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Abstract: Facial emotion recognition (FER) is a computer vision process aimed at detecting and
classifying human emotional expressions. FER systems are currently used in a vast range of applica-
tions from areas such as education, healthcare, or public safety; therefore, detection and recognition
accuracies are very important. Similar to any computer vision task based on image analyses, FER
solutions are also suitable for integration with artificial intelligence solutions represented by different
neural network varieties, especially deep neural networks that have shown great potential in the last
years due to their feature extraction capabilities and computational efficiency over large datasets. In
this context, this paper reviews the latest developments in the FER area, with a focus on recent neural
network models that implement specific facial image analysis algorithms to detect and recognize
facial emotions. This paper’s scope is to present from historical and conceptual perspectives the
evolution of the neural network architectures that proved significant results in the FER area. This pa-
per endorses convolutional neural network (CNN)-based architectures against other neural network
architectures, such as recurrent neural networks or generative adversarial networks, highlighting
the key elements and performance of each architecture, and the advantages and limitations of the
proposed models in the analyzed papers. Additionally, this paper presents the available datasets
that are currently used for emotion recognition from facial expressions and micro-expressions. The
usage of FER systems is also highlighted in various domains such as healthcare, education, security,
or social IoT. Finally, open issues and future possible developments in the FER area are identified.

Keywords: facial emotion recognition; neural network; deep learning; artificial intelligence

1. Introduction

Over the past years, the automatic process of facial emotion recognition (FER) has
become a substantial area of interest for researchers. The main goals for FER systems are
the identification of a person’s emotions and their intensities, followed by the classification
of expression cause, which can be genuine or simulated.

From the implementation perspective, in the last years, FER systems developed using
different types of artificial neural networks (ANNs), which proved to have better results
than using traditional machine learning methods based on feature descriptors such as
histogram of oriented gradients (HOG), or local binary pattern (LBP) combined with data
classifiers such as support vector machine (SVM), k-nearest neighbors (KNN) or random
forest. As demonstrated in other detection or recognition processes based on ANNs,
people’s emotions can also be accurately detected and recognized in a subject-independent
way by building a model through the analysis of a collection of training data from different
individuals, including skeletal movements [1]. The use of ANNs for emotion detection and
recognition opened many opportunities for practical applications, especially in fields such
as healthcare, security, business, education, or manufacturing.
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According to Ekman and Friesen [2], there are six fundamental emotions that are easy
to recognize: anger, fear, sadness, happiness, surprise, and disgust. On the other hand, what
is difficult to label is their veracity and their voluntary control (whether they are simulated
or not), which can generate confusion in the identification process of these basic emotions.
Further, starting from the basic emotions, derived emotions can be obtained either by
varying the intensity degree of the basic emotions (for example, fear can become fright,
happiness can become pleasure, etc.) or by combining the basic emotions (for example,
surprise and happiness become pleasant surprise). Ekman and Friesen’s model proposes
the idea that the generation and interpretation of certain facial expressions are deeply
inscribed in the brain and universally recognized. Therefore, these facial expressions are
not cultural elements, specific to a nation.

To identify an emotion, the Facial Actions Coding system proposed by Ekman and
Friesen [3] describes a set of 46 Action Units (AU) that correspond to the elementary
movement of facial muscles. These action units are linked to one muscle, a set of muscles,
or a complex movement, and the movements of a certain muscle determine the activation
of a certain action unit. Consequently, single or several action units participate in the
formation of a facial expression, and the seven emotions are represented by different sets of
valid action units.

Further, a systematic review of the scientific studies on emotion recognition from facial
expressions, led by psychologist and neuroscientist Lisa Feldman Barrett [4], found that
there is no reliable way in which a person’s emotional state can be accurately predicted.
However, all proposed emotion recognition systems are based on a similar set of features
and well-founded assumptions; there are a small number of distinct and universal emo-
tional categories, the emotions are involuntarily revealed on people’s faces, and they can
be detected by algorithms.

Generally, the facial analysis process for emotion recognition is based on the identifica-
tion, in the analyzed images, of features that represent a set of regions of interest, and which
hold important information for a specific emotion [5]. By analyzing the emotion’s formation
dynamic over time in multiple images, the features can be classified as temporary (location
around the eyes, eyebrows, mouth, cheekbones) or permanent (hair, skin texture) [6]. More-
over, the geometric deformation of these features indicates the emotion intensity level. In
the end, emotions are mostly revealed by the deformation of temporary features, but there
are also some significant challenges such as head position variations, lighting variations,
alignment errors, or occlusions that can affect the recognition process [7].

Facial analysis based on neural networks can vary from full-face processing and
analysis to specific facial landmark processing [8]. The full-face analysis approach involves
having many different images of the person’s face, whereas in the facial landmark-based
approach, the neural networks are trained on facial landmarks such as the right eye, left eye,
etc., and the recognition is based on the geometric relationship between the landmarks [9].

The standard process for emotion detection and recognition from an input image
based on ANNs is composed of the face detection component followed by the feature
extraction and emotion prediction sub-components of the integrated ANN (Figure 1).

Sensors 2023, 23, x FOR PEER REVIEW 2 of 30 
 

 

and recognition opened many opportunities for practical applications, especially in fields 
such as healthcare, security, business, education, or manufacturing. 

According to Ekman and Friesen [2], there are six fundamental emotions that are easy 
to recognize: anger, fear, sadness, happiness, surprise, and disgust. On the other hand, 
what is difficult to label is their veracity and their voluntary control (whether they are 
simulated or not), which can generate confusion in the identification process of these basic 
emotions. Further, starting from the basic emotions, derived emotions can be obtained 
either by varying the intensity degree of the basic emotions (for example, fear can become 
fright, happiness can become pleasure, etc.) or by combining the basic emotions (for ex-
ample, surprise and happiness become pleasant surprise). Ekman and Friesen’s model 
proposes the idea that the generation and interpretation of certain facial expressions are 
deeply inscribed in the brain and universally recognized. Therefore, these facial expres-
sions are not cultural elements, specific to a nation. 

To identify an emotion, the Facial Actions Coding system proposed by Ekman and 
Friesen [3] describes a set of 46 Action Units (AU) that correspond to the elementary move-
ment of facial muscles. These action units are linked to one muscle, a set of muscles, or a 
complex movement, and the movements of a certain muscle determine the activation of a 
certain action unit. Consequently, single or several action units participate in the for-
mation of a facial expression, and the seven emotions are represented by different sets of 
valid action units. 

Further, a systematic review of the scientific studies on emotion recognition from fa-
cial expressions, led by psychologist and neuroscientist Lisa Feldman Barrett [4], found 
that there is no reliable way in which a person’s emotional state can be accurately pre-
dicted. However, all proposed emotion recognition systems are based on a similar set of 
features and well-founded assumptions; there are a small number of distinct and univer-
sal emotional categories, the emotions are involuntarily revealed on people’s faces, and 
they can be detected by algorithms. 

Generally, the facial analysis process for emotion recognition is based on the identi-
fication, in the analyzed images, of features that represent a set of regions of interest, and 
which hold important information for a specific emotion [5]. By analyzing the emotion’s 
formation dynamic over time in multiple images, the features can be classified as tempo-
rary (location around the eyes, eyebrows, mouth, cheekbones) or permanent (hair, skin 
texture) [6]. Moreover, the geometric deformation of these features indicates the emotion 
intensity level. In the end, emotions are mostly revealed by the deformation of temporary 
features, but there are also some significant challenges such as head position variations, 
lighting variations, alignment errors, or occlusions that can affect the recognition process 
[7]. 

Facial analysis based on neural networks can vary from full-face processing and anal-
ysis to specific facial landmark processing [8]. The full-face analysis approach involves 
having many different images of the person’s face, whereas in the facial landmark-based 
approach, the neural networks are trained on facial landmarks such as the right eye, left 
eye, etc., and the recognition is based on the geometric relationship between the land-
marks [9].  

