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Abstract
CRISPR-Cas systems provide immunity against mobile genetic elements (MGEs) through sequence-specific tar-
geting by spacer sequences encoded in CRISPR arrays. Spacers are highly variable between microbial strains and
can be acquired rapidly, making them well suited for use in strain typing of closely related organisms. However,
no tools are currently available to automate the process of reconstructing strain histories using CRISPR spacers.
We therefore developed the CRISPR Comparison Toolkit (CCTK) to enable analyses of array relationships. The
CCTK includes tools to identify arrays, analyze relationships between arrays using CRISPRdiff and CRISPRtree,
and predict targets of spacers. CRISPRdiff visualizes arrays and highlights the similarities between them. CRISP-
Rtree infers a phylogenetic tree from array relationships and presents a hypothesis of the evolutionary history
of the arrays. The CCTK unifies several CRISPR analysis tools into a single command line application, including
the first tool to infer phylogenies from array relationships.

Introduction
CRISPR-Cas (clustered regularly interspersed short pal-

indromic repeats; CRISPR-associated proteins) is an

adaptive immune system present in most archaea and

many bacteria that provides immunity against mobile ge-

netic elements (MGEs) such as viruses.1,2 CRISPR-Cas

immunity is acquired through the incorporation of spacers

(small fragments of DNA from invading MGEs) into a re-

gion called a CRISPR array. CRISPR arrays are dynamic

as they can both acquire and lose spacers. Over time, these

events alter the length and spacer content of arrays.3

Spacer acquisition typically occurs at the leader end.2

However, under some circumstances, ectopic spacer ac-

quisition can occur.4,5 Repeats located at the leader-distal

end of the array (the trailer end) are thought to be older

and sometimes contain polymorphisms.6

Because proper CRISPR function requires the recogni-

tion of specific sequence and secondary structure in the

repeats,7 mutations within trailer-end repeats can result

in the loss of function of spacers flanked by the degraded

repeats. Spacers can also be lost by deletion events.8,9

Specifically, homologous recombination between repeat

sequences can lead to the loss of a short stretch of spacers

and repeats.3,10,11

Because thousands of unique spacers can be derived

from a single virus,12,13 there is an enormous number

of possible spacer sequences. The presence of two iden-

tical spacers in different CRISPR arrays is unlikely to

have arisen by chance and may indicate that the arrays

share a common ancestor (i.e., the arrays are homolo-

gous). Therefore, comparisons of spacers between

CRISPR arrays can reveal phylogenetic relationships be-

tween them.

To infer phylogenetic relationships between CRISPR

arrays, one must first visualize and compare the arrays

with one another. The previously published tools CRISP-

Rviz and CRISPRStudio show which spacers are shared

or distinct between CRISPR arrays14,15; however, no

tools have been developed to infer phylogenetic relation-

ships between arrays.
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In this study, we present the CRISPR comparison tool-

kit (CCTK), a command-line software toolkit for the

analysis of relationships between CRISPR arrays.

CCTK includes tools to identify CRISPR arrays and pre-

dict protospacers. CCTK also includes two new programs

for the analysis of array relationships: CRISPRdiff,

which visualizes arrays and highlights regions of similar-

ity, and CRISPRtree, which infers the phylogenetic rela-

tionships between a set of arrays using a maximum

parsimony approach. By unifying the above tools into a

single command-line application, CCTK provides re-

sources for identifying relationships between CRISPR ar-

rays in a few simple steps. Furthermore, CCTK uses

simple file formats to facilitate the integration of CCTK

tools into existing pipelines.

Methods
Data set description
To illustrate the functionality of CCTK tools, we selected a

previously published set of Pseudomonas aeruginosa iso-

lates that were collected from a population of cystic fibro-

sis patients over the course of several years.16,17 These

isolates represent repeated sampling of a number of strains

circulating among patients and therefore provide a record

of the evolution of those strains. Furthermore, changes in

the CRISPR arrays encoded by these strains were ob-

served over the course of the study (arrays gained or lost

spacers). In addition, horizontal exchange of CRISPR ar-

rays between P. aeruginosa strains may have occurred.

We selected this data set to illustrate the functionality

of CCTK for the following reasons. First, by collecting

many samples from a single clinic over several years,

mutations and changes in CRISPR arrays were recorded

with high resolution. Previous analysis of this data set in-

dicates that there are several groups of related arrays that

underwent spacer gain and loss over the course of the

study. Second, P. aeruginosa strains encode CRISPR ar-

rays that typically contain a small number of spacers; vi-

sualizing these arrays is therefore straightforward.

Finally, there is evidence of the horizontal gene transfer

(HGT) of CRISPR arrays. As CCTK is designed to facil-

itate the exploration of related CRISPR arrays, this data

set provides a simple illustrative example of CCTK func-

tionality. The flow of information between CCTK tools is

shown in Figure 1. The sequence records analyzed here

and the CRISPR arrays identified are described in Sup-

plementary Table S1.

Sequence assembly and core genome identification
The sequence reads associated with the 72 ‘‘clone-

corrected’’ isolates described by England et al.,16 first

published by Marvig et al.,17 were retrieved from the Eu-

ropean Nucleotide Archive. Assemblies were produced

using Spades with the ‘‘careful’’ option.18 An alignment

of the core genome sequences of these assemblies was

identified using Spine, Nucmer, and a custom script (Sup-

plementary Methods).19,20 IQTREE2 was used to infer a

maximum likelihood tree from this core genome align-

ment (Supplementary Fig. S1).21

CRISPR array identification
CCTK includes two tools to identify CRISPR arrays in

genome assemblies, CCTK Minced and CCTK Blast.

