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RESEARCH
A Comparative Analysis of Data Analysis Tools
for Data-Independent Acquisition Mass
Spectrometry
Fangfei Zhang1,2,*, Weigang Ge3, Lingling Huang3, Dan Li3, Lijuan Liu3, Zhen Dong1,2 ,
Luang Xu1,2, Xuan Ding1,2, Cheng Zhang1,2, Yingying Sun1,2, Jun A1,2, Jinlong Gao1,2, and
Tiannan Guo1,2,*
Data-independent acquisition (DIA) mass spectrometry–
based proteomics generates reproducible proteome
data. The complex processing of the DIA data has led to
the development of multiple data analysis tools. In this
study, we assessed the performance of five tools (Open-
SWATH, EncyclopeDIA, Skyline, DIA-NN, and Spectronaut)
using six DIA datasets obtained from TripleTOF, Orbitrap,
and TimsTOF Pro instruments. By comparing identification
and quantification metrics and examining shared and
unique cross-tool identifications, we evaluated both
library-based and library-free approaches. Our findings
indicate that library-free approaches outperformed
library-based methods when the spectral library had
limited comprehensiveness. However, our results also
suggest that constructing a comprehensive library still
offers benefits for most DIA analyses. This study provides
comprehensive guidance for DIA data analysis tools,
benefiting both experienced and novice users of DIA-mass
spectrometry technology.

Complex specimens can be profiled for thousands of
proteins through the use of tandem mass spectrometry (MS)-
based proteomics (1, 2). In contrast to the traditional data-
dependent acquisition (DDA) method that selectively choo-
ses peptides for fragmentation, data-independent acquisition
(DIA) is a MS approach that involves fragmenting all ions
within a specific m/z range (3–5). DIA-MS offers a comparable
level of reproducibility to targeted proteomics; however, it is
not limited to a specific set of peptides. The reproducibility of
DIA-MS has been well established in a few cross-laboratory
studies (6, 7). The high reproducibility of DIA-MS serves as a
crucial foundation for acquiring high-throughput proteome
data from large-scale clinical sample cohorts, particularly in
the context of training machine learning–based models. This
reproducibility ensures consistent and reliable data acquisi-
tion, enabling the generation of robust and accurate models
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that can effectively analyze and interpret the complex prote-
omic information obtained from clinical samples.
In DIA-MS, a significant challenge lies in the deconvolution

of multiplexed fragment ion spectra, as the relationship be-
tween precursor and fragment ions is lost. To address this
challenge, two main approaches are commonly employed for
identifying and quantifying peptide precursors in DIA data:
library-based and library-free methods (8). Library-based
method is the first widely used strategy in DIA analysis
which analyzed DIA data using a preconstructed spectral li-
brary comprising of the relative intensity of peptide fragment
ions and retention time (RT), which can be generated from
fractionated DDA data (9, 10), or predicted from precursor
sequences (11–13). The library-based analysis tools improved
performance on the algorithms in matching MS signal with
spectral libraries, scoring features construction, and statistical
modeling for false discovery rate (FDR) estimation. Library-free
approaches do not require prebuilt libraries but uses a protein
sequence database or predicted libraries to analyze DIA-MS
data (14). While library-free methods offer certain advan-
tages, such as flexibility in analyzing DIA data without relying
on preconstructed spectral libraries, they often require addi-
tional inspection for controlling FDRs. DIA-MS has primarily
been adapted for three types of MS machines: Sciex’s
TripleTOF, Thermo’s Orbitrap, and Bruker’s TimsTOF Pro. The
main differences between these mass analyzers lie in
their resolutions and the specific implementations of DIA
methods. As a result, different software tools (DIA-NN
(https://github.com/vdemichev/DiaNN) (11), EncyclopeDIA
(https://bitbucket.org/searleb/encyclopedia) (15), Open-
SWATH (http://openswath.org) (16), Skyline (https://skyline.
ms) (17), and Spectronaut (https://biognosys.com/software/
spectronaut) (18)) have been optimized to cater to either
library-based or library-free DIA analyses, specifically tailored
for different vendors' instruments. This ensures that the
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Evaluation of DIA Proteomics Software Tools
software tools are compatible and optimized for the specific
characteristics and data generated by each type of MS
machine.
Earlier comparisons ofDIAdata analysis toolswere conducted

(19) at a time when the DIA method was just beginning to gain
widespread use. However, these comparisons were limited to a
small number of datasets and MS instruments. The past years
have witnessed the rapid evolution of DIA methods for various
mass spectrometers and, consequently, of new and more
advanced DIA data analysis tools. A recent study (20) compared
the performance of several DIA data analysis tools includingDIA-
NN, DIA-Umpire, OpenSWATH, ScaffoldDIA, Skyline, and
Spectronaut. However, it is worth noting that this study was
limited to artificially simplified samples containing only 48 human
proteins and focused solely on Orbitrap-based machines.
Despite these limitations, the study found that these tools,
despite their distinct implementations, did not generate signifi-
cantly divergent identifications and quantifications of peptides or
proteins. Nevertheless, there is a need for systematic charac-
terization of the differences and consistencies between the cur-
rentDIAdataanalysis tools.Such informationwouldbebeneficial
for both DIA data analysis software developers and researchers,
utilizing DIA in their biological studies. In particular, a cross-tool
comparison can assist users in selecting the most suitable tool
for their specific research questions and requirements.
Here, we evaluated five widely used DIA data analysis tools:

OpenSWATH, EncyclopeDIA, Skyline, DIA-NN, and Spec-
tronaut. Our analysis involved six DIA datasets generated from
three different types of mass analyzers (Triple TOF, Orbitrap,
and TimsTOF Pro). We employed two approaches for empirical
true positive validations and conducted searches using both
library-based and library-free modes. Throughout the study, we
examined the consistencies and discrepancies among the
assessed tools in terms of identification and quantification. We
further investigated the factors contributing to these findings.
Based on our results, we provided a comprehensive guide to
aid researchers in selecting and effectively utilizing different DIA
data analysis tools. To facilitate DIA data analysis, we also
developed a freely accessible web server that consolidates the
search results produced by various DIA data analysis tools.
This server offers a user-friendly interface and can be accessed
at https://www.guomics.com/softw/diatoolcomp.

EXPERIMENTAL PROCEDURES

Spectral Library Conversion

Raw spectral libraries and FASTA sequence libraries from selected
studies (4, 9, 21–23) were downloaded. Specifically, lib-A, lib-B, lib-C,
and lib-E (Fig. 2B) were downloaded from PXD002952, PXD016647,
PXD017703, and PXD013658 as Spectronaut xls files. lib-D, also in xls
format, was built using Spectronaut. Lastly, lib-A was downloaded in
OpenSWATH tsv format. While DIA-NN can read Spectronaut xls files
without further conversion, we wrote an in-house R script to convert
the xls libraries into a format suitable for OpenSWATH. Specifically,
the modification expression was changed from brackets into UniMod
format. Also, the mappings were changed from "[carbamidomethyl
2 Mol Cell Proteomics (2023) 22(9) 100623
(C)]" to "(UniMod:4)," from "[oxidation (M)]" to "(UniMod:35)," and from
"[acetyl (protein N-term)]" to "(UniMod:1)." Finally, the file columns
were mapped into the corresponding columns of the OpenSWATH tsv
file. TargetedFileConverter in OpenSWATH was then used to convert
the OpenSWATH tsv file into the OpenSWATH TraML format. The
TraML files were imported into EncyclopeDIA in dlib format. Lastly, the
blib file format, which can be imported into Skyline, was generated
using EncyclopeDIA.

Parameters for the Five DIA Tools

This section summarizes the parameters used for each DIA data
analysis tool. EncyclopeDIA was used in the target-decoy mode, with
equal numbers of target and decoy peptides. The decoys were
generated in reverse mode. The precursor, fragment, and library mass
tolerances were set as 10 ppm for the Orbitrap datasets and 25 ppm
for the SWATH datasets. Percolator 3.0.1 (https://github.com/
percolator/percolator/) was used to estimate the peptide and protein
FDRs. The decoy peptides for OpenSWATH were generated using
OpenSwathDecoyGenerator, and the results were converted into PQP
file using TargetedFileConverter. PyProphet was used to generate the
peptide identification result with peptide and protein FDR control.
Detailed command lines are provided in supplemental Fig. S5.
Spectronaut was used with the default factory settings provided in the
user interface, as detailed in supplemental Fig. S4.

The source-specific indexed retention time (iRT) calibration was
allowed, and the calibration mode was set as “automatic.” The m/z
extraction strategy was set as “maximum intensity.” The mass toler-
ances of both MS1 and MS2 were set as “system default strategy.”
Other options selected include “precision iRT,” “exclude deamidated
peptides,” and “iRT regression by local nonlinear regression”. The
decoy for spectral library was generated using the “mutated” option
with the decoy limit strategy set as “dynamic;” the “library size frac-
tion” was set as 0.1 with the “machine learning” option set as “per
run.” “posttranslational modification localization” was selected with a
probability cut-off of 0.75. For the quantification, we used the Top-6
transition ion at MS2 level. “Cross-run normalization” was selected
and set to use the “global normalization strategy.” The “proteotypic
filter” was set as “none”. The major grouping was performed by
“protein group ID,” while the minor peptide grouping by “stripped
sequence.” The major group was set as “mean peptide quantity,” and
“major group Top1-3” was selected.

For the diaPASEF dataset in Spectronaut, the extraction of the ion
chromatograms and ion mobility window was set as “dynamic” with
correction factor 1. Other settings were the same as for the DIA
analysis. For the library-free search, the factory settings were used.
The length of peptides was set to range between 7 and 52 amino
acids, with a maximum of five variable modifications and two missed
cleavages. Other parameters were the same as for the library search.

For DIA-NN, the dynamic correction of mass accuracy was used. In
addition, the options “process in batches,” “use neural network,” “use
isotopologues,” “RT profiling,” and “remove likely interference” were
chosen. FDR cut-off was set as 0.01 at the precursor level.

For Skyline, the decoy peptides were appended in reverse mode.
For peptide identifications, we generated a peak scoring model with
mProphet using scores derived from intensity, RT difference, library
dot-product, weighted shape, weighted co-elution, co-elution count,
signal to noise, and product mass error.

Compilation of a Comparative Report for Each Data Analysis Tool

Each data analysis tool generated results in different formats. To
enable comparisons between different tools, we generated a unified
data format. We used the mean values when a peptide included
multiple charge states. To avoid the complexity of the modified pep-
tides, we only considered the unmodified peptides.

https://www.guomics.com/softw/diatoolcomp
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Evaluation of DIA Proteomics Software Tools
For EncylcopeDIA, the peptide (elib.peptides.txt) and protein (eli-
b.proteins.txt) quantification matrices were reported as result files
without precursor files. In addition, the peptide modifications were
changed into UniMod format.