The standard process for emotion detection and recognition from an input image 
based on ANNs is composed of the face detection component followed by the feature ex-
traction and emotion prediction sub-components of the integrated ANN (Figure 1). 

 
Figure 1. Main components of a facial emotions recognition system based on ANN. Figure 1. Main components of a facial emotions recognition system based on ANN.

Firstly, face detection can be implemented in several ways:

• a holistic approach—the face is modeled as a whole, without component parts that
could be isolated [10];

• component-based approach—certain face attributes can be processed individually [11];



Sensors 2023, 23, 7092 3 of 32

• the configuration-based approach—the spatial relationships between the components
of the face are modeled, for example, left eye–right eye, nose–mouth [12].

After the face detection phase, the feature extraction phase performed by different
types of learning methods (supervised/unsupervised/reinforcement) proved its usefulness
by the fact that in this case, the features are chosen automatically by learning and the
performance obtained is superior to traditional methods such as principal component
analysis, local feature analysis, or linear discriminant analysis [13,14]. However, some less
pleasant aspects are also worth mentioning, for example, the need for many examples
to avoid overfitting and the choice of architecture, which can be problematic due to its
complexity. Further, the features are determined either on the entire facial area or on specific
areas of interest, which can generate problems such as insufficient labeled training data
or a challenging labeling process caused by complex or ambiguous training data [15,16].
Nevertheless, in the facial analysis domain, these issues can be overcome using pre-trained
networks, semi-supervised learning, or synthesizing new images [17]. Finally, ANN is used
to extract significant and non-redundant features and to execute the emotion recognition
task, followed by the labeling of the detected emotion with the predicted value.

Nowadays, a powerful form of machine learning is deep learning technology, and
it represents a very important aspect in the development of any system that has the
requirement to classify specific data such as text or images [18,19]. The success of this
technology is generated primarily by the availability of a huge amount of data combined
with the technological evolution in terms of data storage and capacity management [20,21].
From the architectural point of view, deep learning is represented by an artificial neural
network with many hidden layers between input and output, and it consists of a complex
collection of functions that link the layers. In computer vision, the simplest example is
the classification of an image to a specific class, which means the network is built on top
of a function or multiple functions that have the purpose of mapping the image data to a
specific class.

Deep neural networks (DNNs) are the most used machine learning solution by FER
systems [22]. DNN uses a system of layers of neurons whose weights are dynamic and
changing to match incoming information. Deep learning techniques are used in many FER
applications due to the results obtained, results that in some cases exceed the results of
the best human subjects. The major advantage of DNN over traditional machine learning
techniques is the fact that DNN incorporates the feature extraction step of the input ele-
ments, whereas this step is usually performed separately by a domain expert in traditional
machine learning techniques [23].

This paper is a comprehensive survey of neural network solutions for emotion recogni-
tion. In this context, it aims to provide a guide by reviewing the recent developments of FER
systems based on neural networks and to provide insights on how to make improvements
in this fast-growing field.

The rest of this article is organized as follows. Section 2 presents the methodology
for selecting the articles that are included in this survey. An overview of the databases
used in neural network-based FER systems is presented in Section 3. Several types of
different neural network architectures used in FER systems and the new trends in using
neural networks for emotion recognition are presented and discussed in Section 4. A
detailed presentation of the use of the FER system is presented in Section 5. Moreover,
some challenges, opportunities, and a summary of the advantages and limitations of the
FER systems are discussed in Section 6. Section 7 presents the conclusions. A list of
abbreviations is provided in abbreviations part.

2. Methodology

This review focuses on the latest neural network-based solutions developed for the
recognition of specific facial emotions. In this sense, SCOPUS and Web of Science databases
were used to identify relevant papers, and then, the results were conducted and reported
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with reference to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
extension for Scoping Reviews (PRISMA-ScR) [24].

The search was split between individual keywords (Figures 2 and 3), such as
1—“neural networks”, 2—“deep learning”, 3—“emotion recognition”, 4—“images classifi-
cation”, as well as combinations of keywords using the “and” connector while searching
the title, abstract, and keywords of those original articles. The resulting collection of articles
was filtered based on the publishing year (within the 2018–2022 period) and the used language
(English). After this, duplicates were removed, titles and abstracts were screened and, in
the end, the full content of each article was reviewed.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 30 
 

 

2. Methodology 
This review focuses on the latest neural network-based solutions developed for the 

recognition of specific facial emotions. In this sense, SCOPUS and Web of Science data-
bases were used to identify relevant papers, and then, the results were conducted and 
reported with reference to the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) [24]. 

The search was split between individual keywords (Figures 2 and 3), such as 1—
“neural networks”, 2—“deep learning”, 3—“emotion recognition”, 4—“images classifica-
tion”, as well as combinations of keywords using the “and” connector while searching the 
title, abstract, and keywords of those original articles. The resulting collection of articles was 
filtered based on the publishing year (within the 2018–2022 period) and the used language 
(English). After this, duplicates were removed, titles and abstracts were screened and, in 
the end, the full content of each article was reviewed. 

Figure 2. SCOPUS and Web of Science search results on keywords between 2018 and 2022: 
neural networks, deep learning, emotion recognition, images classification, separately. 

 

Figure 3. SCOPUS and Web of Science search results on combined keywords between 2018 
and 2022. 

After an initial set of 1170 articles, 945 were screened after the removal of duplicates. 
Then, 642 articles were excluded after screening titles and abstracts, and 303 articles were 
excluded after a full content review. The final set is represented by 155 articles. The papers 
were grouped according to the main and secondary topics addressed: neural network ar-
chitecture, number of recognized emotions, application field, used databases, and the pre-
sented limitations of the proposed methods. The flow of information through the scoping 
review is presented in Figure 4. 

Figure 2. SCOPUS and Web of Science search results on keywords between 2018 and 2022: neural
networks, deep learning, emotion recognition, images classification, separately.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 30 
 

 

2. Methodology 
This review focuses on the latest neural network-based solutions developed for the 

recognition of specific facial emotions. In this sense, SCOPUS and Web of Science data-
bases were used to identify relevant papers, and then, the results were conducted and 
reported with reference to the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) [24]. 

The search was split between individual keywords (Figures 2 and 3), such as 1—
“neural networks”, 2—“deep learning”, 3—“emotion recognition”, 4—“images classifica-
tion”, as well as combinations of keywords using the “and” connector while searching the 
title, abstract, and keywords of those original articles. The resulting collection of articles was 
filtered based on the publishing year (within the 2018–2022 period) and the used language 
(English). After this, duplicates were removed, titles and abstracts were screened and, in 
the end, the full content of each article was reviewed. 

Figure 2. SCOPUS and Web of Science search results on keywords between 2018 and 2022: 
neural networks, deep learning, emotion recognition, images classification, separately. 

 

Figure 3. SCOPUS and Web of Science search results on combined keywords between 2018 
and 2022. 

After an initial set of 1170 articles, 945 were screened after the removal of duplicates. 
Then, 642 articles were excluded after screening titles and abstracts, and 303 articles were 
excluded after a full content review. The final set is represented by 155 articles. The papers 
were grouped according to the main and secondary topics addressed: neural network ar-
chitecture, number of recognized emotions, application field, used databases, and the pre-
sented limitations of the proposed methods. The flow of information through the scoping 
review is presented in Figure 4. 

Figure 3. SCOPUS and Web of Science search results on combined keywords between 2018 and 2022.

After an initial set of 1170 articles, 945 were screened after the removal of duplicates.
Then, 642 articles were excluded after screening titles and abstracts, and 303 articles were
excluded after a full content review. The final set is represented by 155 articles. The papers
were grouped according to the main and secondary topics addressed: neural network
architecture, number of recognized emotions, application field, used databases, and the
presented limitations of the proposed methods. The flow of information through the
scoping review is presented in Figure 4.
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The relevant papers were the ones published in high-ranking conferences and journals
and with a considerable number of citations, even though taking into account the number
of citations meant filtering out recent papers that did not accumulate citations because of
the time constraint. After that, the technical novelty and relevance of the work were the
next criteria. Since the survey structure includes sections that can be found in the articles
selected for analysis, we believed that the articles’ presentation should be included in the
tables for an easier understanding of the solutions.

