 bootstrap samples. To explore the trans-
portability to a plausibly related setting (Justice et al., 1999), we also 
calculated the decision tree's performance when applied to unseen data 
of the “Get.Back” pilot trial by Schlicker et al. (2020; n=76). Using a 
similar design as the WARD-BP and PROD-BP studies, this trial focused 
exclusively on patients with chronic back pain who are currently on sick 
leave. The intervention employed in “Get.Back” was also based on the 
“eSano BackCare” training, with some minor adaptions to suit people on 
current sick leave. Further study and participant characteristics of this 
trial are provided in the main outcome publication (Schlicker et al., 
2020). 

3. Results 

An overview of participant enrolment and loss to follow-up is 
depicted in Fig. 1. Merging the data of both trials resulted in a final 
sample of N = 504 participants. A total of n = 253 individuals were 
allocated to the intervention group (IG), and n = 251 individuals to the 
control group (CG). An overview of the risk of bias assessment for both 
studies is depicted in Fig. S5 in the Supplement. Participant character-
istics at baseline are summarized in Table 1. The proportion of women in 
the sample was 61.31 %, and the average age at baseline was 51.59 (SD 
= 8.55). The mean level of PHQ-9 depressive symptoms at baseline was 
M = 10.06 (SD = 4.55; range 0–25), indicating moderate depression 
across both trials. 

3.1. Average treatment effect 

At post-test, the mean change in PHQ-9 scores from baseline was 
− 0.97 points in the control group (95 % CI: − 1.51 to − 0.44), and − 2.94 
points (95 % CI: − 3.51 to − 2.37) in the intervention group. The 
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difference between IG and CG on PHQ-9 at post-test was significant (β =
− 2.07 95 % CI: − 3.31 to − 0.83; t = − 3.29, p < 0.01), resulting in an 
estimated effect of d = − 0.43 (95 % CI: − 0.68 to − 0.17) favoring the 
intervention. The estimated between-study heterogeneity variance of 
the treatment effect was τ̂2 = 0.48. Similar results emerged in a sensi-
tivity analysis focusing only on participants with complete baseline and 
post-test PHQ-9 data (β = − 2.11, t = − 3.61; d = − 0.44, 95 % CI: − 0.67 
to − 0.20, τ̂2 = 0.41). More participants in the intervention group (n =
62; 25 %) achieved reliable improvement compared to the control group 
(n = 28; 11 %; F1,1515.47 = 12.36; p < 0.001; see S6 in the Supplement). 

3.2. Moderator analysis 

3.2.1. Univariate treatment-moderator interactions 
Results of the univariate analysis of treatment-covariate interactions 

are displayed in Table 2. Back pain medication was found to be a sig-
nificant moderator (p < 0.05). Higher effects were predicted for patients 
who take back pain medication (d = − 0.57; 95 % CI: − 0.88 to − 0.26), 
and lower effects for those whose do not (d = − 0.17; 95 % CI: − 0.49 to 
0.15). All other first-order interaction effects were not significant (p ≥
0.05). The complete case analysis mirrored these findings (see S7 in the 
Supplement). 

Results of the sensitivity analysis employing OLS regression are 
presented in S8 in the Supplement. Findings were comparable to the 

ones of the main model analysis, except that baseline PHQ-9 scores were 
additionally found as a significant moderator (p = 0.035), whereby 
higher baseline symptom severity predicted higher treatment effects (β 
= − 0.779). The same pattern of findings also emerged in the complete 
case sample (see S9 in the Supplement). 

Results of the change score analysis are presented in S10 in the 
Supplement. Findings closely mirrored the ones of the main analysis. 
Only previous back pain medication emerged as a significant predictor 
of differential treatment effects (t = 6.606, p = 0.01), whereby patients 
with medication intake experienced an additional average decrease of 
2.05 points on the PHQ-9 compared to patients without pain medica-
tion. A plot of the control and intervention group change in PHQ-9 
scores for different percentile groups based on baseline PHQ-9 is pro-
vided in S11 in the Supplement. Examining the point estimates alone 
revealed that higher baseline PHQ-9 scores were associated with higher 
decreases in PHQ-9 scores (<20th percentile: − 1.46, <40th: − 1.38, 
40th to 60th: − 1.40, >60th: − 2.88, >80th: − 3.26). However, we did not 
find that this difference was significant overall (p = 0.319), nor did we 
find that any direct comparisons of change scores between percentile 
groups were significant (all p ≥ 0.05). 