For DIA-NN, peptide precursors (pr.matrix) and protein matrices
(pg.matrix) were used as the result files. The mean intensity of a
peptide’s precursors with an identical stripped sequence was used as
the peptide’s intensity.

For OpenSWATH, the precursor peptide matrices were reported as
the output. The columns FullPeptideName, charge, and intensity were
extracted to form the precursor matrix. The peptide intensity matrices
were generated using the mean intensity of the peptide precursors
sharing identical stripped sequences. Protein intensity was computed
from the three most abundant precursors of each protein using Pro-
teomeExpert (24).

For Skyline, Total.Area and Precursor.Charge were used as the
skyline result files to generate the precursors’ intensity matrices.
Peptides and proteins’ intensity matrices were computed similarly to
OpenSWATH. Additionally, the modifications were changed to
UniMod formats.

Finally, for Spectronaut, PEP.Quantity, PG.ProteinGroups, and
EG.PrecursorId were chosen to report the peptide precursors, protein
groups, and peptide matrices.

Protein Identification

To avoid the variations caused by peptide modification, we only
counted the number of stripped peptides without modifications. Also,
to prevent the complication arising from the protein groups, we only
used the unique proteins that do not belong to any protein group in
reporting the protein identification number. For the label-free quanti-
fication (LFQ) samples, the true ratios are 1:1, 2:1, and 1:4 for human,
yeast, and Escherichia coli. in dataset A; 1:1, 1:1.3, and 2:1 for human,
Caenorhabditis elegans, and yeast in dataset B; and 1:1 and 1:3 for
human and yeast in dataset C for each pair of sample sets. The ratios
were calculated using the mean values of each sample. The identifi-
cations were considered true if the experimental ratios were within
30% of the true ratios.

UpSet Analysis

As we compared more than five data analysis tools and search
strategy combinations, we used UpSet plots to visualize the inter-
section of the identified peptides and proteins. Every possible inter-
section was represented using heatmaps with their ranked occurrence
shown in the left-hand bar plots. Since the number of combinations
was very large, we have restricted to the top 90% cumulative occur-
rences for visualizing the intersections.

Properties of Peptides and Proteins

Four peptide properties and three protein ones were used to
characterize the different intersection portions further. The quantified
peptide and protein intensity was individually derived from each
software tool’s peptide and protein quantification matrices. A pep-
tide’s length was counted using the number of characters (i.e., amino
acids) within its sequence. GRAVY values were calculated by sum-
ming the hydrophobicity values derived from the Kyte-Doolittle scale:
1.8, −4.5, −3.5, −3.5, 2.5, −3.5, −3.5, −0.4, −3.2, 4.5, 3.8, −3.9, 1.9,
2.8, −1.6, −0.8, −0.7, −0.9, −1.3, and 4.2 for A, R, N, D, C, Q, E, G, H, I,
L, K, M, F, P, S, T, W, Y, and V, respectively (25). Missed cleavages
were counted through the numbers of K and R within a peptide’s
sequence minus one. The RTs of the peptides were matched from the
normalized RT reported in the library. The molecular weights of the
proteins were calculated by summing the monoisotopic molecular
masses of their amino acids according to their full FASTA-file
sequences. The numbers of peptides per protein were computed
based on the source protein of each identified peptide.

Coefficients of Variance

CVs were calculated using SDs divided by the mean values of the
precursors, peptides, and proteins in a replicate set. The CV values
were calculated for precursor, peptide, and protein intensity.

LFQ Analysis

We plotted the log2 ratio of the intensity of the true positive pep-
tides or proteins of sample A versus sample B, log2(A/B), against the
log10 intensity of sample B for each species (supplemental Fig. S9).
Combined violin plots show the distribution of the LFQ ratios in
Figure 6. The left-hand plots show the distribution of the log2(A/B),
whereas the right-hand plots show the normalized distribution of
log10(B). The normalization was calibrated to each data analysis tool's
minimal and maximal intensity.

Cross-Tool Correlation of Intensity and RT

To perform a pairwise comparison of the data analysis tools, we
computed Pearson’s correlations between the intensity of matching
peptides and proteins as returned by different tools. In addition,
Pearson’s correlation of the RT apexes was also calculated, for each
tools pair, using matching peptides. Finally, the distribution of the RT
differences was plotted using violin plots and geom_violin in ggplot2,
with variable windows sizes to fit each dataset.
RESULTS

Study Design

The workflow of our comparative study of DIA data analysis
tools can be summarized in four sections (Fig. 1). Initially, we
used six datasets obtained from three types of mass spec-
trometers, which is feasible for DIA-MS scheme. In addition to
conventional target-decoy validations, we employed two
additional empirical validation approaches for each mass
spectrometer type.
More specifically, the multispecies datasets were derived

among the first-published DIA datasets generated with each
of three selected mass spectrometers. The first dataset is the
classic LFQBench datasets (19) (Homo sapiens, Saccharo-
myces cerevisiae, and E. coli, with ratios of 1:1, 2:1, and 1:4,
respectively) from TripleTOF MS instruments (dataset A: TOF-
HYE). The second dataset is from three species generated by
Biognosys on Orbitrap MS instruments (human, yeast, and
C. elegans, with ratios of 1:1, 2:1, and 1:1.3, respectively) (21,
22) (dataset B: Orbi-HYC). The last dataset is a two-species
data generated in diaPASEF (4) (human and yeast, with ra-
tios of 1:1 and 2:1, respectively) (dataset C: tims-HY). For the
second validation approach, we generated one in-house
dataset using a TripleTOF 6600 and mouse liver samples
(dataset D: TOF-ML). For the DIA Orbitrap validation, we used
a dataset of testis cancer tissues that measures more than
10,000 protein groups on a Q Exactive HF-X Orbitrap (dataset
E: Orbi-testis) (23). For TimsTOF Pro, we chose the HeLa cell
lysates dataset from the very first diaPASEF work (dataset F:
tims-HeLa) (Fig. 2A).
Mol Cell Proteomics (2023) 22(9) 100623 3