Finally, to compare the analyzed papers, the emphasis for the performance metrics
was set on accuracy since it describes how the developed solutions perform across all
classes (represented by the recognized emotions). Another aspect of accuracy is that it
is appropriate to use when all classes are of equal importance, which is pertinent for the
emotion’s recognition case.

3. Databases Used by FER Systems

An important role in the constant improvements of FER systems is represented by the
facial expression databases; this is because collecting an adequate dataset is one of the most
critical preliminary aspects for creating automated systems to detect specific classes [25].
Now, the classification rate of emotions is high, but not high enough to obtain a maximum
accuracy value. Considering that a person can have a whole spectrum of emotions that can
change in a very short time interval, a large training dataset is needed to cover as many cases
as possible. Thus, as the required number of detected emotions becomes higher, the more
difficult it becomes for the neural networks to distinguish between emotions without having
sufficient training data. Additionally, the datasets on which neural networks are trained
must be sufficiently diverse because, without diversity, there is a risk for the technology
to be biased by minority classification classes [26]. Another aspect is the case of medical
conditions or physical impairments where temporary or permanent paralysis of the facial
muscles occurs, and the emotions of the concerned persons may be misunderstood by the
algorithms [27]. This can lead to a wide range of misclassification situations, with impacts
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ranging from the receipt of inappropriate services to the misdiagnosis of a psychological
disorder. The correct classification rate can also vary from one database to another using
the same neural network architecture [28].

Currently, there are a considerable number of databases used for emotion recognition,
containing images that vary in size, posture, expressions, lighting conditions, as well as
the number of subjects. The images are either acquired in the laboratory or the wild. In
the case of images acquired in a controlled environment, the expressions are simulated,
and the background has a limited variation, whereas the images acquired in the wild are
characterized by a huge variety. Nevertheless, the different environments in which the
images were acquired showed that the accuracy of facial emotion recognition results can
play an important role in classification based on skin color or ethnicity. It was found that
social norms and cultural differences influence the level of expression of some emotions [29].

The field of emotion recognition is emergent, and it needs large databases, obtained
especially in the wild where the conditions are very dynamic. The performance of FER
systems is highly dependent on the training databases which must be diverse because facial
expressions have slight variations from person to person, may mix different emotional
states at the same time, or people may not even express emotions.

Table 1 presents the most common databases used in emotion recognition with the
aid of neural networks [30]. These databases contain either single images of emotions
(of maximum intensity) or sequences of images and videos corresponding to a specific
emotion, and other details such as the environment type used for image acquisition, the
number of images, the type of images from the color perspective, the number of involved
human subjects, and the contained facial expressions that can be observed.

As presented in [29], there are collections of databases that include either

• spontaneous datasets—this refers to expressions that are simulated by the participant.
In this case, the participants know the fact that they are monitored, but emotions are
shown in a natural way, and in most cases, the acquisition context is a labored one.

• in-the-wild datasets—in this case the process of acquisition is not labored, and the
participants are filmed in real-world scenarios.
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Table 1. Facial expressions databases.

Database Spontaneous/
in-the-wild

Images/
Videos Type Subjects Facial

Expression References

CK+ [31] spontaneous 593 images mostly gray 123 neutral, sadness, surprise, happiness, fear, anger, contempt, disgust [32–35]

JAFFE [36] spontaneous 213 images gray 10 neutral, sadness, surprise, happiness, fear, anger, disgust [35,37–39]

Raf-DB [40] in-the-wild 8040 images- color 67 neutral, sadness, contempt, surprise, happiness, fear, anger, disgust [41–43]

AffectNET [44] in-the-wild
~450,000 manually

~500,000 automatically
annotated

color neutral, happiness, sadness, surprise, fear, disgust, anger, and contempt [33,45–47]

Aff-Wild2 [48] in-the-wild ~2,800,000 manually
annotated color 458 neutral, happiness, sadness, surprise, fear, disgust, anger + valence–arousal

+ action units 1,2,4,6,12,15,20,25 [49,50]

FER-2013 [51] in-the-wild 35,000 images gray angry, disgust, fear, happiness, sadness, surprise, neutral [52–54]

ADFES-BIV [55] spontaneous 370 videos 12 anger, disgust, fear, joy, sadness, surprise, contempt, pride, embarrassment [56]

WSEFEP [57] spontaneous 210 images color 30 enjoyment, fear, disgust, anger, sadness, surprise, neutral [56,58]

OAHEGA [59] in-the-wild 15,744 images color neutral, happy, angry, surprise, sadness [52]

KDEF [60] spontaneous 490 images grey 272 angry, fearful, disgust, happiness, sadness, surprised, neutral [37,61,62]

Oulu-CASIA [63] spontaneous 480 sequences color 80 surprise, happiness, sadness, anger, fear, disgust [64,65]

SASE-FE [66] spontaneous 600 videos color 50 anger, happiness, sadness, disgust, contempt, surprise [34]

SFEW [67] in-the-wild 1739 images color 330 anger, disgust, fear, neutral, happiness, sadness, surprise [68,69]

AFEW [70] in-the-wild 1426 sequences color 330 anger, disgust, fear, happiness, sadness, surprise, neutral [65,71–74]

iCV-MEFED [75] spontaneous 31,250 images color 125 anger, contempt, disgust, fear, happiness, sadness, surprise, neutral [30]

MMI [76] spontaneous 2900 videos color 75 sadness, happiness, fear, anger, surprise, and disgust [71,73,74,77,78]

Multi-PIE [79] spontaneous 750,000 images color 337 neutral, smile, surprise, squint, disgust, scream [80,81]

IEMOCAP [82] spontaneous 12 h video color 120 anger, happiness, excitement, sadness, frustration, fear, surprise, neutral [83]
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A problem concerning emotion recognition is represented by micro-expressions [84].
Micro-expressions belong to the domain of non-verbal gestures and can be distinguished
by the fact that they refer explicitly to specific situations in which they are likely to appear,
as a situation in which the emotion felt is, intentionally or not, hidden. This type of emotion
is visible only in a small number of frames, and the facial movement intensity appearing
in micro-expressions is very reduced. Therefore, micro-expression recognition requires
precise motion tracking and recognition algorithms.

Although micro-expressions are increasingly studied to understand human behavior,
they have some characteristics that make their automatic recognition very difficult. These
are considered leakages when trying to hide an emotion because they are very short in
manifestation time and their truthfulness cannot be measured. Micro-expressions also
reveal the true state of a person at a specific time. Such expressions can be easily noticed
due to the strong tension of a certain combination of the 55 muscle bundles of the face,
which attracts an obvious discrepancy in the series of natural facial expressions of that
person [85].

Micro-expressions can also constitute a genuine preamble to certain actions [86]. For
instance, they can appear during an interrogation indicating tense areas inside the psyche
or they can be visible in stressful situations. Thus, the need for correct identification of
facial micro-expressions has led to the creation of databases with images that capture micro-
emotions (Table 2). Like facial expressions, the images containing the micro-emotions were
acquired either in the wild or spontaneous environment. In the case of micro-expressions
from the databases stated above, the expressions are collected quickly, at least in terms of
the emotional stimulus presence or absence.

Table 2. Micro-expression facial datasets.

Database Characteristics Images Subjects Facial Expression References

SMIC [87] spontaneous 164 6 77 micro-expressions [64,84,88–90]

CASME II [91] spontaneous 247 26 happiness, disgust, surprise,
repression, and others [64,84,88–90,92,93]

SAMM [94] spontaneous 159 32 contempt, disgust, fear, anger,
sadness, happiness, surprise [64,89,90,92]

4. New Trends in Using Neural Networks for FER

Neural networks are currently used by many artificial intelligence-based applications
in domains such as computer vision, machine learning, deep learning, data science, or
natural language processing. Neural networks strike a balance between processing time
and correct classification rate, and the latest advances have led to the development of
complex architectures capable of detecting and classifying patterns by efficiently executing
the required operations to determine specific features. In essence, a neural network consists
of three important phases:

• Training phase, or backpropagation, in which the network adjusts its parameters to
improve its performance by comparing the predictions and ground truth values.