CCTK Minced uses MinCED, which identifies CRISPR

arrays using a sliding window search to identify regularly

spaced repeats and can identify CRISPR arrays without

requiring the user to have prior knowledge of the

expected CRISPR subtypes.22 CCTK Blast uses

BLASTN to identify CRISPR arrays by searching for a

user-defined set of CRISPR repeat sequences.23 Both

tools can use repeat orientation information (provided

by the user) to correctly orient the identified arrays.

Optionally, both tools can assess the sequence similar-

ity between spacers to collapse groups of spacers into a

single representative (when they differ by fewer than a

threshold of bases specified by the user). Alternatively,

CRISPR arrays identified using other approaches can be

converted into the simple file format used by CCTK

tools. Additional details about CCTK Blast and CCTK

Minced are provided in the Supplementary Methods.

CCTK network representation of homologous
CRISPR arrays
CCTK produces a network in which CRISPR arrays are

represented as nodes (Fig. 2). Two arrays are connected

by an edge if they contain identical spacers (i.e., are ho-

mologous). CCTK quantifies homology between two ar-

rays using Jaccard similarity: the number of spacers in

common between two arrays divided by the total number

of unique spacers present in the two arrays.24

CCTK Minced and CCTK Blast each produce a net-

work when they are used to identify arrays. Alternatively,

CCTK Network produces a network representation of

CRISPR arrays identified using any method (and pro-

vided in the format required by CCTK) (Fig. 1). For all

three of these tools, the user can specify the minimum

number of spacers that must be shared between two ar-

rays for an edge to be drawn between them.

CRISPRdiff: CRISPR array visualization
CRISPRdiff visualizes CRISPR arrays through three

steps. First, spacers that are present in more than one

array assigned a unique combination of fill and outline
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color. Unique spacers are represented as thin black rect-

angles (Fig. 3). Next, the order of arrays in the plot is de-

termined to maximize the number of spacers shared

between adjacently plotted arrays. Finally, the plot is

drawn using Matplotlib, which allows the plot to be

saved as many common file formats.25

Spacers are assigned colors using either a default

colorblind-friendly color scheme26 or user-specified col-

ors. Array order is determined by an approach that max-

imizes the number of spacers in common between

adjacently plotted arrays. For small numbers of arrays,

the best possible order is found. For larger numbers of ar-

rays, a limited search is performed, and the best order

found is used. The user can also set the array order. See

the Supplementary Methods for additional details about

color assignment and array order determination.

CRISPRtree: Maximum parsimony analysis of CRISPR
array relationships
Given a list of arrays to be analyzed, CRISPRtree con-

structs a tree starting with two arrays and then adds the

remaining arrays to the tree one by one. The process

used by CRISPRtree (illustrated in Supplementary

Fig. S2) is as follows. First, two CRISPR arrays are

aligned using the Needleman–Wunsch algorithm (Sup-

plementary Fig. S2B).27 Each spacer is treated as a

FIG. 1. Flow of data through CCTK tools. Beginning with genome assemblies in FASTA format, CCTK tools can be
used to identify and analyze CRISPR arrays. The six CCTK tools are as follows: (1a) Blast, (1b) Minced, (2) Network, (3)
CRISPRdiff, (4) CRISPRtree, (5) Constrain, and (6) Spacerblast. The functions of each CCTK tool are described as
follows: (1) CRISPR arrays can be identified in assemblies using either MinCED or BLASTn followed by processing
steps that produce aggregated CRISPR information for all input assemblies. These CRISPR information files are used
by downstream CCTK tools. Alternatively, non-CCTK tools can be used to identify arrays, and their output easily
adapted to the simple file formats used by CCTK. (2) The relationships between CRISPR arrays can be represented as
a network in which each array is represented as a node. Homologous arrays (i.e., arrays containing identical spacers)
are connected by an edge, the weight of which corresponds to the Jaccard similarity between the two arrays. (3)
Groups of homologous arrays can be visualized using CRISPRdiff to identify the differences and similarities between
arrays. (4) CRISPRtree can infer a phylogenetic tree representing the relationships between homologous arrays and
can hypothesize events that occurred during their history. (5) Constrain can visually represent how CRISPR arrays
may have evolved given a fixed tree topology to allow the reconciliation of CRISPR relationships with other
phylogenetic data. (6) Spacerblast predicts protospacer targets of CRISPR spacers and determines the presence of a
PAM. CCTK, CRISPR comparison toolkit; PAM, protospacer adjacent motif.
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character and aligned using the following scores: match:

100, mismatch: -1, gap: -2. These scores were empirically

chosen to ensure that shared spacers are always aligned.

The aligned arrays are then split into modules. Mod-

ules are classified by identifying sets of consecutive spac-

ers that have the same relationship between the aligned

arrays (Supplementary Fig. S2B). For example, a set of

consecutive spacers present at the leader end of one

array, but missing in the other, are classified as a ‘‘leader-

end acquisition module.’’ A set of consecutive spacers

present in both arrays are classified as a ‘‘shared

module.’’

Next, a hypothetical ancestor array is generated by

using an evolutionary model of CRISPR array change

that involves the following possible events: leader-end

acquisition, the loss of spacers one at a time from the

trailer end, and deletion or insertion of one or more spac-

ers anywhere in the array (Supplementary Fig. S2C). The

process by which CRISPRtree processes an array align-

ment to infer an ancestral array is described in the Sup-

plementary Methods.

After a hypothetical ancestral array has been inferred,

events in each descendant array are identified and parsi-

mony costs assigned. Events are identified by processing

each descendant of the newly generated ancestral array as

follows (Supplementary Fig. S2B). First, the descendant

array and ancestor array are aligned. Then, modules of

spacers are identified in the descendant array as described

above (Supplementary Fig. S2B). Next, each module is

associated with a type of event (i.e., acquisition, inser-

tion, trailer loss). Finally, the parsimony costs for all

identified events are summed. The total parsimony cost

of events identified in a descendant array is set as the

branch length between the array and its ancestor in the

tree. Default event parsimony costs were empirically de-

termined. Default event parsimony costs are acquisition:

1, duplication: 1, insertion: 30, deletion: 10, trailer loss:

1, independent acquisition: 50. These costs can also be

set by the user.