FIG. 1. Study workflow. The study workflow involves the utilization of six datasets generated from three types of mass spectrometers. These
datasets are used to benchmark five DIA data analysis tools: OpenSWATH, EncylcopeDIA, Skyline, Spectronaut, and DIA-NN. For each dataset, a
total of 12 libraries, consistingof six sequence libraries andsix spectral libraries, are analyzedusing thefiveDIAdataanalysis tools. Theperformance
evaluation of the data analysis tools comprises 34 different tests. The tests assess various aspects, including the numbers of identified peptides/
proteins, overlaps between identifications, CVs, and cross-tool correlations. An R-shiny server is developed. DIA, data-independent acquisition.

Evaluation of DIA Proteomics Software Tools
Five software tools for DIA analysis, which are still actively
improved, were chosen for this comparative study: Encyclo-
peDIA (version 1.0.2) (15), DIA-NN (version 1.7.5) (11), Open-
SWATH (version 2.5.0) (16), Skyline (version 20.1) (17), and
Spectronaut (version 14.5) (18). At the beginning of the study,
PEAKS was not chosen because its main emphasis was on de
novo identification, and it lacked the capability to use MS2 ions
for quantification. Nevertheless, since 2021, PEAKS has been
enhanced to include functionality for DIA identification and
quantification usingMS2 ions. Furthermore, it now offers various
approaches such as spectral library-based search, library-free
search, and de novo search. MaxDIA (https://github.com/
JurgenCox/compbio-base) (v2.4.2) was not used due to its
limited computational speed and prone to technical crashes,
making it unsuitable for comprehensive dataset comparisons.
Through personal communications, we have been updated that
newer versions of MaxDIA with significantly improved perfor-
mance are being developed. Each of the evaluated tools in this
study was developed and optimized for specific types of MS
instruments. Figure 2B provides a summary of the three key al-
gorithms where these tools exhibit the most significant differ-
ences. These algorithms encompass signal calibration for library
alignment, peak group scoring based on various chromato-
graphic or spectral features, and FDR estimation using classi-
fiers. Only Spectronaut and DIA-NN supported library-free
search mode. In this study, the analysis parameters of each
software tool were set to their default values and modes,
assuming thatmost users tend to use them as such. The specific
parameters used for EncyclopeDIA, Spectronaut, OpenSWATH,
DIA-NN, and Skyline are provided in the Methods section, as
described insupplemental Figs. S3–S7.Overall, the selectionand
configuration of the tools and their parameters were designed to
reflect typical user practices and enable a comprehensive eval-
uation of their performance on the DIA datasets.
Two library search strategies were used for each dataset,

resulting in six library-based and six library-free libraries. Library-
based method is the first widely used strategy in DIA analysis,
which analyzes DIA data using a spectral library. The spectral
library comprises the relative intensity of peptide fragment ions
4 Mol Cell Proteomics (2023) 22(9) 100623
and RT, which can be generated from fractionated DDA data or
predicted from precursor sequences. In this study, for the pub-
lisheddatasets (datasetsA,B,C,E,andF), spectral librarieswere
derived from the libraries provided in the original publications
while the in-house dataset (dataset D) was from the associated
in-housegenerated libraries (lib-D). Spectral lib-Acontains2451,
1554, and 1908 protein groups for human, E. coli., and yeast,
respectively. Spectral lib-B contains 7860, 4574, and 2303
protein groups for human, yeast, and C. elegans, respectively.
Spectral lib-C contains 9596 and 4624 of human and yeast
proteins, respectively. Spectral lib-D contains 8261 mouse
protein groups. Spectral lib-E contains 12,625 human protein
groups, while spectral lib-F contains 11,034 human protein
groups. Here, we comment on the size of libraries for the five
human-associated libraries by percentage of 20,000 human
encoding proteins: lib-A is considered as fairly small (around
10%); lib-B and lib-C are in middle size (30–40%); and lib-E and
lib-F are considered as comprehensive libraries (~50%). All the
spectral libraries were further converted to the file formats
required by each tool (supplemental Fig. S2). On the other hand,
library-free approaches converted DIA spectra into pseudoDDA
spectra and can be searched with FASTA sequence library like
DDA data. The sequence FASTA libraries are the same FASTA
file used to build the spectral library. The sizes of the sequence
libraries were 5.18, 2.12, 1.88, 2.06, 3.36, and 1.84 times larger
than that of the corresponding spectral libraries for lib-A, lib-B,
lib-C, lib-D, lib-E, and lib-F, respectively (Fig. 2C).
In our evaluation, we conducted analyses on the six datasets