• Validation phase, which is used to compute an unbiased evolution of the generated
model against the training dataset.

• Testing phase, or forward propagation, in which the input data are passed through
the network components and a final output value (prediction) is given.

Regarding the computer vision domain, neural networks have been successfully
used in image classification and more specifically, face identification and facial emotion
recognition applications. Besides the main utility in surveillance systems, neural net-
works have also begun to be used in medical diagnosis applications (to identify patient
conditions [69,94,95]) or in applications that involve interaction with a user [96–100].
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The specific requirements in the field of face identification and facial emotion recogni-
tion have been solved with different types of neural network architectures. For instance,
pre-trained networks can be used for the following tasks:

• Classification, which can apply pre-trained networks directly to classification
tasks [34,35,38,53,80].

• Feature extraction, which is pre-trained network which can be used as a feature extractor
using the activation layers as features, and these layers can be used to train other machine
learning models, such as a support vector machine (SVM) [62,77,83,90,101].

• Transfer learning, in which the layers of a neural network trained on one dataset are
adjusted and reused to test a new dataset [54,73,102–104].

As stated before, DDNs have been increasingly used in emotion recognition due
to their promising performances. The following types of DNNs have great popularity,
especially in the computer vision field:

• Multi-layer perceptron (MLP)—MLP is the most basic type of DNN; it is composed of
a series of fully connected layers, and it can be used to overcome the high computing
power requirement of deep learning architectures.

• Convolutional neural network (CNN)—CNN is predominantly used in computer
vision to automatically extract features from input data to complete a specific task such
as image classification. Features extraction is handled by one or multiple convolutional
layers consisting of convolutional operations based on filters, and in this way, CNN
models can capture the high-level representation of the input data.

• Recurrent neural network (RNN)—RNN models are suitable for processing sequential
data such as time series or text, and they are commonly used in language translation,
natural language processing (NLP), speech recognition, and image captioning. Some
distinguishing characteristics of RNNs are the parameters sharing across all network
layers and the fact that each layer has its own “memory” as information is retrieved
from prior inputs and used to influence the current input and output.

Several DNN-based architectures have achieved notable performances in emotion
recognition (Table 3).

Table 3. DNN-based architectures used by FER systems.

Architecture Type

CNN

ResNet12, ResNet18, ResNet34, ResNet50, ResNet56, ResNet92,
ResNet101, 2D-ResNet, ResNetXt34, SE-ResNet34, SE-ResNeXt34,

SE-ResNet50, EmoResNet, VGG11, VGG14, VGG16, VGG17,
VGG19, VGG-M, InceptionV3, InceptionV4, InceptionResNetV2,

Xception, Mini_Xception, GoogleNet, GoogleLeNetv2, LeNet,
YOLOv3, EfficientNet, AlexNet, NasNet-Large, Wide ResNet,
LEMHI-CNN, CNN –RNN, CAER-Net, CAER-Net-S, ArcFace

CapsNet with No FL, FL-CapsNet, MTCNN

GAN GAN, 2k GAN

GNN GNN

RNN LSTM, EmoNet

The most common DNN-based architecture used in FER systems is represented by a
CNN. Figure 5 presents an example of a common architecture used by all CNN mod-
els, which consists of a series of convolution and pooling operations, followed by a
specific number of fully connected (FC) layers and a SoftMax operation in the case of
multiclass classification.
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The main properties of the CNN architecture are the local receptive field represented
by the process of sharing the neurons’ responsibility for the classification of different parts
of an image, weight sharing inside each layer, and spatial subsampling that determines
the feature maps size reduction with the preservation of the most important information.
Another important aspect of this type of neural network is the absence of the explicit feature
extraction step, overcome by the process of implicit learning on the training data which can
be processed in parallel, thus reducing the computational cost.

The advantages of choosing a CNN for FER systems include its extremely high level
of performance, the elimination of the manual feature extraction requirement since the
learning is automatically performed on the training data, and perhaps the most important
advantage, which is transfer learning, because CNNs allow subsequent constructions
based on initial parts of other pre-trained CNNs [34,71,105–110]. Transfer learning can be
extremely useful because information learned for one task can be transferred to another
task, greatly reducing the processing time by eliminating the need to recollect training data
for that given task. Thus, using a pre-trained network with transfer learning is usually
much faster than training a network from scratch and it also causes a decrease in the size
of the required dataset. Most of the pre-trained networks are trained on subsets of the ImageNet
database [111]. These networks have trained on more than 1 million images and can classify
images into 1000 object categories, such as animals, plants, food, vehicles, etc.

One of the best-known CNN-based neural networks used for different image classifi-
cation tasks is Google’s Inception network [112]. Being characterized by a rather complex
architecture, its constant evolution in terms of speed and accuracy led to the develop-
ment of a series of versions going from V1 (known also as GoogLeNet) to V4 and, due to
ResNet’s performance, a hybrid Inception-ResNet version was even proposed. The base
of the Inception networks is represented by the Inception module which consists of a set
of convolutional, pooling, and concatenation operations. One particular characteristic of
the Inception module is that the convolutional operations use multiple filters of different
sizes on the same level, which means that the model becomes wider rather than deeper
and the data overfitting issue is avoided. In addition, at the end of the network average,
pooling is used instead of fully connected layers, eliminating a huge number of parameters
that would not matter. During its architecture evolution on each version, the main goal
was to increase the computational efficiency and to decrease the number of parameters,
and this optimization gained over each released version was also effective in terms of
minimizing the error rate. Therefore, different versions of the Inception network are used
for feature extraction in [30] or emotion recognition, transfer learning, and fine-tuning
in [62,81,113–116].

Another architecture with significant performance in emotion recognition is the visual
geometry group (VGG) convolutional neural network [117]. The VGG model includes a
series of variations including VGG16 or VGG19, which use the same principle but vary
only in depth. As the model evolves from simpler to more complex, the network depth
increases and a larger number of convolutional layers are put in cascade beside the initial
sets of convolutional layers. Although the network size is huge, requiring more time to
train its parameters, the VGG architecture has led to promising results, and different VVG
variants have been used in many studies so far [32,47,71,102,116,118].

Over the years, the tendency in deep neural networks was to increase the number of
layers to reduce the error rate. However, a larger number of layers is a common problem
associated with the deep learning field, namely the vanishing/exploding gradient (e.g., the
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gradient becomes 0 or too large). To overcome this, residual neural network (ResNet) [119]
was introduced and its architecture was based on an innovative concept called residual
blocks. Essentially, the connection of a layer with further layers is performed by skipping
layers in between, which form a residual block. This approach demonstrated that the
networks are much easier to optimize, and the accuracy increased proportionally with
the network depth. Through different variations of this architectural model, notable
results were obtained in the field of emotion recognition [33,39,47,52,84,92,106,120]. Wide
ResNet [121], a variant of ResNet, has decreased the depth and increased the width of
residual networks. This type of architecture is used in [62] for effective analysis.

AlexNet [122] and LeNet [123] share similar architectures, with the particularity that
AlexNet has a much larger number of convolutional layers stacked on top of each other,
whereas LeNet has a certain convolutional layer immediately preceded by a pooling layer.
In fact, the LeNet pioneering model largely introduced CNNs. The convolutional layers
use a subset of the previous layer’s channels for each filter to reduce computation and force
a symmetry break in the network, while the subsampling layers use a form of average
pooling. It was designed for low-resolution images, and because of time constraints in
terms of computing power, it did not present significant results. In [81,124], both networks
are used to evaluate the proposed method for facial emotion recognition and in [62,103] for
transfer learning.

Further, the Xception architecture [125] abstracts the input of each layer so that in the
end it obtains a compact representation of each layer from which a single value is obtained,
representing the prediction. The Xception network is used in [54] for feature extraction and
in [126–128] is used as a data segregator in a pre-trained model.