Once the tree has been initialized with the first two ar-

rays and their hypothetical ancestral array (Supplemen-

tary Fig. S2D), additional arrays are added to the tree.

To add an array to the tree, it is first compared with

each array already present in the tree (Supplementary

Fig. S2E). The closest match already present in the tree

is then set as the sibling node of the newly added array

and a hypothetical ancestor is generated (Supplementary

Fig. S2F–H).

FIG. 2. Clusters of homologous arrays can be identified using a network representation of array relationships.
Network representation of spacers shared between arrays in Pseudomonas aeruginosa isolate clones corrected by
England et al., visualized using Cytoscape. Each CRISPR array is represented by a node. An edge is drawn between
two nodes when CRISPR arrays share at least two spacers. Edge color corresponds to the Jaccard similarity between
the two connected arrays (i.e., the number of spacers shared between the two arrays divided by the number of
total unique spacers in the two arrays) as indicated in the color key. The seven largest clusters are numbered
(corresponding to the cluster numbers in Supplementary Fig. S1). Circled is a cluster, hereafter called cluster 2,
which is analyzed further in subsequent figures.
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When all arrays have been added to the tree, any ances-

tral arrays that are themselves identical to their ancestor

(i.e., internal nodes with branch length of zero) are col-

lapsed to a polytomy. Tree manipulation is performed

using the python package DendroPy.28

Different trees are generated in this manner by adding

arrays to the tree in different orders. Each tree is then

scored according to the total branch length of the tree

(i.e., the total parsimony cost of all hypothesized events).

The tree (or trees if multiple equally parsimonious trees

are found) with the lowest total parsimony cost is consid-

ered the best. Trees are output in Newick format and vi-

sualized using Matplotlib.25

Optionally, a measure of node support can be calcu-

lated by CRISPRtree. Node support is calculated using

the replicates of the tree building process performed by

CRISPRtree. First, each input array is assigned a position

in a binary string. Then, every tree produced by CRISP-

Rtree is encoded as a list of binary strings. Each element

in the list represents an internal node in the tree and the

binary string indicates which arrays are descendants of

the node. For example, for three arrays A, B, and C

(which are assigned positions in a binary string in alpha-

betical order), an internal node with A and C as descen-

dants would be encoded as 101.

Once all trees are encoded in this way, the nodes in the

most parsimonious tree(s) are compared with all other

trees, and the number of times that each node is seen is

counted. This count is then divided by the total number

of trees constructed, resulting in a proportion of trees

FIG. 3. CCTK CRISPRdiff produces a clearer illustration of array relationships than the previously published tools.
Cluster 2 arrays were visualized using each of the following tools: CCTK CRISPRdiff, CRISPRStudio, and CRISPRviz.
The three tools all represent CRISPR spacers as colored squares and each row of colored squares represents a
CRISPR array. Each spacer is assigned a unique combination of two colors; when squares with the same colors are
seen in two arrays, it indicates that the spacer is present in both arrays. Below the visualization of each tool is a key
describing the elements of each visualization. The leader end of each array is on the left and the trailer end is on
the right. CCTK CRISPRdiff and CRISPRviz show arrays identified using MinCED, while CRISPRStudio shows arrays
identified using its companion tool, CRISPRdetect. The plot produced by CRISPRStudio shows an additional spacer
with 10 mismatches at the trailer end of each array that was only identified by CRISPRdetect. CRISPRStudio was run
using the –gU option to assign unique spacers a gray fill color. The automatic spacer alignment function of
CRISPRviz was used, followed by manual correction (gaps in the alignment are represented as gray boxes). The
order of arrays in the images produced by CRISPRStudio and CRISPRviz was manually altered to correspond to the
order chosen by CCTK CRISPRdiff. Array identifiers assigned by CCTK Minced are shown next to each corresponding
array. ‘‘*’’ indicates spacers that were assigned colors with low visual contrast by CRISPRStudio or CRISPRviz.
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containing that node. Node support is reported in the

Newick string and indicated using a number or colored

circle at the corresponding internal node in the graphical

representation of the tree.

Constrain: Inference of CRISPR array evolution given
a fixed tree topology
Given a phylogenetic tree, Constrain infers an evolution-

ary history for a set of arrays that fit the provided topol-

ogy. The process used by Constrain is as follows. First,

the leaves on the input tree are populated with CRISPR

arrays. Then, starting with leaf nodes and working toward

the root of the tree, the array at each node is aligned with

the array at its sibling node and an ancestral array is hy-

pothesized using the same approach as that used by

CRISPRtree (illustrated in Supplementary Fig. S2B, C).

Once all internal nodes in the tree have been populated

with hypothetical ancestral arrays, each array is anno-

tated with events that would have occurred for it to

have arisen from its ancestral array.

Tree comparisons
The arrays produced by each simulation performed using

Evolve (see Supplementary Methods) were analyzed with

CRISPRtree. The CRISPRtree output was compared with

the true tree (produced by Evolve) using Robinson–

Foulds (RF) distance, which measures the number of par-

titions implied by one tree but not by another.29 RF

distance was calculated using the ete3 toolkit version

3.1.2 in python3.8.12.30,31

To compare the RF distance between simulation repli-

cates (in which trees with different numbers of nodes may

be produced), each distance is expressed as a fraction of

the maximum possible RF distance between the two

trees, indicating the extent to which the two trees differ

relative to two completely distinct trees.

