Skip to main content
. 2023 Aug 10;23(16):7092. doi: 10.3390/s23167092

Table 8.

Relevant papers performance using the valence–arousal model.

Ref. Architecture Valence
CCC per Database
Arousal
CCC per Database
[143] CNN 0.791—AVEC2016 0.805—AVEC2016
[15] RNN 0.676—RECOLA 0.446—RECOLA
[148] CNN, RNN 0.535—Aff-Wild, Aff-Wild2 0.365—Aff-Wild, Aff-Wild2
[46] CNN 0.71—AffectNet, 0.75—SEWA,
0.57—AFEW-VA
0.63—AffectNet, 0.52—SEWA, 0.56—AFEW-VA
[165] LSTM 0.068—LIRIS-ACCEDE 0.128—LIRIS-ACCEDE
[47] CNN 0.408—AffectNet 0.373—AffectNet
[166] ANN 0.75—SEWA, 0.438—Aff-Wild2 0.64—SEWA, 0.498—Aff-Wild2
[42] 2D CNN–LSTM 0.625—RAF-DB 0.557—RAF-DB
[50] CNN–RNN 0.505—Aff-Wild2 0.475—Aff-Wild2