The YOLOv3 architecture [129] has 53 convolutional layers and aims to replace Soft-
Max activation mechanisms with independent logistic classifiers. In addition, predictions
are made on three distinct scales, which helps the model improve its accuracy in pre-
dicting objects. To achieve feature extraction, in [130], the authors use the YOLOv3 face
detection model.

EfficientNet [131] is another type of CNN fine-tuned for obtaining high accuracy. This
model uses a technique called compound coefficient to scale up models in a simple but
effective manner. Instead of randomly scaling up width, depth, or resolution, compound
scaling uniformly scales each dimension with a certain fixed set of coefficients.

NasNet-Large [132] is another convolutional neural network model. Its building
blocks consist of normal and reduction cells which return specific feature maps. In case
of normal cells, the returned feature maps have the same dimension, whereas reduction
cells’ feature maps dimension is reduced by a factor of two. This type of CNN also uses the
reinforcement learning search method. In [133], this CNN performed transfer learning for
emotion recognition.

The specific CapsNet neural network [134] is used in image processing to try to un-
derstand objects in a three-dimensional spectrum. Algorithms such as dynamic routing
between capsules can use inverse rendering to decompose objects and to understand the
relationships of their views from different three-dimensional angles. Experts highlighted
that advances in computing power and data storage have made options such as cap-
sule networks possible. These exciting ideas underlie cutting-edge research into stronger
AI. In [135], CapsNet is proposed as the solution for CNNs’ failure to encode different
orientation features to recognize facial emotions.

In general, the most used neural network architecture for emotion recognition is the
CNN. Whether it is used alone for feature extraction and then for classification, or whether
it is used together with another type of network, CNN is without a doubt the type of
architecture that has provided the most significant results for both practical applications
and for developing theoretical models. In addition, this type of neural network offers the
possibility of developing functional solutions in real time (Table 4).
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Table 4. CNN architecture used for FER systems.

Reference Architecture CNN Used Emotions
Detected Accuracy Proposed Solution Description Limitation of the

Proposed Solution

[101] CNN
SVM

feature extraction/
classification 7 99.69%(CK+), 94.69% (BU4D)

A new framework for facial
expression recognition by using a

hybrid model.

Developed only on western
databases for the recognition of

facial expression.

[81] AlexNet, GoogLeNet,
LeNet

feature extraction/
classification 8 99.93% (Multi-PIE), 98.58% (CK+)

Multiple CNNs using improved
fuzzy integral were proposed for

recognition facial emotions.

Need to eliminate lower or similar
classifiers to achieve the best

combination of classifiers.

[120] ResNet50 feature extraction 9 85% (Caltech-256) An efficient scheme for inferring
emotion tag from object images.

Suffers from the problem of
subjectivity.

[136] Two-level CNN feature extraction/
classification 5

45% (CK+), 85% (Caltech faces),
78% (CMU), 96% (NIST),

All datasets: 96%

A novel technique called facial
emotion recognition using CNN.

The algorithm failed when
multiple faces were present in the
same image, at an equal distance

from the camera.

[74] LBP, 3D CNN feature extraction/
classification 7

96.23% (CK+), 96.69% (MMI),
99.79% (GRMEP-FERA),

31.02% (AFEW)

A robust multi-depth network
that can efficiently classify facial

expressions through feeding
various and reinforced features.

For the CK+ database, the
proposed scheme did not obtain

the best result compared with
some existing models.

[137] Viola–Jones algorithm,
Haar-like feature, CNN classification 7 94.94% (cross dataset JAFFE,

CK+), 92.66% (mixed datasets)
New architecture design for a

CNN for the FER system.

Not using dark-colored faces and
dark images for emotion

recognition.

[138] ResNet101
Faster R-CNN

feature extraction/
classification 8

75.46% (F1), 84.71% (IAPsubset),
74.58% (ArtPhoto),
70.77% (Abstract),

82.84% (EmotionROI)

A framework to automatically
detect emotional regions on

multi-level deep feature maps.

The relationship between different
emotions can be exploited to

predict emotion distribution more
precisely.

[139] Haar cascade
CNN

feature extraction/
classification 7 88.10% (FER13)

A hybrid CNN to recognize
human emotions into

sub-categories.
Lack of diverse databases.

[103] AlexNet feature extraction/
classification 7 99.44% (CK+),

70.52% (FER2013)
A deep learning method based on

transfer learning.

The model’s accuracy trained on
the augmented CK+ dataset

dropped by 3%.
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Table 4. Cont.

Reference Architecture CNN Used Emotions
Detected Accuracy Proposed Solution Description Limitation of the

Proposed Solution

[140]
MT-CNN, Light-CNN,

dual-branch CNN,
pre-trained CNN

feature extraction/
classification 8 95.29% (CK+), 86.50% (BU-3DEF),

71.14% (FER2013)
Three CNN models for facial

expression recognition in the wild.
Need efficient

hand-crafted features.

[135] Viola–Jones algorithm,
FL-CapsNet classification 8 98.27% (JAFFE), 8.82% (CK+),

77.99% (FER2013)
A face localization algorithm for

emotion recognition.

The learning rate has impacted
the model training and affected

the recognition accuracies.

[104]
Transfer learning

VGG16 and
ResNet50 PCA

feature extraction/
classification 6

76.2% (FER-2013), 99.4% (CK+),
99.6% (FERG-DB),
88.68% (combined)

A precision-based weighted
blending distributed ensemble

model for emotion classification.

Poorest performance when
classifying the ”disgust” and

”surprise” emotions.

[62]

VGG16, ResNet50,
Inception ResNet,

Wide ResNet, AlexNet,
Correlation

analysis SVM

feature extraction 6 99.22% (JAFFE), 99.78% (CK+),
92.78% (FER 2013), 96.32% (KDEF)

A novel transfer learning-based
FE feature extraction approach

using DNN and
correlation analysis.

The methodology proposed to
obtain significant results only uses

the databases obtained in a
controlled environment.

[42]

VGG-11, VGG-16,
ResNet50,

2D CNN–LSTM,
I3D-CNN

feature extraction/
classification 7 79.9% (RAF-DB)

Two CNN architectures for
continuous emotion prediction in

the wild.

Use of Aff-Wild dataset to exploit
occlusion cases, pose variations,

or even scene breaks.

[78] AlexNet, VGG11,
2k GAN

feature extraction/
classification 7 59.62%(JAFFE), 76.58% (CK+),

61.86%(MMI)

An unsupervised domain
adaptation method to improve the

cross-dataset performance of
facial expression recognition.

Network complexities.

[133] Fast R-CNN,
NasNet-Large CNN

feature extraction/
classification 8

99.95% (FER2013), 98.48%
(JAFFE), 99.73% (CK+), 95.28%

(AffectNet), 99.15%
(Custom dataset)

An algorithm for recognizing the
emotional state of a driver. Network complexities.

[37] DenseNet-161 feature extraction/
classification 7 96.51% (KDEF), 98.78% (JAFFE)

Efficient DCNN using TL with
pipeline tuning strategy for
emotion recognition from

facial images.

Datasets with low-resolution
images or with highly imbalanced

cases will need additional
preprocessing and appropriate

modification in the method.
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Table 4. Cont.

Reference Architecture CNN Used Emotions
Detected Accuracy Proposed Solution Description Limitation of the

Proposed Solution

[92] ResNet18, ImageNet feature extraction/
classification 5 60.17% (CASME II,

SAMM)

Cost-efficient CNN architectures
to recognize spontaneous

micro-expression

The method does not provide
better accuracy than the ones

described in the literature.

[32] VGG16, ResNet50
with MLP

feature extraction/
classification 7 100% (CK+), 96.40% JAFFE),

98.78%(KDEF)
Facial emotion

recognition procedure. Network complexities.

[33]
ResNet18, ViT-B/16/S,

ViT-B/16/SG,
ViT-B/16/SAM

feature extraction/
classification 7 50.05% (FER2013, CK+, AffectNet)

Fine-tuned ViT with a FER-based
base configuration for

image recognition.
Network complexities.