3.2.2. Predictor selection for the multivariate analysis 
Fifteen of all 20 putative moderators had positive permutation 

importance values and were thus selected as partitioning variables for 

Fig. 1. Combined flow chart of the included WARD-BP (Baumeister et al., 2021) and PROD-BP (Sander et al., 2020) trials.  
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further analyses (see Fig. S13 in the Supplement). Age, gender, sick 
leave, previous depression medication and previous claim of psycho-
therapy had negative importance values and were therefore excluded. 
Variable importance was highest for baseline symptom severity assessed 
via PHQ-9 and HAM-D-17, health-related quality of life, pain self- 
efficacy and disability, with values ranging from 6.75 to 0.32. A 
similar finding emerged when only complete cases were considered (see 
S14 in the Supplement). In S12 in the Supplement, we display the 
intercorrelation of all putative moderators as well as their predictive 
association with the target outcome. Intercorrelations ranged from |r| =
0 to 0.74, with no indications of problematic levels of multicollinearity 
(all variance inflation factors <3). 

3.2.3. Multilevel model-based recursive partitioning 
Fig. 2 displays the final multilevel model-based tree and effect sizes 

in the terminal nodes. Six subgroups with differential treatment effects 
were identified. The data first partitioned individuals based on their 
PHQ-9 score using a cut-off value of 10 (p < 0.001), which roughly 
coincides with the sample mean. The subgroup with values ≤ 10 was 
further split based on a PHQ-9 score of 6, which lies approximately one 
standard deviation below the sample mean (p < 0.001). The resulting 

subgroup with PHQ-9 > 6 was then split into two groups again based on 
individuals' self-reported health-related quality of life, using an AQoL- 
6D score cut-point of 43. Overall, estimated subgroup-conditional ef-
fects in the terminal nodes were very similar for all PHQ-9 ≤ 10 path-
ways (n = 281; 55.8 %), and comparable to the average treatment effect 
(di = − 0.58 to − 0.44 versus d = − 0.43). 

In contrast, effect estimates varied greatly in patients with baseline 
PHQ-9 values >10. In the subgroup of n = 112 (22.2 %) patients with 
both PHQ-9 scores ≤15 and low-to-moderate baseline pain self-efficacy 
(PSEQ ≤ 38), estimated intervention effects were much higher than the 
average effect (di = − 1.31; 95 % CI: − 1.72 to − 0.90), while a non- 
significant negative effect was found in individuals with high pain 
self-efficacy (PSEQ>38; di = 0.24; 95 % CI: − 0.36 to 0.83; n = 46; 9.1 
%). The model predicted an effect of di = − 0.58 (95 % CI: − 1.07 to 
− 0.07) for individuals with very high depressive symptom severity 
(PHQ-9 > 15; n = 65; 12.9 %). Similar findings emerged when only 
complete cases were considered (see S15 in the Supplement). Results on 

Table 1 
Participant characteristics at baseline.  

Characteristic All participants 
(N = 504) 

Control (N 
= 251) 

Intervention (N 
= 253) 

Recruitment method    
On-site, n (%) 356 (70.63) 175 

(69.72) 
181 (71.54) 

Online, n (%) 148 (29.37) 76 (30.28) 72 (28.46) 
Socio-demographics    

Age, M (SD) 51.59 (8.55) 52.1 (8.19) 51.09 (8.88) 
Gender, female, n (%) 309 (61.31) 160 

(63.75) 
149 (58.89) 

In a relationship, yes, n 
(%) 

365 (72.42) 185 
(73.71) 

180 (71.15) 

Children, yes, n (%) 402 (79.76) 202 
(80.48) 

200 (79.05) 

Current sick leave, yes, n 
(%) 

351 (69.64) 173 
(68.92) 

178 (70.36) 

Lifetime SCID diagnosis, 
yes, n (%) 

219 (43.45) 110 
(43.82) 

109 (43.08) 

Marital status    
Single, n (%) 50 (9.92) 23 (9.16) 27 (10.67) 
Relationship/married, n 
(%) 

365 (72.42) 185 
(73.71) 

180 (71.15) 

Divorced/separated, n 
(%) 

74 (14.68) 35 (13.94) 39 (15.42) 

Widowed, n (%) 15 (2.98) 8 (3.19) 7 (2.77) 
Educational level    

No formal education 
(completed), n (%) 

76 (15.08) 28 (11.16) 48 (18.97) 

Up to high school (7–9 
years), n (%) 

164 (32.54) 87 (34.66) 77 (30.43) 