using the five data analysis tools, both in library-based and
library-free modes whenever available. However, due to limita-
tions in processing TimsTOF data, library-free analyses could
only be performed using DIA-NN and Spectronaut. In total, we
performed 63 searches, out of which 51 were successful, six
were not possible due to the lack of functionality for processing
TimsTOF data, and six were unsuccessful due to technical is-
sues. The feasibility of performing DIA analysis and the final re-
ported formats (precursor, peptide, or protein matrices) is
summarized in supplemental Fig. S1. The performance of the
tools was compared at two basic levels: identification and

https://github.com/JurgenCox/compbio-base
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FIG. 2. Study details. A, details of the DIA datasets were used to evaluate the data analysis tools. B, for each dataset, the composition of their
spectral and sequence libraries is detailed here. C, three main aspects enclose the most relevant features of the DIA data analysis tools that we
evaluated: RT alignment, peak group scoring, and the FDR model. D, details of the metrics used to evaluate the identification and quantification
results. DIA, data-independent acquisition; FDR, false discovery rate; RT, retention time.

Evaluation of DIA Proteomics Software Tools
quantification, as illustrated in Figure 2D. These comparisons
allow for a comprehensive assessment of the tools' capabilities
in terms of accurately identifying and quantifying peptides and
proteins from the DIA datasets.
Depth of Peptide and Protein Identification
In our evaluation, we initially assessed the performance of

the five DIA data analysis tools by examining the number of
peptide and protein identifications. To account for the
Mol Cell Proteomics (2023) 22(9) 100623 5



Evaluation of DIA Proteomics Software Tools
potential variability introduced by modifications and protein
groups, we compared the number of identified stripped pep-
tide sequences and the corresponding unique proteins.
To ensure a reliable identification count at the precursor ion

level, we applied a FDR cut-off of less than 0.01. Instead of
generating a cumulative pseudo receiver operating charac-
teristic plot of identification number against FDR, we focused
on the absolute number of identifications meeting the FDR
<0.01 cut-off. This approach allows for a straightforward
comparison of the identification performance among the tools.
DIA-NN significantly outperformed the other tools. Specif-

ically, its identification numbers exceed those provided by the
second-best tool (Spectronaut) by 59.6%, 6.5%, 16.1%,
33.5%, 25.9%, and 20.2% for peptide numbers and by
53.0%, 22.6%, 31.6%, 27.0%, 23.5%, and 38.8% for unique
proteins, for the datasets A, B, C, E, D, and F, respectively
(Fig. 3). Spectronaut surpassed the third-ranked tool by
51.9%, 190.1%, 20.6%, and 74.7% identifications for dataset
A, B, D, and E, respectively. On the other hand, the number of
proteins identified by Spectronaut was not the second highest
for datasets D and E, possibly due to the redundancies in
peptides for the same proteins. The identification performance
of OpenSWATH was close to that of the two best performing
tools for the two TripleTOF datasets (A and D) as it only
identified 9.15% and 17.7% fewer peptides than Spectronaut.
It even identified the second largest number of unique proteins
in dataset D. EncyclopeDIA could not analyze the TimsTOF
Pro data, and its identification performance was relatively low
in the TripleTOF datasets (A and D). However, EncyclopeDIA
showed a fairly good performance on the Orbitrap datasets (B
and E), and it ranked second in numbers of identified proteins
in dataset E. Finally, Skyline performed better on the TripleTOF
datasets, achieving 12% more protein identifications in data-
set D than Spectronaut.
In the field of DIA analysis, there has been a trend in dis-

carding the time-consuming spectral library building steps as
spectral libraries can be directly predicted from the sequence
using deep neural network methods. In our analyses, we
observed that if the size of the spectral library was much
smaller (in this study 5-folds smaller) than the FASTA protein
sequence library, the library-free method performed better
than the library-based one. For instance, in the case of lib-A,
the sequence library was 5.18 times larger than the spectral
library. Using DIA-NN, the library-free methods identified
120.2% and 69.8% more peptides and proteins than the
library-based methods, whereas Spectronaut achieved 30.2%
and 11.6% more peptides and proteins. Additionally, DIA-NN
identified 8%, 6.9% more peptides in the TimsTOF Pro
dataset C and dataset F, respectively. While the number of
protein identifications was 1.7% smaller for dataset C, it was
28.4% larger for dataset F. For the remaining tools, the
highest number of identifications were derived again from the
library-based approaches. Of note, library-free methods
identified far more peptides than proteins, indicating
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additionally identified peptides are from already identified
proteins. These peptides were “degenerated” for protein
identification. For example, DIA-NN library-based approaches
achieved 8.3% more peptides but only 2.4% more proteins in
dataset B. Similarly, when using Spectronaut, there was a
significant rise of 31.4% in peptide identifications, whereas
the increment in protein identifications was only 9.7%.
The identification reliability was further assessed by the

defined mixed-species quantification ratio. We included the
30% peptides or proteins above/below the true quantification
ratios to determine if an identification was valid for the multi-
species defined ratio datasets (datasets A, B, and C). None of
the LFQ datasets reached the statistical thresholds estimated
by the FDR. The library-free methods provided better accu-
racy than the library-based ones.
The computing time was also recorded to evaluate the

computing speed of each tool (supplemental Fig. S8). Again,
DIA-NN was the fastest to complete computations (though the
tests were not running on the same machine, we indicated
with number of cores and estimated central processing unit
hours to make them comparable), followed by Spectronaut,
EncyclopeDIA, OpenSWATH, and Skyline.