This analysis was performed for simulations run with

different parameters: numbers of events (e.g., the acqui-

sition of a spacer), which controls the size and extent of

divergence between arrays; the rate of loss of arrays,

which impacts the level of incompleteness of the data

set and the extent to which extant arrays are diverged;

and the relative rates of spacer acquisition and deletion,

which determines the type of relationships between ar-

rays and, at high levels of deletion, the extent to which

the relationships between arrays is obscured by spacer

loss. Parameters used in these simulations are described

in more detail in the Supplementary Methods.

Performance assessment
Running times are reported for CCTK tools run using de-

fault settings on a single thread. The test system used is

running Ubuntu 20.04.5 in Windows Subsystem for

Linux 2 in Windows 11, Intel I9-10850k, 64GB RAM.

Software availability
All source code is available on GitHub (https://github

.com/Alan-Collins/CRISPR_comparison_toolkit). CCTK

can be installed either by downloading from the GitHub

repository or using the package manager Anaconda

(https://anaconda.org/bioconda/cctk). Documentation de-

scribing usage of CCTK tools is available at https://crispr-

comparison-toolkit.readthedocs.io/en/latest/

CCTK relies on the following dependencies (version

numbers in use at publication): Python3.8, DendroPy

4.5.2, Matplotlib 3.5.0, NumPy 1.21.2, MinCED 0.4.2,

and BLAST +2.12.0+.22,23,28,31,32

Results
CRISPRdiff compares arrays and visualizes
the relationships between them
In this study, we analyzed a data set of previously

described P. aeruginosa isolates.16,17 The phylogenetic

relationships between these isolates are shown in Supple-

mentary Figure S1. In the following sections, we present

analyses using CCTK to characterize the relationships

between CRISPR arrays encoded by these P. aeruginosa

isolates.

We first used CCTK Minced to identify CRISPR ar-

rays (Supplementary Table S1) and construct a network

representing the sharing of spacers between homologous

arrays (Fig. 2). CCTK Minced was run with the option

‘‘-s 2’’ to group spacers differing by two or fewer

bases. The cluster of arrays circled in Figure 2 (referred

to as cluster 2 arrays) is used to illustrate the functionality

of CCTK tools. Except where stated, all the subsequent

analyses presented focus on cluster 2 arrays.

Visualizing array relationships as a network enables

the easy recognition of sets of homologous and unrelated

arrays. Comparison of the spacers that are shared be-

tween homologous arrays can then be used to further ex-

plore the relationships between those arrays. There are

two previously developed tools for visualization and

comparison of CRISPR arrays: CRISPRviz and CRISP-

Rstudio.14,15 While both tools can be used to produce vi-

sual representations of CRISPR arrays, they have limitations

when used to identify similarities among a group of arrays.

Therefore, we developed a new visualization tool, CRISP-

Rdiff, as part of CCTK, to more effectively identify the dif-

ferences and similarities between arrays.

Key elements that differ between CRISPRdiff,

CRISPRstudio, and CRISPRviz are described in

Table 1, and the visualizations produced by the three

tools are shown in Figure 3. The most significant
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advantages of CRISPRdiff over CRISPRstudio and

CRISPRviz are discussed further here.

The ability to identify shared spacers is important when

comparing homologous arrays. CRISPRdiff uses lines

connecting identical spacers to clearly highlight the pres-

ence of shared spacers. In addition, CRISPRdiff uses a

colorblind-friendly color palette that ensures visually dis-

tinct colors are assigned to different spacers.26 Alterna-

tively, CRISPRdiff allows the users to define their own

color scheme. CRISPRStudio and CRISPRviz produce vi-

sualizations that may include colors that are not visually

distinct or colorblind friendly (spacers indicated by aster-

isks, Fig. 3; Supplementary Fig. S3; Table 1), which

makes it difficult to identify shared spacers.

Unlike the other tools, no further processing of the out-

put image is required for CRISPRdiff. Instead, which ar-

rays are included in the plot produced by CRISPRdiff can

be specified in the command line. In contrast, when using

CRISPRStudio or CRISPRviz, the user must manually

process the output images to remove unwanted arrays

that were identified in the input assemblies. Furthermore,

in the case of CRISPRviz, the user is also required to

manually experiment with reverse-complement and re-

versing the order of spacers in arrays to visually identify

homologous arrays.

CRISPRtree infers array relationships using maximum
parsimony
CRISPR arrays preserve a record of the MGEs encountered

by a cell. In addition, the changes that have occurred within

a CRISPR array over time represent a history of the evolu-

tion of that array. Comparing homologous CRISPR arrays

and reconstructing the events that may have occurred dur-

ing their evolution allows us to infer the phylogenetic rela-

tionships between CRISPR arrays and the genomes in

which they are located.6,33 However, no tools have previ-

ously been developed to analyze the phylogenetic relation-

ships between homologous CRISPR arrays. We therefore

developed CRISPRtree, which infers the phylogenetic re-

lationships among a set of arrays using a maximum

parsimony approach (see the Methods section and Supple-

mentary Methods; Supplementary Fig. S2).

Table 1. Comparison of CRISPR array visualization tools

CCTK CRISPRdiff CRISPRStudio CRISPRviz

Distinguishing feature Highlights shared spacers in a small
number of related CRISPR arrays

Group and visualize large number
of CRISPR arrays from all
input assemblies

Interactive exploration of
CRISPR arrays through click and
drag control of array order

Installation
Source GitHub, Anaconda GitHub GitHub, Docker
Admin/sudo required? No Yes No

Upstream analysis
Require array identification

first?
Yes Yes No

CRISPR-identification tools CCTK Minced, CCTK Blast,
other with reformatted output

CRISPRdetect only MinCED only

Input file .txt array details file .gff from CRISPRdetect .fasta assemblies
Determine array orientation Done by CCTK if specified by user Done automatically by

CRISPRdetect
Not possible

Collapse similar spacers User-set mismatch threshold User-set mismatch threshold Fixed 2 mismatch threshold
Control of plot elements

Array order control Automatic, manual Automatic, manual Automatic
Array order automatic method Maximize spacers shared

between adjacent arrays
Markov clustering File order

Output format Any Matplotlib format
(PNG, SVG, JPG etc.)