High school education 
(12–13 years), n (%) 

201 (39.88) 105 
(41.83) 

96 (37.94) 

After high school, n (%) 39 (7.74) 20 (7.97) 19 (7.51) 
Social support    

Little social support, n 
(%) 

142 (28.17) 75 (29.88) 67 (26.48) 

Sufficient social support, 
n (%) 

146 (28.07) 65 (25.9) 81 (32.01) 

Good social support, n 
(%) 

147 (29.17) 74 (29.48) 73 (28.85) 

Very good social support, 
n (%) 

51 (10.12) 28 (11.16) 23 (9.09) 

Prior treatment experience    
Previous psychotherapy 
experience, yes, n (%) 

182 (36.11) 91 (36.25) 91 (35.97) 

Previous depression 
medication, yes, n (%) 

142 (28.17) 71 (28.29) 71 (28.06) 

Previous back pain 
medication, yes, n (%) 

322 (63.89) 160 
(63.75) 

162 (64.03)  

Table 2 
Regression coefficients of univariate moderator analyses.  

Baseline variable Treatment-covariate interaction 

β̂ 
̅̅̅̅̅̅

V̂β

√ t p(<| 
t|) 

τ̂2
Intercept τ̂2

Slope 

Socio-demographics       
Age  0.050  0.453  0.110  0.913  2.233  0.601 
Gender, female  − 0.665  0.915  − 0.727  0.467  2.238  0.597 
Relationship, yes  − 0.886  0.875  − 1.012  0.312  2.220  0.612 
Education, >13 
years  

− 0.544  0.921  − 0.591  0.555  2.286  0.632 

Children, yes  − 0.661  0.890  − 0.743  0.458  2.225  0.593 
Lifetime SCID 
diagnosis, yes  

− 0.737  1.484  − 0.497  0.619  1.019  0.905 

Previous 
psychotherapy, 
yes  

0.031  0.925  0.034  0.973  2.164  0.610 

Previous 
depression 
medication, yes  

0.503  0.927  0.543  0.587  2.191  0.646 

Previous back 
pain medication, 
yes  

− 1.945  0.886  − 2.194  0.028  2.206  0.612 

Sick leave, yes  − 1.320  1.007  − 1.311  0.191  2.056  0.555 
Social support, 
(very) good  

1.012  0.889  1.139  0.255  2.134  0.586 

Internet affinity 
(IAS)  

− 0.006  0.458  − 0.013  0.990  2.164  0.596 

Recruitment, 
online  

1.028  0.891  1.155  0.248  2.304  0.636 

Symptom severity       
Depressive 
symptom severity 
(PHQ-9)  

− 0.763  0.413  − 1.847  0.065  0.444  0.348 

Depressive 
symptom severity 
(HAM-D-17)  

− 0.752  0.480  − 1.568  0.117  0.359  0.491 

Pain intensity 
(NRS)  

− 0.423  0.444  − 0.952  0.341  1.941  0.616 

Quality of life 
(AQoL-6D)  

− 0.477  0.430  − 1.108  0.268  0.390  0.557 

Pain-related risk 
factors       
Pain self-efficacy 
(PSEQ)  

0.072  0.438  0.164  0.870  1.376  0.904 

Subjective 
employment 
forecast (SPE)  

− 0.326  0.449  − 0.726  0.468  1.925  0.559 

Pain-related 
disability (ODI)  

− 0.256  0.429  − 0.598  0.550  1.408  0.634 

Note. A Wishart prior was used for the covariance-variance matrix of the random 
effects. AQoL-6D: Assessment of Quality of Life, HAM-D-17: Hamilton Depres-
sion Rating Scale, IAS: Internet Affinity Scale; NRS: numerical rating scale, ODI: 
Oswestry Disability Scale, PHQ-9: Patient Health Questionnaire, PSEQ: Pain self- 
efficacy questionnaire, SPE: Subjective Prognostic Employment Scale. 
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reliable improvement in the terminal nodes mirrored the estimated ef-
fect sizes. In the 10 < PHQ-9 ≤ 15 subgroup, 75 % (n = 45) of all 
intervention group participants with low pain self-efficacy showed 
reliable improvement, significantly more than in the control group (35 
%, n = 18; F1,681.39 = 11.729, p < 0.001). This contrasts with IG patients 
with high pain self-efficacy, where improvement rates were consider-
ably lower (59 %, n = 10) and did not differ significantly from the 
control group (65 %, n = 17; F1,47,174.22 = 0.006, p = 0.936). Compre-
hensive results are presented in S16 in the Supplement. 