Evaluation of the Cross-Tool Identifications

In order to assess the consistency and discrepancies
among various tools, we analyzed the shared physicochem-
ical properties that were deduced from the peptide or protein
sequences. This analysis allowed us to assess the consis-
tency in the identification results among the different tools. At
the quantification level, we computed the quantification ac-
curacy by analyzing the distribution of quantification ratios.
This analysis provided insights into the accuracy of the
quantification results generated by each tool. In addition, we
conducted pairwise cross-correlation comparisons of peptide
and protein intensities to evaluate the correlation between the
quantification values acquired from distinct tools. By con-
ducting these evaluations, we gained a better understanding
of the similarities and differences in the identification and
quantification results among the analyzed DIA data analysis
tools.
To study the source of the variable identifications across

tools, we next evaluated the peptides and proteins uniquely
identified by specific tools (Fig. 4A). As the number of
combinatorial overlapping would be exploding, we only
characterized the intersections that cumulatively summed up
to 90% of total identifications. We found a clear positive
correlation between the abundance and the number of iden-
tified tools. The peptides or proteins identified by several tools
had the highest intensity, whereas those identified by fewer
tools had lower intensity. In other words, the highest abundant
proteins generated peptides that were more easily identified
by any tool. On the contrary, peptides uniquely identified by
single tools were derived from less-abundant proteins with
lower signal level. Such was the case of the following



FIG. 3. Evaluation of peptide and protein identifications. Stripped peptides (top bars) and unique proteins (bottom bars) are plotted for each
dataset (named as A–F in Fig. 2A). Search modes are library-free (hollow bars) or library-based (solid bars). The solid color region below the
middle white line indicates the identifications that passes the truthfulness validation.
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FIG. 4. Characterization of cross-tool identifications. A, identified peptides. B, identified proteins. From top to bottom, the results from
datasets A–F are shown. The “overlap” column highlights in red when overlapping identifications across tools are found. The rows describe the
intersecting combinations. The cumulative count percentage is indicated in the leftmost pie charts. The ridge plots represent the distribution of
the log10 peptide/protein intensity derived from different tools. Peptide lengths are indicated for peptides and peptides per proteins are indi-
cated for proteins.
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analyses: library-free DIA-NN and Spectronaut on datasets A
and E, library-based Spectronaut and EncylcopeDIA on
dataset B, library-based Spectronaut on dataset C, library-
based and library-free DIA-NN on dataset D, and library-
based DIA-NN on dataset E and F.
Since more than 50% of the peptides identified by all the

tools in dataset A required library-free methods, we inspected
the physicochemical properties of the peptides from these
portions of additionally identified by library-free methods.
These peptides were shorter and with relatively low missed-
cleavage ratios. Also, as they eluted during the last part of
the chromatographic gradient with higher GRAVY values, they
were more hydrophobic. Similar observations could be made
from the library-free portion of dataset F (supplemental
Fig. S9).
Four out of six datasets for the peptides (Fig. 4A) and all the

datasets for the proteins (Fig. 4B) showed the highest
numbers of intersections across all tools. This showed high
consistency in the cross-tool DIA identifications. Furthermore,
protein identifications were more consistent than peptide
ones. In datasets A and D, the proteins intersecting across all
the tools were of the highest identification number among all
the combinatorial intersecting set. This indicates that these
additionally identified peptides are redundant for protein
identification improvement as those proteins are redundantly
identified through several of their peptides. This is consistent
with the number of peptides per protein identified, as the
intersecting portion across all the tools had more peptides per
protein.

Highly Consistent Quantification Results

In order to assess the accuracy of each tool, we calculated
the CVs for precursors, peptides, and proteins. The CV is a
measure of variability, with lower values indicating higher ac-
curacy and consistency. We observed that the CVs were
generally lowest for proteins, indicating greater stability in their
quantification across the different tools. On the other hand,
precursors exhibited higher variability, suggesting that their
quantification results were more prone to fluctuations. For the
datasets obtained from TripleTOF and TimsTOF mass spec-
trometers, most of the tools achieved a mean CV of less than
10%, indicating relatively good accuracy and consistency.
However, in the case of the library-based Spectronaut
searches on dataset D, the CVs at the precursor level were
higher, exceeding the 10% threshold. In comparison, the
Orbitrap datasets exhibited higher CVs than the datasets
obtained from other types of mass spectrometers. This was
particularly evident at the precursor level, where the mean CVs
were below 30%. These findings provide insights into the
accuracy and variability of the quantification results obtained
by each tool across different types of mass spectrometers and
datasets (Fig. 5A).
Next, we evaluated the cross-tool quantification efficiency

using pairwise correlation between the intensity of peptides
and proteins computed through different tools (Fig. 5B). The
Pearson’s coefficients between different tools were all greater
than 0.75, indicating that all the DIA tools provide a relatively
high-quantification consistency. The correlation coefficients
between peptide intensity were higher than those of protein
intensity for the Orbitrap and TripleTOF datasets, whereas
they were comparable for the TimsTOF Pro datasets. In
addition, we compared the RT difference by computing the
pairwise correlation coefficients of the chromatographic peak
apexes (supplemental Fig. S10). We found the RT and the
peptide intensity correlation coefficients followed similar
trends: the more robust the correlation in the RTs, the stronger
the correlation in the intensity. Also, we found minor RT dif-
ference (median = 0), and the RT correlation coefficients were
generally high (>0.98). Indeed, the RT correlations were higher
than those for the peptide and protein intensity. These results
show that similar peaks were picked, although they may
derive from distinct transitions or varying peak boundaries that
may result in different integrative values used to represent the
abundance of peptides and proteins. This suggests a high
consistency of all the examined tools when performing peak
picking.
The quantification accuracy was further evaluated using the

known true ratios from the LFQ datasets A, B, and C (Fig. 6).
Our results showed relatively high accuracy for most samples
where the median of the species ratios was closest to the
ratios. The quantification accuracy of proteins was better than
that of peptides in all three LFQ datasets. The performance of
library-free quantification for the larger mixed ratios from Tri-
pleTOF (e.g., 1:4 for E. coli in dataset A) was slightly worse for
peptides, but were relatively stable for the Orbitrap datasets.