SVG Screenshot of browser window (PNG)

Plot dimensions Specify in command line Resize in graphic design software Resize in graphic design software
Which arrays are plotted User specified All present All present
Postprocessing of image

required
None Remove unwanted arrays Remove unwanted arrays, manually

reverse spacer order, and reverse
complement arrays to identify
homologous arrays

Identification of shared spacers
Indication of same spacer Same color, joined with a line Same color Same color, same shape
Color scheme Built-in, user-specified Random Semirandom (DNA sequence

converted to numerical RGB values)
Colorblind-friendly Yes (default color scheme) No No
User control of color scheme Yes (provide color scheme

or specify for each spacer)
No No

Reproducible color scheme Yes (optional) Yes (optional) Yes

CCTK, CRISPR comparison toolkit.
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Figure 4A shows the tree inferred by CRISPRtree for

cluster 2 arrays. CRISPRtree hypothesizes that all seven

extant arrays descended from a last common ancestor,

Anc_a, containing 8 spacers. CRISPRtree automatically

annotates each array with events that CRISPRtree hypoth-

esized occurred since its ancestor (see Key, Fig. 4). Using

the events annotated on each CRISPR array in Figure 4A,

the hypothetical history of the analyzed arrays produced

by CRISPRtree can be reconstructed.

From Anc_a, two arrays arose: Anc_b and Anc_f. The

events in the upper clade, starting with Anc_b, are de-

scribed here to illustrate how the visualization produced

FIG. 4. CCTK CRISPRtree can infer a phylogenetic tree from array relationships, and CCTK Constrain can assess other
phylogenetic data. (A) CRISPRtree was used to infer a tree representing the relationships between cluster 2 arrays. Leaf
nodes in the tree correspond to the seven extant arrays (i.e., the arrays provided as input to CRISPRtree). Each internal
node in the tree corresponds to a hypothetical ancestral state of the descendent arrays. Hypothetical ancestors are
assigned names beginning with ‘‘Anc’’ and are rendered partially transparent to provide visual contrast. Next to each
node label is a visual representation of the corresponding CRISPR array. CRISPRtree automatically annotated each array
with events that are hypothesized to have occurred since the ancestor of that array (see Key). No events are
highlighted on the root node array (Anc_a) as it is the last common ancestor of all extant arrays being considered and
does not have an ancestral state. Branch support is indicated using colored circles at the corresponding branch (see
Key). (B) Maximum likelihood tree for the isolates encoding cluster 2 arrays. Core genome SNPs were identified using
Spine, Nucmer, and a custom script (Supplementary Methods). IQTREE2 was then used to infer a tree using a model
selected by ModelFinder (UNREST+FO+R3). Red branches indicate node support below 95% as calculated by the
Ultrafast bootstrap tool included in IQTREE2. Leaf names are composed of the European Nucleotide Archive accession
number and the cluster 2 array ID encoded by that isolate. (C) Tree produced by CCTK Constrain representing the
events that CCTK Constrain automatically hypothesized would have to have occurred if cluster 2 arrays had evolved
according to the core genome phylogeny shown in B. Events are highlighted using symbols described in the Key. Leaf
labels correspond to those in B and indicate the assembly accession and cluster 2 array ID.
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by CRISPRtree can be interpreted. Anc_b differs from its

ancestor Anc_a by the deletion of two spacers and the ac-

quisition of several. From Anc_b, the extant array 47

arose by the deletion of two sets of spacers and the acqui-

sition of two spacers, and Anc_c arose through the acqui-

sition of a single spacer. From Anc_c, the extant array 58

arose through the duplication of an existing spacer, and

Anc_d arose through two deletions. The extant array 57

has no annotated events, indicating that it is identical to

Anc_d, while array 56 differs from Anc_d by a single de-

letion. As array 57 and Anc_d are identical, array 57 can

be considered to be the ancestor of array 56.

CRISPRtree uses an evolutionary model that favors

spacer gain by leader-end acquisitions, and spacer loss

by deletions or trailer-end loss. However, sometimes

other events can be predicted. For example, in the

lower clade, array 14 is hypothesized to have replaced

five spacers in its middle with two new spacers. While

this is annotated as an insertion event, it is also possible

that the two spacers annotated as an insertion here may

instead have been present in Anc_f and Anc_a, but inde-

pendently lost in both Anc_b and Anc_e. These two mu-

tually exclusive explanations for how the set of extant

arrays may have arisen highlights the importance of

being able to see and assess the evidence used to gener-

ate a tree topology. By clearly showing how it arrived at

a given topology, CRISPRtree makes it easy for a user

to decide whether the tree is a reasonable hypothesis

or not.

In addition to illustrating the ancestral arrays and

events, CRISPRtree can assign a measure of node support

to each internal node in the tree (described in the Methods

section). This node support value indicates the frequency

with which a given node was seen in the trees generated

during CRISPRtree’s search for the most parsimonious

tree. For example, the node support at Anc_e is 100%, in-

dicating that arrays 50 and 76 were placed together in

every tree inferred by CRISPRtree during its search.

The node support at Anc_c, however, is 52%, indicating

that in almost half of the trees inferred by CRISPRtree, a

node containing only arrays 56, 57, and 58 was not pres-

ent. These node support values provide an indication of

how strong the phylogenetic signal is that places a set

of arrays together given the evolutionary model used by

CRISPRtree.

Constrain can identify signals of HGT
of CRISPR arrays
A common approach to examine the possibility of HGT is

phylogenetic reconciliation. Phylogenetic reconciliation

involves the comparison of the tree of an individual

gene’s evolution to a species tree.34 If the topology of a

gene tree differs from the species tree, that is evidence

that the gene has been horizontally transferred.