The apparent performance of the decision tree model in predicting 
PHQ-9 depressive symptom severity at post-test was R2

app = 52 %. A 
roughly comparable amount of variation was explained by the multi-
variable LASSO model (R2

app = 47 %), in which the PSEQ also emerged as 
a main predictor of differential treatment effects (β=0.036, p < 0.001; 
see S17 in the Supplement for all estimated parameters). The bootstrap 
bias corrected performance of the tree model was R2

adj = 45 %. External 
validation of the model in the “Get.Back” pilot trial resulted in a pre-
dictive performance of R2

adj = 33 %. 

4. Discussion 

In this study, we investigated treatment effect moderators of an 
Internet-based depression intervention for patients with chronic back 
pain. Data of two randomized controlled trials, conducted in chronic 
back pain patients with and without comorbid major depression, were 
included. One-stage meta-analysis revealed a pooled effect of d = − 0.43 
(95 % CI: − 0.68 to − 0.17) on depressive symptom severity at post-test 
(9 weeks). This result is comparable to meta-analytic effects found in 
Internet-delivered CBT interventions across different types of chronic 
pain (g = − 0.43; Gandy et al., 2022). Only back pain medication intake 
was found to be a significant moderator of treatment effects, predicting 
higher effects (β̂ = − 1.95). Based on this estimate, intervention par-
ticipants with pain medication intake are expected to show an average 
decrease of roughly 2 points on the PHQ-9 compared to those without 
pain medication intake. 

In the main mixed model, depressive symptom severity was not a 
significant predictor of differential treatment effects. This is a surprising 
finding, given that this variable is frequently reported as an effect 
moderator in Internet-based interventions (Karyotaki et al., 2017; Reins 
et al., 2021). However, we did find that higher baseline PHQ-9 scores 

predicted larger treatment effects in our sensitivity analysis using OLS 
regression. Notably, the point estimates of both models largely agreed 
(main model: β = − 0.763; sensitivity analysis: β = − 0.799). In the 
additional change score analysis, we also found that benefits were larger 
in patients with high baseline symptom severity when looking at the 
point estimates alone, but this relationship also did not reach conven-
tional levels of significance. Overall, this suggests that the divergent 
findings could be explained by statistical power, and that baseline 
symptom severity may very likely also be an effect modifier. 

A clearer picture emerged when we investigated higher-order in-
teractions using multilevel model-based decision tree learning. We 
found that baseline depressive symptom severity was indeed involved in 
explaining heterogeneity of treatment effects when examined in com-
bination with other baseline indicators. This finding was most pro-
nounced among individuals with moderate depressive symptoms (viz. 
PHQ-9 scores between 11 and 15), where low-to-moderate pain self- 
efficacy predicted very large treatment effects (di = − 1.31). A non- 
significant negative effect was found in patients with high pain self- 
efficacy (di = 0.24). In all other identified groups, predicted treatment 
benefits (di = − 0.58 to − 0.44) remained close to the pooled effect 
established via one-stage meta-analysis (d = − 0.43). Additionally, we 
found that the tree model still explained about one third of the outcome 
variation when applied to unseen data of the pilot trial by Schlicker et al. 
(2020), which provided the studied intervention to chronic back pain 
patients who are currently on sick leave. This suggests that the model 
predictions could be transportable across plausibly related contexts. 

These findings provide evidence that a decision-tree model can be 
used to explain and predict treatment effect heterogeneity of the studied 
intervention. It provides a simple decision-support algorithm that allows 
to determine if predicted benefits are in line with the average treatment 
effect, or if substantially higher or lower effects are to be expected. A 
maximum of two self-report questionnaire scores is needed to make 
individualized predictions, suggesting that such an algorithm is 
economical enough to be useful in practice. If corroborated in further 
studies, the tree model could be implemented as a simple screening tool 
within the Internet-based intervention. This would allow to identify 
patients for whom the program is not expected to have any meaningful 
effects, and to initiate a more intensive evidence-based treatment (e.g., 
face-to-face CBT for chronic pain) instead. Previous studies have 
determined that an effect size of d = − 0.24 represents the minimally 

Fig. 2. Final model-based decision tree.  
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important difference that can be perceived as beneficial from a patient 
perspective (Cuijpers et al., 2014). Using this criterion, only patients in 
one tree node would be assigned to a different treatment, representing 
9.1 % of the studied population. Alternatively, one may also employ a 
more conservative assignment rule, in which only patients in the tree 
node with substantial expected effects (d = − 1.31; 22.2 % of the study 
population) receive the Internet-based intervention. Future studies may 
investigate which of these assignment regimens is the most useful to 
maximize clinical benefits across all patients. 