Performance Evaluation Using a Publicly Available Library
and Hybrid Library Searches

The above studies compared library-free analysis with
library-based analysis with the spectral library created from
the dataset within this study. Next, we included some public
libraries prebuilt using multiple types of tissues or cell lines,
namely the DIA pan-human library version 2 (DIA pan-human
library version2, DPHL v2) (26). In addition, some tools like
Spectronaut and DIA-NN can provide the option for hybrid
search approach, which uses a predicted library in combina-
tion with the project-specific deep library.
Here, we compared the performance of multiple library

strategies, including the project-specific library, library-free
searches from our current results, DPHL v2, and a hybrid li-
brary generated from predicted library-free searches in com-
bination with project-specific library by DIA-NN. We tested on
the Orbitrap-testis dataset E, which has the largest spectral
library with protein isoforms, and adopted DIA-NN, which
outperformed other tools in the analyses described above
(supplemental Fig. S11).
The hybrid library-search strategy led to the highest number

of identifications for both peptides and proteins, although the
Mol Cell Proteomics (2023) 22(9) 100623 9



FIG. 5. Evaluation of DIA quantification. A, the CVs are calculated at the precursor, peptide, and protein level, and are here plotted for the
DIA data analysis tools evaluated in this study. The median values were indicated as text below the violins. B, Pearson’s correlations of the
peptide and protein intensity were derived from each tool pair. DIA, data-independent acquisition.
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difference compared to the project-specific library was mar-
ginal. The publicly available DPHL v2 library achieved a similar
level of identifications as the project-specific library in terms of
peptides and unique proteins, but it was still lower than the
other two methods. Concerning protein isoforms, library-free
searches identified a greater number of protein groups,
potentially due to the multiplicity effect in protein grouping.
DPHL v2 was able to identify proteins absent in the tissue-
specific libraries but further validation is necessary to
confirm its presence.

A Web Server for Unified Format and Comparison

To standardize the representations of precursors, peptides,
and proteins reported by different DIA tools, we created an R-
based platform. This platform takes the output matrices
generated by each of the five DIA tools as input and produces
unified precursor, peptide, and protein expression matrices.
These matrices can then be used for further comparative an-
alyses, enabling consistent and streamlined data interpreta-
tion across different tools. A freely accessible web server was
10 Mol Cell Proteomics (2023) 22(9) 100623
assembled to unify the search results generated by different
DIA data analysis tools, providing a user-friendly comparison
platform: https://www.guomics.com/softw/diatoolcomp. Also,
the codes in converting search results and data analysis are
available at https://github.com/guomics-lab/DIAToolComp.
DISCUSSION

Although a first evaluation of the available data analysis tools
was performed a few years ago (19) when DIA-based prote-
omics regained its popularity, it only included TripleTOF data-
sets and a few tools. During the past few years, these tools have
been substantially improved. In our work, we compared fiveDIA
data analysis tools (Spectronaut, EncylcopeDIA, DIA-NN,
OpenSWATH, and Skyline), using data generated by the three
types of mass spectrometers commonly used for DIA (Triple-
TOF, Orbitrap, and TimsTOF Pro).
A recent work byGotti et al. (20) compared the performance of

six tools, including DIA-NN, DIA-Umpire, OpenSWATH, Scaf-
foldDIA, Skyline, and Spectronaut, but this study has several

https://www.guomics.com/softw/diatoolcomp
https://github.com/guomics-lab/DIAToolComp
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unique features. Firstly, Gotti et al was performed on artificially
simplified samples, which only contains 48 human proteins with
E. coli. proteome as background. These simple samples cannot
reflect the real complexity of most proteomic applications. In
addition, their analyses were only performed on the Orbitraps-
based DIA datasets, whereas in our study we comprehensively
compared three types of MS instruments. We compared the
latest releasedversionsof eachsoftware tools, includingDIA-NN
(version 1.7.5 from 2021), while Gotti et al adopted the 2020/04/
20 versionofDIA-NN.Therehavebeensignificant improvements
in the performance between these two versions. With the new
version, we concluded that DIA-NN is superior in most DIA-MS
FIG. 6. Evaluation of quantification in multispecies datasets. The p
intensity values for datasets A–C at peptide and protein levels. The tools
indicated at the right for each dataset. Solid lines indicate the true quan
data analyses. Our work also included more characteristics in
terms of performance, including speed comparison and physi-
cochemical properties of cross-tool overlapping entities. Finally,
we provided an integrative server for comprehensive analysis of
user’s inputs (27).
The specific implementations of these five tools are not