When comparing trees, it is important to assess both

whether the two trees are different, and whether each

tree could also explain the data underlying the other.

Numerous statistical tests have been developed to test

whether different tree topologies could explain the

same nucleotide sequence alignment data. For example,

the Shimodaira–Hasegawa (SH) test is commonly used

to assess whether a set of trees are all good explanations

of a sequence alignment.35,36

We developed Constrain to assess whether different

tree topologies may be good explanations of the array re-

lationships. Constrain reconstructs the history of a set of

CRISPR arrays given a certain tree topology and indi-

cates the events that would need to occur during the evo-

lution of each array. While Constrain is not a statistical

testing method, it can indicate whether the given topol-

ogy is reasonable or whether HGT or the independent ac-

quisition of identical spacers in different arrays would be

the most parsimonious explanation of the tree topology.

To investigate whether cluster 2 arrays may have been

horizontally transferred between isolates, we first deter-

mined whether the CRISPR array tree and core genome

tree differ (Supplementary Fig. S1 and Fig. 4A, B). We

used RF distance (which assesses the number of parti-

tions implied by one tree but not by another) to compare

the tree produced by CRISPRtree with the core genome

tree.29 The RF distance between the two trees is 9 out

of a maximum possible value of 13. The high RF distance

between the two trees indicates that there is a high degree

of disagreement between the inferred histories of cluster

2 CRISPR arrays and the core genome of the isolates

encoding these arrays. Disagreement between the two

trees is consistent with the hypothesis that HGT of

CRISPR arrays has occurred.

We next assessed whether differences between the two

trees are well supported by the underlying data. Bootstrap

support for two of the nodes in the core genome tree is

low (bootstrap support <95%—a cutoff recommended

for use with UFBoot2 values).37 In addition, two nodes

in the CRISPRtree have low support (Anc_c: 52%,

Anc_d: 60%). However, major differences between the

two trees are well supported. For example, Anc_f in the

tree inferred by CRISPRtree places arrays 14, 50,

and 76 together with 88% support. The core genome

tree places the isolates encoding those three arrays

(ERR431311.14, ERR431128.50, and ERR431319.76 in

Fig. 4B) apart from one another with high bootstrap sup-

port. The finding that major differences between the two

trees are well supported by the underlying data provides

confidence that the two trees are different.
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We next determined whether the topology of the

CRISPRtree tree is supported by the core genome se-

quence alignment using the SH test implemented in

IQTREE2.21,35 The SH test indicates that the CRISP-

Rtree topology for cluster 2 arrays is not supported by

the alignment of core genomes ( p = 0). This indicates

that the CRISPR array tree does not represent the rela-

tionships between the core genome sequences of these

isolates.

Finally, we used Constrain to evaluate whether the

core genome tree could explain the relationships between

cluster 2 CRISPR arrays. Constrain uses the same ap-

proach as CRISPRtree to infer the ancestral state of two

arrays (see the Methods section and Supplementary

Methods; Supplementary Fig. S2), but is ‘‘constrain’’ed

to using a single fixed tree topology. After populating

the tree with inferred ancestral states, Constrain then con-

siders any spacers that were predicted to have been ac-

quired, and checks if each spacer was acquired at two

or more locations in the tree. Constrain highlights any

such independent acquisitions with red boxes.

Constrain does not always identify evidence of indepen-

dent acquisitions. Supplementary Figure S4 shows an exam-

ple in which the tree inferred using CRISPRtree differs from

the topology of a core genome SNP tree. In this example,

Constrain indicates that the core genome tree would require

that a spacer duplication event occurred at a different point.

However, the core genome tree is equally parsimonious to

the tree inferred using CRISPRtree.

When Constrain is used to assess the core genome tree

of isolates encoding cluster 2 arrays, it indicates that sev-

eral spacers would need to have been independently ac-

quired multiple times (Fig. 4C). These independent

acquisition events are indicated as a red box surrounding

the sets of spacers that Constrain identified as also being

acquired in a different array. Independent acquisition

events are annotated whenever one or more spacers

could have been horizontally transferred and added to

an array by recombination or independently added to

multiple arrays through the normal CRISPR adaptation

process.

Constrain indicates that the core genome tree does not

explain the relationships between cluster 2 arrays. In ad-

dition, the distribution of cluster 2 CRISPR arrays among

assemblies in this data set provides evidence of HGT

(Supplementary Fig. S1). Specifically, isolates encoding

cluster 2 arrays are distantly related and, in some cases,

more closely related to isolates that either do not encode

cluster 2 arrays or have no detectable CRISPR arrays.

Taken together, these observations are consistent with a

hypothesis that cluster 2 arrays have been horizontally

transferred between divergent isolates.

Identifying spacer targets using Spacerblast
As cluster 2 arrays appear to have been involved in HGT

events, and these isolates were sampled from a single pa-

tient population,17 we reasoned that arrays may spread by

HGT as they provide immunity against phages or other

MGEs that are present.

CRISPR systems provide immunity against MGEs

through sequence-specific targeting.2 In addition,

CRISPR targeting often requires the presence of a short

sequence flanking the target called the protospacer adja-

cent motif (PAM).38,39 We developed a tool as part of

CCTK, called Spacerblast, that can search for spacer

matches in a sequence database and identify the presence

of PAMs (Supplementary Methods). Spacerblast allows

users to adjust the settings of the search as the identity

of the match and requirement of the presence of a PAM

may differ, depending on the research question. We

used Spacerblast to assess whether the spacers in cluster

2 arrays have targets within the assemblies in our data set.