[116] VGG-16, GoogleNet feature extraction/
classification 3 71.91% (EMOd, CAT2000)

The improved metric for
evaluating human attention that

takes into account human
consensus and image context.

A small number of
emotions recognized.

[39] 2D-ResNet feature extraction/
classification 6 99.48% (JAFFE)

Easily identifies maskable and
skeptical-covered image

expressions at a high hit rate.
Lack of diverse databases.

[45] InceptionResNetV2 feature extraction/
classification 4 79.5% (AffectNET)

Consolidated results for the
approach of mouth-based

emotion recognition

A small number of
emotions recognized.

[84] ResNet-56, ResNet-92,
EmoResNet

feature extraction/
classification 6 91% (CASME II, USF-HD, SMIC) Detects the actual expressions at

the micro-scale features.

The input images must be taken
with at least 1 200fps camera and

high-resolution quality images
are needed.

[141]
A binary CNN (B-CNN)
and an eight-class CNN

(E-CNN)

feature extraction/
classification 8

64.6% (Image Emotion Dataset,
IASP-subset, ArtPhoto,

Abstract paintings)

A novel CNN and an assisted
learning strategy for
emotion recognition.

Network complexities.

[71] LEMHI-CNN
CNN–RNN, VGG

feature extraction/
classification 7 78.4% (MMI), 3.9% (CK+),

51.2% (AFEW)
Facial expression

recognition framework.

To improve the performance, the
architecture proposed needs to be

further explored.

[142] CNN feature extraction/
classification 7 95.65% (JAFFE), 99.36% (CK+)

An efficient deep learning
technique for

classifying emotions.
Lack of diverse databases.
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Table 4. Cont.

Reference Architecture CNN Used Emotions
Detected Accuracy Proposed Solution Description Limitation of the

Proposed Solution

[126] MTCNN, Xception feature extraction/
classification 8 60.99% (FER 2013), 86.66% (CK+),

99.22% (iSPL)

A facial image thresholding
machine for the facial emotion
recognition dataset manager.

The model failed to generalize the
outside world’s facial emotions.

[106] ResNet18, ResNet12 feature extraction/
classification 8 99.31% (CK+), 84.29% (FER+)
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Generative adversarial networks (GAN) are also used in FER systems and in the
development of any deep neural network that moves towards a higher simulation of
human cognitive tasks [80]. Scientists are looking at the potential of generative adversarial
networks to increase the power of neural networks and their ability to “think” in a human
way because, for instance, in computer vision, GAN is not only trying to reproduce images
from training data, but it also trains itself to be able to generate new images, as realistically
as possible (Figure 6).
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Figure 6. GAN architecture.

In GAN’s architecture, the network produces outputs from the input and the outputs
are passed to a discriminator model, which can distinguish between genuine and synthetic
results given by the generative network [143,144]. GAN is also characterized by the
flexibility to impose a relational inductive bias in data; in this case, the facial landmarks are
seen as a graph to make reasonings about facial attributes and identity [145].

Lastly, RNNs are also used in FER systems, particularly long short-term memory
(LSTM) RNN architecture, which is specially designed for classifying data that form se-
quences [146]. The essential difference between networks of this type and classical neu-
ral networks is the recurrent layers, where the connections between neurons are cyclic
(Figure 7). In the emotion recognition field, RNNs are mostly used for processing image
sequences, where each element of the image sequence can depend on the context created by
the previous elements of the sequence to recognize emotions. This scenario uses forward
propagation and saves data that will be needed in the future. If the prediction is incorrect,
the learning rate is used to make minor adjustments. As a result, as backpropagation
progresses, it will become more and more accurate [147].
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There are also solutions presented in [148,149] where the approach is based on a
CNN–RNN mixed model for emotion recognition. Alternatively, one of the latest pro-
posed solutions is to use a specialized neural network called meaningful neural network
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which learns features from different architectures, algorithms, or descriptive vectors in a
“meaningful” way [150]. Another new solution for emotion recognition is the graph neural
network (GNN) which opens new possibilities for further research [151].

Although FER systems can detect and recognize human emotions, they are not always
100% accurate because there are many individual variations in terms of expressing and
interpreting emotions. Context interpretation is another important aspect of understanding
human emotions, and this can be a difficult task to accomplish for artificial intelligence-
based systems.

Nevertheless, the facial emotion recognition process allows the differentiation between
friends and enemies, a potential or real threat, being a crucial source of information for social
interactions. From this perspective, it is justified to recognize the importance of FER systems.
As the level of interpersonal relationships increases, the perception of the interlocutor’s
emotions plays an important role in communication between individuals. Furthermore, the
automatic recognition of the interlocutor’s emotional state is also important in the context
of human–computer interaction, contributing to the gradual removal of some unnatural
communication conventions [152].

5. Use of the Neural Network-Based FER Systems

In the development of the new methods used in the FER field, an important criterion
for comparing emotion recognition solutions from real situations is whether the emotions
are spontaneous or simulated. Although research in this field is ongoing, there are existing
systems that claim good results from a recognition percentages point of view, but these
systems are either still in the initial testing phase using a small number of human subjects,
tested on the same dataset that is also used in the training phase or use dramatized
emotions (Table 5).

Table 5. FER solutions tested on a small number of human subjects and on the same database.

Reference Method Database Accuracy

[37] DenseNet-161 KDEF/4900 images JAFFE/213
images

96.51%
98.78%

[38] CNN CK+/593 images
JAFFE/213 images

97.05%
98.63%

[88] CNN CASME II/247 images
SMIC/164 images

69.92%
54.84%

[61] VGG16 KDEF/4.900 images 88%

[142] CNN JAFFE/213 images
CK+/3150 images

95.65%
99.36%

[102] VGG19 CK+/593 images
JAFFE/213 images

96.46%
91.27%

[72] ResNet18 CK+/593 video sequences
AFEW 8.0/1.809 samples

99.69%
51.18%

[89] VGG-M, OC-NET
SMIC/164 images

CASME II/145 images
SAMM/132 images

74.8%
90.8%

71.72%

[77] GoogleLeNetv2
CK+/593 sequences
MMI/5130 images
RaFD/67 images

98.38%
99.59%
99.17%

[153] ResNet101
KDEF/4.900 images
JAFFE/213 images
RaFD/8.040 images

94.59%
92.86%
98.88%

[154] CNN CK+/327 images
JAFFE/213 images

93.46%
94.75%
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Table 5. Cont.

Reference Method Database Accuracy

[155] RNN CK+/327 images 95.4%

[65] ResNet50
CK+/593 images

Oulu-CASIA/80 images
AFEW/1809 images

98.46%
87.31%
53.44%

The performances of these methods are on par with the ones described in the literature
or even better, but in a real case scenario, these solutions usually achieve low performances.

The technological progress of the FER systems has as a primary purpose of attempting
to facilitate the interaction between humans or between humans and the environment. For
this reason, the most successful system based on artificial intelligence will be the one that
will contain an emotional intelligence as developed as that present in human activities.
Implementing such technology will improve the system’s ability to understand emotional
input and respond proportionally. This is the reason why domains such as healthcare,
education, social IoT, or even standalone systems such as driver assistance systems are
integrating FER systems (Table 6).

Table 6. Relevant FER solutions across different areas.