The tree structure itself also points to a possible working mechanism 
of the intervention: in patients with moderate depressive symptoms, the 
intervention may increase the confidence in being able to perform ac-
tivities despite chronic pain (viz., pain-related self-efficacy; Turk and 
Okifuji, 2002), explaining the substantial improvements in individuals 
with lower PSEQ values at baseline. This may also account for the null 
effect in individuals who already display high pain self-efficacy (i.e., 
PSEQ>38). More research is needed to shed light on this hypothesis. 

Overall, our findings are in line with previous studies that support 
the potential of multilevel model-based trees in detecting differential 
treatment effects of psychological interventions. Fokkema et al. (2018), 
for example, used multilevel model trees to identify differential effects 
of CBT versus pharmacotherapy, yielding a correlation between 
observed and predicted scores of r = 0.272. Driessen et al. (2022) used a 
similar methodology to examine differential effects of short-term psy-
chodynamic therapy and antidepressants to antidepressants alone and 
found correlations of r = 0.077 to 0.465 for predicting post-test 
depression scores. 

This study has some limitations. Although we pooled data of two 
trials for this analysis, more data would have been valuable. Univariate 
moderator analyses typically require much more statistical power than 
analyses of the average treatment effect, especially if interactions are 
subtle (Brookes et al., 2004; Cuijpers et al., 2022). In this context, it 
should be reiterated that “absence of evidence is not evidence of 
absence”. It is very much possible that more of the variables examined in 
this study do have a moderating effect on outcomes, but that larger 
datasets are needed to confirm this. In a similar way, only a limited 
range of baseline covariates assessed in the original studies could be 
considered for our moderator analyses. That means there may be more 
clinical or psychological markers that moderate the efficacy of the 
intervention in practice, but were not part of this evaluation. Large-scale 
IPD meta-analyses of Internet-based depression interventions for pa-
tients with chronic back pain may be helpful in the future to ascertain 
which characteristics have a clinically relevant impact on treatment 
effects, although this may come at the cost of higher between-study 
heterogeneity. Similarly, recursive partitioning as applied in our 
multivariate analysis comes with a large number of effective degrees of 
freedom (Ye, 1998), which can lead to overfitting and instable tree 
structures in small samples (Austin et al., 2010; Steyerberg, 2019). In 
this study, we used a relatively conservative pre-pruning scheme, 
adjusted for model optimism using bootstrap bias correction (which is 
the approach recommended in the methodological literature in contrast 
to, e.g., train-test-splits; Riley et al., 2021, chap. 17.7.1.7; Steyerberg, 
2019), and examined the model performance in an external dataset. 
Nevertheless, our results are exploratory and should be interpreted 
cautiously. From a model development perspective, the “Get.Back” pilot 
trial used for external validation is still relatively small (N = 76), and 
only represents one plausible intervention context. Further validation 
studies are needed to confirm that the tree structure established in this 
study is indeed robust and clinically useful. Furthermore, we only 
considered a narrow range of algorithms in this study, and it could be 
explored if other modelling approaches provide additional benefits. 
Another limitation is that, to allow for joint analyses, we used self- 
reported PHQ-9 scores at 9-week post-test as the target outcome. At 
the same measurement point, observer-masked clinician-rated depres-
sion obtained via the HAM-D-17 was used as the primary outcome in 
Baumeister et al. (2021), but this outcome was not measured in both 

trials at post-test. Using HAMD-D-17 scores as target variable could have 
been valuable, particularly because no significant effect was found in the 
trial by Baumeister and colleagues. Lastly, our analyses focused on 
predictors of depressive symptom severity at post-test, since this is the 
outcome targeted by the studied intervention. However, we did not 
assess differential effects on other potentially relevant outcomes in pain 
management, such as pain interference or quality of life. These target 
variables could be considered in future research to further supplement 
the findings in this study. 

In sum, our findings suggest that an Internet-based intervention can 
be effective in reducing depressive symptoms among chronic back pain 
patients. Additional intake of back pain medication was associated with 
higher effects. Results of a decision tree model point to a more complex 
interaction pattern, whereby low-to-moderate pain self-efficacy predicts 
very high treatment effects in patients with moderate depression, but no 
benefits if patients already experience high self-efficacy at baseline. 
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