We searched for spacer matches with 100% sequence

identity and the presence of a type I–F ‘‘CC’’ PAM on

the 5¢ flank of the protospacer.39 Spacerblast identified

77 predicted protospacers with flanking PAMs (Supple-

mentary Table S2). Each array in cluster 2 has at least

one spacer with several predicted protospacers in the as-

semblies in this data set (Fig. 5A). In addition, the cluster

2 array spacers with the most targets are predicted by

Constrain to have been independently acquired by multi-

ple arrays (Fig. 5B). These data are consistent with the

hypothesis that cluster 2 arrays have spread between iso-

lates because they provide immunity against MGEs that

infect this population.

Assessing the performance of CRISPRtree using
in silico evolved CRISPR arrays
As CRISPRtree uses a newly developed phylogenetic

method, it is important to assess its ability to accurately

infer the correct tree for a given set of arrays. However,

we do not have access to a suitable data set of CRISPR ar-

rays with a known evolutionary history to test CRISPRtree.

Therefore, we developed Evolve, a tool that generates

simulated CRISPR arrays with known relationships

through in silico evolution (Supplementary Methods).

Evolve is distributed as part of CCTK to allow user as-

sessment of CRISPRtree performance.

We used Evolve to generate a test data set of CRISPR

arrays that were generated with different evolution pa-

rameters (described in the Supplementary Methods).

For each set of CRISPR arrays, Evolve stores the

‘‘true’’ tree describing the relationships between the sim-

ulated arrays. We then assessed the ability of CRISPRtree

to infer the true tree when given only the arrays that were
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present at the end of each simulation (i.e., excluding any

arrays that were ‘‘lost’’ during the in silico evolution pro-

cess). Differences between the tree inferred by CRISP-

Rtree and the true tree were measured using RF

distance (see the Methods section).29 The performance

of CRISPRtree for simulated data sets with different pa-

rameters is shown in Figure 6.

When CRISPRtree was used to infer a tree for sets of

arrays with known relationships, its performance was im-

pacted by the frequency of deletions in the Evolve simu-

lations (Fig. 6). If only spacer acquisitions occurred during

the simulated evolution of CRISPR arrays, then CRISPRtree

produced the correct tree every time regardless of the num-

ber of events (Fig. 6A; top row). However, when spacer de-

letions were included in the simulated CRISPR evolution,

this resulted in a reduction in the accuracy of CRISPRtree

in reconstructing the relationships between arrays (Fig. 6A,

B; note darker colors in lower rows).

While small numbers of deletions reduced the ability

of CRISPRtree to produce the correct tree, CRISPRtree

was still able to produce a tree that is similar to the true

tree for most of the parameter settings tested (Fig. 6B;

light colors in most rows). Furthermore, for simulations

involving lower numbers of events, and therefore produc-

ing arrays that are less diverged, CRISPRtree was able to

produce the correct tree more than half the time even with

high frequencies of deletions (Fig. 6B).

When the tree produced by CRISPRtree differed from

the true tree, it was typically because the true relation-

ships between arrays had been obscured by deletion

events, resulting in arrays for which the most parsimoni-

ous tree is not the true tree. Examples of trees produced

by CRISPRtree that differ from the true tree are presented

in Supplementary Figure S5. These trees show that

CRISPRtree fails to identify the relationships between ar-

rays in cases where deletions have removed evidence of

those relationships.

Finally, we used the test data set generated using

Evolve to assess the impact of the parsimony cost of ac-

quisitions, deletions, insertions, and independent acquisi-

tions events on CRISPRtree performance (Supplementary

Methods; Supplementary Fig. S6). None of the tested

event parsimony cost values improved CRISPRtree per-

formance over the performance seen with default values.

Instead, we found that CRISPRtree performance is robust

to event cost. Specifically, CRISPRtree performance was

FIG. 5. Spacerblast identifies protospacer targets of CRISPR spacers. Protospacer matches of spacers present in
cluster 2 arrays were identified in assemblies using Spacerblast. Spacerblast was used with a requirement for 100%
sequence identity between protospacer and spacer and the presence of a ‘‘CC’’ PAM 5¢ of the protospacer
sequence. Regions in which CRISPR arrays were identified were masked from the search using the Spacerblast ‘‘-r’’
option. Each spacer was assigned a color according to the number of isolates in which protospacers were identified
and these color assignments were used as a custom color scheme for CRISPRdiff (A) and CCTK Constrain (B).
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equally good for all combinations of parsimony costs

where the cost of acquisition is lowest, deletion is inter-

mediate, and independent acquisition is highest. The par-

simony cost of insertions had no impact on CRISPRtree

performance in this analysis.

Program running times
CCTK is designed to identify CRISPR arrays in a large

number of assemblies, and then more closely analyze

small subsets of related arrays. To illustrate approximate

running times, the time taken for execution of the tools

shown in this article is shown in Table 2.

Discussion
In this study, we present CCTK—a toolkit for studying

CRISPR arrays. CCTK includes tools to perform com-

monly used analyses, building on previously developed

tools for the identification of CRISPR arrays (MinCED

and BLASTN).22,23 In addition, we developed new re-

sources for the analysis of CRISPR arrays (CRISPRdiff,

CRISPRtree, Constrain, and Spacerblast).

CCTK includes two tools for the identification of

CRISPR arrays: CCTK Minced and CCTK Blast. Two

tools are included as the limitations and strengths of

each approach means that which tool is most appropriate

will depend on the needs of the user.

CCTK Minced runs MinCED and performs processing

of the MinCED output.22 MinCED offers two major ad-

vantages: it is quick and identifies CRISPR arrays de

novo, requiring no prior knowledge of the CRISPR types

present. However, MinCED has been reported to have a

high false-positive rate when identifying CRISPR arrays

in some organisms and can incorrectly identify the bound-

aries between repeats and spacers in arrays.40–42 As CCTK

Minced does not attempt to correct any errors in CRISPR

array identification made by MinCED, CCTK Minced has

the same weaknesses as MinCED. It is strongly advised

that users manually check the output of CCTK Minced

to distinguish true CRISPR arrays from other types of re-

peat regions. If needed, CCTK Minced can be rerun using

manually corrected MinCED output. It is important to re-

member also that the quality of CRISPR array predictions

depends upon the quality of the underlying assembly.