Field of Use Reference Year Accuracy per Data Source Emotion
Detected Real-Time

medicine

[156] 2019 93%—dataset collected 3 yes

[118] 2020 69.25%—BVDB, 64.35%—SEDB 1 no

[69] 2021 82.63%—KDEF, 96.75%—GENKI,
96.81%—CK+, 36.79%—SFEW 7 no

[93] 2021 96.2%—dataset of emotions recorded in
laboratory (69 patients) 1 no

[45] 2020 79.5%—AffectNET 4 no

[35] 2022 87.05%—FER13, 99%—JAFFE, 98.79%—CK+ 6 yes

[127] 2022 87.5%—FER13 7 yes

[130] 2022 89.31%—LIRIS, 90.98%—author’s dataset 7 no

social IoT

[126] 2021 60.99%—FER13, 86.66%—CK+,
99.22%—iSPL 8 no

[157] 2022 74.14%—FER2013 and self-collected dataset 7 yes

[158] 2021 FER2013—69% 6 yes

[113] 2020
90.14%—ResNet/FER2013,
87%—VGG/FER2013, 81%—Inception
V3/FER2013

7 no

[58] 2020 57.28%—database collected 7 no

[128] 2021 73%—custom database 3 yes

[116] 2019 71.91%—EMOd, CAT2000 3 no

[34] 2022 84.58%—mixed 8 yes

[84] 2021 91%—custom database 6 yes

[97] 2022 67.7%—HELEN 5 no

[98] 2022 99.48%—images, 89.78%—videos
experiment1, 90.84%—videos experiment2 6 yes

[124] 2019 93.03%—custom database 8 yes
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Table 6. Cont.

Field of Use Reference Year Accuracy per Data Source Emotion
Detected Real-Time

driver
assistance

system

[54] 2022 99.31%—FER-2013, 99.29%—CK+ 7 no

[47] 2021 89%—AffectNET and database collected 8 no

[159] 2022 84.41%—FER 2013, 95.1%—CK+,
98.50%—KDEF, 98.60%—KMU-FED 7 yes

[115] 2022 96.6%—FER-2013, CK+, data collected 7 yes

[133] 2022
99.95%—FER2013, 98.48%—JAFFE,
99.73%—CK+, 95.28%—AffectNet,
99.15%—custom dataset

8 no

From Table 7, it can be observed that the solutions developed for practical applications
have, in essence, a series of characteristics:

• Multiple used databases.
• Recognized emotions are few and include only basic emotions.
• Tested for real-time use.

Although the interest in the development of practical applications is increasing, most
solutions developed for automatic emotions’ recognition are facial emotion recognition
solutions developed on a general database which can be then used on a particular dataset
(Table 7). In this sense, the researchers have concentrated their efforts on detecting all the
main emotions from standardized databases.

The solutions developed for automatic emotion recognition in Table 8 have a series of
common characteristics:

• Not tested for real-time use cases.
• Using standardized databases.
• Recognized emotions are the basic ones and variations of them.
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Table 7. Relevant FER solutions built on standard databases.

Reference Accuracy per Database Emotion Detected Real-Time
Use Cases Reference Accuracy per Database Emotion

Detected Real-Time Use Cases

[56] 95.12%—WSEFEP 10 no [30] 51.84%—dataset collected iCV-MEFED 50 no

[37] 96.51%—KDEF, 98.78%—JAFFE 7 no [160] 84.68%—GroupEmoW 3 no

[92] 60.17%—CASME II, SAMM yes [141] 64.6%—image emotion dataset, IASP-subset,
ArtPhoto, sbstract paintings 8 no

[38] 97.05%—CK+, 98.63%—JAFFE 7 no [71] 78.4%—MMI, 93.9%—CK+, 51.2%—AFEW 7 no

[32] 100%—CK+, 96.4%—JAFFE,
98.78%—KDEF 7 no [161] 93.24%—CK+, 95.23%—JAFFE 7 no

[53] 58%—FER2013 7 yes [96] 98.65%—JAFFE, 70.14%—FERC-2013 7 no

[33] 50.05%—FER2013, CK+48, AffectNet 7 no [142] 95.65%—JAFFE, 99.36%—CK+ 7 no

[88] 69.92%—CASME II, 54.84%—SMIC 3 no [102] 96.46%—CK+, 91.27%—JAFFE 6 no

[39] 99.48%—JAFFE 6 no [41] 85.59%—RAF-DB, 67.96%—FER2013 7 no

[68] 90.48%—CK+, 89.01%—JAFFE,
50.12%—SFEW 6 no [126] 60.99%—FER 2013, 86.66%—CK+, 99.22%—iSPL 8 no

[78] 59.62%—JAFFE, 76.58%—CK+,
61.86%—MMI 7 no [101] 99.69%—CK+, 94.69%—BU4D 7 no

[46] 59%—AffectNet 8 no [72] 99.69%—CK+, 51.18%—AFEW 8 no

[80] 87.08%—Multi-PIE, 73.13%—BU-3DEF 6 no [162] 70.02%—FER2013, 98%—CK+,
92.8%—JAFFE, 99.3%—FERG 7 no

[163] 77.04%—CAER, 73.51%—CAER-S 6 no [89] 74.8%—SMIC, 90.8%—CASME II,
71.72%—SAMM, 79.14%—overall 3 no

[106] 99.31%—CK+, 84.29%—FER+ 8 no [73] 98.47%—CK+, 69.64%—MMI, 50.65%—AFEW 7 no

[81] 99.93%—Multi-PIE, 98.58%—CK+ 8 no [74] 96.23%—CK+, 96.69%—MMI,
99.79%—GRMEP-FERA, 31.02%—AFEW 7 no

[22] 71.13%—eNTERFACE’05,
65.9%—RAVDESS, 52.14%—CMEW 6 no [140] 95.29%—CK+, 86.5%—BU-3DEF,

71.14%—FER2013 8 no

[136] 45%—CK+, 85%—Caltech faces, 78%
-CMU, 96%—NIST, 96%—all datasets used 5 no [104] 76.2%—FER-2013, 99.4%—CK+,

99.6%—FERG-DB, 88.68%—combined 6 no

[137] 94.94%—cross dataset JAFFE, CK+,
92.66%—mixed datasets JAFFE, CK+ 7 no [62] 99.22%—JAFFE, 99.78%—CK+,

92.78%—FER 2013, 96.32%—KDEF 6 no

[73] 60.7%—AffectNet 8 no [77] 98.38%—CK+, 99.59%—MMI, 99.17%—RaFD 6 no
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Table 7. Cont.

Reference Accuracy per Database Emotion Detected Real-Time
Use Cases Reference Accuracy per Database Emotion

Detected Real-Time Use Cases

[138]
75.46%—F1, 84.71%—IAPSsubset,
74.58%—ArtPhoto, 70.77%—abstract,
82.84%—EmotionROI

8 no [90] 56.5%—CASME II, 43.7%—SMIC,
36.9%—SAMM, 88.2%—combined 3 no

[139] 88.1%—FER13 7 no [42] 79.9%—RAF-DB 7 no

[103] 99.44%—CK+, 70.52%—FER2013 7 no [83] 71.04%—IEMOCAP 4 no

[164] 91.89%—FER2013 6 no [114] 99.66%—JAFFE, 90.16%—FER2013 7 no

[153] 94.59%—KDEF, 92.86%—JAFFE,
98.88%—RaFD 8 no [154] 93.46%—CK+, 94.75%—JAFFE 6 no

[50] 66.8%—Aff-Wild2 7 no
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Table 8. Relevant papers performance using the valence–arousal model.

Ref. Architecture Valence
CCC per Database

Arousal
CCC per Database

[143] CNN 0.791—AVEC2016 0.805—AVEC2016

[15] RNN 0.676—RECOLA 0.446—RECOLA

[148] CNN, RNN 0.535—Aff-Wild, Aff-Wild2 0.365—Aff-Wild, Aff-Wild2

[46] CNN 0.71—AffectNet, 0.75—SEWA,
0.57—AFEW-VA

0.63—AffectNet, 0.52—SEWA,
0.56—AFEW-VA

[165] LSTM 0.068—LIRIS-ACCEDE 0.128—LIRIS-ACCEDE

[47] CNN 0.408—AffectNet 0.373—AffectNet

[166] ANN 0.75—SEWA, 0.438—Aff-Wild2 0.64—SEWA, 0.498—Aff-Wild2

[42] 2D
CNN–LSTM 0.625—RAF-DB 0.557—RAF-DB

[50] CNN–RNN 0.505—Aff-Wild2 0.475—Aff-Wild2

Despite recent advances, current models are far from perfect and reliable, and ongoing
research is crucial to ensure responsible and ethical use. Assessing content validity is
critical and identifying failure modes has become as important as improving performance.