identical. EncyclopeDIA scores the non-RT chromatographic
features of X!Tandem hyperscore and 15 additional features to
be trained using Percolator (28), a semisupervised method
support-vector machine-based tool for the first round FDR
corrections. Then, EncyclopeDIA uses the most confidently
detected peptides to estimate the RT distribution to filter the
lots show the distributions of the log2(A and B) against log10(B) of the
are indicated with color legend in the middle. The species names are
tification ratios.
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transitions fitting the peak shape, and it finally quantifies the
peptides for another round of FDR correction with Percolator.
OpenSWATH performs the RT alignment against the RT cali-
bration peptides and then extracts the ion chromatograph.
The extracted peak groups are scored using orthogonal fea-
tures in PyProphet (29), a semi-supervised linear discrimina-
tive analysis–based learning algorithm originally applied in
analyzing the selected reaction monitoring data. DIA-NN (11)
performs the RT calibration of the endogenous peptides. It
then uses 73 liquid chromatography and MS scores as the
input in training a deep neural network–based model to obtain
discriminant scores for FDR estimation. Skyline-targeted
analysis first extracts peak groups with seven significant
scores and then performs automatic peak picking using
mProphet or other algorithms. Lastly, the commercial software
Spectronaut uses a core algorithm originally adopted from
selected reaction monitoring and mProphet-based algorithms.
DIA-NN and Spectronaut were provided with library-free
search options but their principles in spectral library-free
searches are different. The module directDIA in Spectronaut
utilizes the similar principle by DIA-Umpire, which firstly gen-
erates DDA-like pseudospectra and then performs searches.
Whereas DIA-NN’s library-free search uses computational
spectral library generated from the provided sequence data-
base and then performs a DIA style targeted/peptide-centric
analysis.
In our evaluation, we observed that despite the variations in

implementation and adjustable parameters among the DIA
data analysis tools, the results they produced were highly
consistent. This consistency was particularly evident in the
identification and quantification of proteins, where a signifi-
cant portion of the proteins identified were consistently iden-
tified across all tools. Furthermore, when comparing the
quantification results between different tools, we found robust
correlations with Pearson's coefficients exceeding 0.75.
These consistent results across multiple datasets demon-
strate the robustness of DIA-based quantitative proteomics
and highlight the reliability of the analyzed tools.
From our comparative results, DIA-NN demonstrated the

best performance in terms of identification, computational
efficiency, and compatibility when analyzing different formats
of DIA-MS data. DIA-NN comes with either a simple graphic
user-interface version or a command-line executable version
running on Linux clusters. More importantly, it is open-source
software. The developers actively respond on the DIA-NN
issue forum, and it is currently frequently updated. It also
supports multiple operating systems. However, its noncom-
mercial and academic nature hinders its productivity in
translating to the biomedical industry, which requires a com-
plete customer support service. It is noteworthy that DIA-NN
is no longer an open-source tool since version 1.7.12. The
source codes for DIA-NN have been eliminated from its
GitHub repository. In contrast, commercial software Spec-
tronaut, which supports different DIA data formats and
12 Mol Cell Proteomics (2023) 22(9) 100623
provides tolerable computing time, is a valid alternative. In
particular, Spectronaut encompasses a variety of downstream
analysis pipelines that can help inexperienced users. The
remaining three tools tested by this study did not support
different search modes or data formats in our evaluation.
The development of deep learning–based approaches for

library prediction has sparked discussions about the necessity
of building spectral libraries for DIA analyses. Our study
investigated this matter and found that while library-free
methods can outperform library-based methods when the li-
brary is very small (e.g., containing only 3000 proteins for
human encoding proteins), they showed lower sensitivity and
poorer RT concordance than library-based methods when
larger libraries are used. This indicates that building a
comprehensive library is still crucial for most DIA analyses.
Additionally, the width of the DIA isolation window is another
important factor that can influence the performance of library-
free searches. Interestingly, we observed that datasets with
narrower isolation windows exhibited superior performance in
library-free searches. These findings align with previous
research by Navarro et al. (19), which reported smaller differ-
ences in identifications between library-free and library-based
approaches when narrow DIA isolation windows were
employed. We found that the peptides that were identified by
several tools were the most intense ones, whereas the less
identified ones had lower intensity and eluted late in the
gradient. Furthermore, we observed inconsistency among the
low-abundant proteins. This suggests that future software
should find ways to address the identification of low-abundant
peptides. In addition, other long-standing issues in the DIA
data interpretation remain to be improved. These include, but
not limited to, identification and confirmation of low abun-
dance, noncanonical, or modified peptides, the precise esti-
mation of peptide and protein FDR, dealing with technical
missing values in large datasets, and integrating results
derived from different search engines.
It is important to acknowledge that a comparative study of

software tools in the field of DIA analysis has inherent limita-
tions. One of these limitations is the inability of providing an
up-to-date comparison, as software tools are continually
evolving to improve their performance. The comparison pro-
vided in our study represents a "state-of-the-art" assessment
at the time of analysis, based on specific software versions.
Another limitation is the small sample size of the test data
used in the study. While efforts were made to select repre-
sentative datasets, it is recognized that these datasets may
not fully capture the diversity and complexity of all DIA-based
proteomic datasets. In particular, very large datasets were not
included in the analysis. Additionally, the choice to focus on
datasets with fairly homogeneous samples was made to
minimize variance from sample heterogeneity. However, real-
world samples are often more heterogeneous and complex,
such as clinical samples from large cohorts. The performance
of DIA tools in such complicated samples would require
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further investigation in future studies. It is important to inter-
pret the findings of our study within these limitations and
consider the evolving nature of the field when assessing the
performance of DIA analysis software tools.
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