CCTK Blast uses blast to identify CRISPR arrays with

known CRISPR repeat sequences.23 CCTK Blast does

not suffer from the high false-positive rate and inaccur-

acy of MinCED. However, as well as requiring prior

knowledge of repeat sequences, CCTK Blast is slower

than CCTK Minced (Table 2).

CCTK Minced identified CRISPR arrays in the P. aer-

uginosa data set presented here accurately and with no

false positives (Supplementary Table S1). When analyz-

ing organisms in which MinCED does not perform well,

manual curation of repeat sequences identified using

MinCED, followed by identification of CRISPR arrays

FIG. 6. CRISPRtree can accurately recreate the true
relationship between arrays when the frequency of
spacer deletions is low. Simulated CRISPR arrays were
produced using CCTK Evolve, and their relationships
recorded in what will be referred to as the true tree
topology. CRISPRtree was then used to analyze the
simulated CRISPR arrays and to infer a maximum
parsimony tree. The true topology of the simulated
trees was compared with the topology inferred by
CRISPRtree using RF distance (see the Methods section).
To allow the calculation of summary statistics between
multiple sets of trees, RF distance is presented as a
proportion of the maximum theoretical distance for
each pair of trees. Simulations were performed with a
range of parameters: different proportions of spacer
acquisition and deletion events (rows within each
heatmap); and number of events for which each
simulation was run (columns within each heatmap). For
each set of parameters, 50 replicate simulations were
run and two summary statistics are reported: (A) the
proportion of trees produced by CRISPRtree that are
identical to the true tree topology (RF distance of 0); (B)
the median ratio of the observed RF distance to
maximum theoretical RF distance between the
CRISPRtree and true tree topology. RF, Robinson–Foulds.

Table 2. Example running times of CCTK tools

Tool Running time Comments

CCTK minced 30 s Run on 72 assemblies
CCTK blast 51 s Run on 72 assemblies
CRISPRdiff 1.5 s Run on cluster 2 arrays
CRISPRtree 15 s Run on cluster 2 arrays
Constrain 2.5 s Run on cluster 2 arrays
Spacerblast 20 s 48 Spacers, 72 assemblies
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using BLAST, has been successful.43 By including both

CCTK Minced and CCTK Blast, CCTK provides flexi-

bility to allow a user to use either or both approaches.

In addition, CCTK uses simple file formats so that out-

puts from other CRISPR identification tools can be ana-

lyzed.

CRISPRdiff improves upon previously developed

tools for the visualization of CRISPR arrays by providing

a clearer visualization of array similarities and differ-

ences. CRISPRdiff also provides easier user control of

the contents and appearance of the produced plot than

the existing tools and can be easily integrated into exist-

ing CRISPR-analysis pipelines.

While CRISPRdiff produces a clearer visualization,

CRISPRdiff was designed to visualize small numbers

of related arrays. The algorithm used to order arrays

within the plot results in a long run time with large num-

bers of arrays.

CCTK also opens previously unexplored avenues of

CRISPR research: CRISPRtree is the first tool developed

for the inference of phylogenetic relationships between

CRISPR arrays. CRISPRtree may be used to supplement

other phylogenetic methods to further resolve relation-

ships between highly related strains. In addition, CRISP-

Rtree enables researchers to reconstruct the immune

history of coevolving virus–host partners both in labora-

tory experiments and in natural systems.

Incongruence of trees is often used to detect evidence

of recombination or HGT among different loci.44 The de-

velopment of CRISPRtree to reconstruct the evolutionary

histories based on nontypical parameters of CRISPR

change (instead of stepwise mutation) provides the op-

portunity to compare CRISPR history with other loci in

the chromosome to identify evidence of recombination

of CRISPR alleles among strains. Constrain allows the

user to assess the difference between CRISPR array rela-

tionships and other types of phylogenetic data. Previous

data show that CRISPR arrays in highly variable and

highly recombining regions of the chromosome are

shared among strains through recombination.45 Constrain

can improve our understanding of the role of CRISPR

array HGT in the microbial pan-immune system.46

Spacerblast enables the prediction of protospacers in a

sequence database using mismatch and PAM presence

criteria. The specific search criteria that are appropriate

will depend upon the research question being addressed

and the biology of the organism and CRISPR system

being studied.39,47–49 For example, if the user is inter-

ested in the current immune phenotypes of single strain,

they would use a high identity and PAM criteria. If in-

stead the user wanted to look at histories of interactions

rather than current immune profiles, the user would

relax these criteria. We note that short spacer blasts that

allow for too many mismatches may result in spurious

matches between short sequences.

In this study, we used a requirement 100% sequence

identity and the presence of a PAM for a sequence to

be classified as a protospacer. By using a requirement

of 100% identity, we identified protospacers that are

most likely to be functional immune targets of the

CRISPR spacers. However, we may have missed other

sequences against which the spacers would also provide

functioning immunity or may have in the past. Following

the acquisition of a spacer, mutations may arise in the

protospacer or PAM sequence. Mutations in the proto-

spacer sequence do not necessarily lead to immune es-

cape, although mutations within the seed region of a

protospacer may not be tolerated.48,50 Therefore, as our

goal was to identify protospacers against which each

spacer would provide immunity, a more relaxed identity

cutoff could have been used.

The analysis of CRISPR arrays currently involves sev-

eral steps, each of which requires distinct tools or custom

code. By combining several tools into a single command-

line interface, CCTK makes the analysis of CRISPR ar-

rays easy and scalable and is a valuable new resource

for the study of CRISPR systems.
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