There are also a limited number of papers that use the valence–arousal emotion
model which attempts to conceptualize human emotions by defining a scale. In this case,
the valence axis indicates how pleasant/unpleasant the emotion is and the arousal axis
indicates how high/low the physiological intensity of the emotion is. For these papers, we
used the provided concordance correlation coefficient (CCC) as the evaluation criterion for
emotion recognition (Table 8), for which a higher value indicates better performance.

6. Discussion
6.1. Comparison with Similar Review Papers

The existing reviews mainly focus on facial emotion recognition in different scenarios
without considering all types of neural networks, and some novel ideas proposed recently
are not covered. For example, in [167], the research is focused on different FER techniques
in the field of healthcare surveillance systems. Recent papers based on neural networks
to recognize emotions are highlighted and inputs such as speech, facial expressions, or
audio–visual are used by the neural networks to monitor patients.

In [168] the authors conduct research on CNN-based techniques. This includes an
analysis of different CNN architectures with all specific issues for facial emotion recognition
and the required steps for using this type of neural network.

The purpose of [169] is to study the recent works on FER solutions via deep learning
techniques. The authors presented the architectures of CNN and CNN–LSTM neural
networks, the databases used for training and testing, and a summary of the proposed
methods along with the obtained results.

In [170], the authors identified the most used methods and algorithms for facial
emotion recognition during 2006–2019 for a better understanding together with the FER
databases. Neural networks are mentioned as being a classifier in this proposed method,
particularly CNNs.

6.2. Overview

This paper presents a comprehensive survey of various FER systems based on neural
networks. Different challenges and applications of FER systems are also presented in this
paper. The main purpose of this paper is to find all the relevant papers from the past five
years and to determine the most used neural network architectures based on facial image
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analyses algorithms for emotion recognition developed on databases consisting of both
facial expression and micro-expressions.

With this research, we aim to answer the following questions:

• What neural network architectures based on facial image analysis are predominantly
used for emotion recognition?

• What are the major limitations and challenges of FER systems developed with neural
networks?

First, this review presents the FER solutions based on neural networks using both facial
features and micro-expressions, and for this purpose, a brief presentation of the databases
used by FER systems was also made. Further, this review is focused on papers from the
last five years (2018–2022) that provide results and because of this, the papers without a
clear methodology or without clear experimental results have not been included. This may
have excluded some good FER solutions, and studies that have not been peer-reviewed.
Similarly, some valuable research may have been excluded prior to the period of the last
five years.

Second, an overview of the different types of neural network architectures, especially
deep learning models, is presented. A series of classic and advanced CNN, GAN, GNN,
and RNN models are analyzed from the perspective of performance obtained in the FER
field. Since there are solutions that were trained and tested on the same database, solutions
that used different databases, or solutions that were trained and tested on a small number
of images, it is difficult to make a comparison between them, especially with the databases
that contain either images or sequences.

Third, advanced deep learning solutions are introduced, especially those that reach
state-of-the-art results for facial emotion recognition. Some researchers turn to using differ-
ent transfer learning techniques to achieve better results. In general, it was concluded in
our research that from the neural networks point of view, CNN-based models are currently
the leading architectures in FER systems due to their significant results. Nevertheless,
other types of architectures such as GNN and RNN promise notable results. Over the past
decade, many implementations of FER systems based on different deep learning techniques
have shown amazing performance, which in some cases exceeded human performance.
For example, in [126], a facial image threshing (FIT) machine for FER datasets is proposed.
This solution can transform a dataset used for unsupervised learning to a dataset that can
be used for supervised learning by executing tasks such as removing irrelevant images,
reorganizing existing sets of images, collecting additional images, or merging images from
different datasets. There are also situations in which the proposed methods exceed the
state-of-the-art performances [38,39,54,62,74,81,101]. Similarly, context-aware solutions
for emotion recognition [47,49,50,98] or practical solutions [37,124,127,130,133,159] demon-
strate promising results.

Finally, the applications of FER systems are covered for both real-time and offline use
cases. In this sense, the relevant characteristics of the solutions used in different fields such
as medicine, IoT, education, and driver assistance, along with the facial emotion recognition
procedures, were presented and detailed. In the case of practical and real-time use, it is
also observed that there is a growing trend in using a multimodal system to obtain a more
accurate FER system.

Moreover, some of the latest proposals aim to develop FER systems that can be easily
extended to dynamic images, abandoning the analysis of static images that are part of a
sequence of images and dealing with the problem of detecting and recognizing human
emotions in complex scenes from the real world, thus developing appropriate methods for
object recognition by respectively extracting the background [166,171]. Another tendency
for emotion recognition is the analysis of electroencephalography signals (EEG) with
machine learning models. These solutions produce competitive results in terms of accuracy,
but the major difficulty is the dataset creation because of the limitations of EEG recorders
and human resources [172–174].
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Although FER systems have recently been improved due to deep learning techniques
and technological advances, there are still some limitations to overcome, which include
the following:

• Lack of diverse databases causing a need for the acquisition of new large databases
with a high level of annotation quality [39,46,53,56,83,124,161,164];

• The proposed methods do not provide better accuracy than the ones described
in the literature, or the model achieved performance on par with state-of-the-art
methods [49,50,92];

• Misclassifications between emotions (such as ”sad” and “angry”) which indicates that
the system needs further improvements [58,120,162,165,175];

• Proposed architectures are usually characterized by high complexity [32,33,41,43,64,
78,114,141,163];

• Small number of recognized emotions [45,90,93,116,160];
• The proposed model is built to recognize facial expressions on static images which

may limit its applicability [68,73].

FER systems are an emergent field of computer vision research that focuses on devel-
oping technologies that can perceive, understand, and respond to human emotions. By
integrating with different types of neural networks, the goal is to create artificial intelligence
systems that can communicate and interact with people naturally and intuitively, giving
them a more human and personalized experience. One possibility could be to integrate the
models with vast databases containing information about human emotions and states.

Despite scientific evidence that there is a connection between facial expressions and
emotions, the technology is not yet mature enough to accurately trace what the user is
feeling. Moreover, facial recognition technology has raised concerns that it could be used to
surveil people, which can be translated as a violation of users’ privacy. Analyzing emotions
based on facial expressions and body language could be also misleading because these
features depend on culture and context. Thus, regulations may need to be put in place to
ensure that people continue to be the final decision-makers.

7. Conclusions and Future Work

In this paper, we undertook a review of the new trends in facial emotion recognition
using image analysis conducted by neural networks. We also exposed the available datasets
that are currently used for emotion recognition from facial expression and micro-expression
and the use of different deep learning models in solving this problem. A series of re-
search performed in the FER field were analyzed and the open issues and future trends
were addressed.

AI-based systems do not have advanced functions such as perceiving humans’ em-
pathy or understanding human feelings by relating to a context. In the future, we believe
that the solutions that will manage to implement a kind of emotional intelligence, through
which the creation of typical human reactions will be possible, and in turn these solutions
will be more successful. To find an optimized architecture suitable for real-time appli-
cations, new techniques are still trying to overcome the difficulties in training, the poor
performances, or the computational complexity. However, with the help of embedded
boards, various deep learning models can be used with better efficiency. We also believe
that the development of real-time multimodal emotion recognition systems will capture
the interest of the researchers.

In conclusion, through an automatic emotion recognition system using neural net-
works, algorithms can analyze facial expressions or micro-expressions that reflect people’s
emotions, which are themselves a mirror of their internal state. In this context, emotions
are the effect of the presence of a stimulus in the monitored subject, and the interaction is
desired to be adapted according to these observations. Although facial emotion recognition
has come a long way, the systems are still limited by some technical issues. Nevertheless,
because the technology in the FER field is being adjusted continuously in its goals, it
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holds the potential to revolutionize the science of emotions with the amendment that the
algorithms should track people’s movements accurately in their context.
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