Skip to main content
. 2023 Aug 21;23(16):7293. doi: 10.3390/s23167293
Algorithm 1: Neural Network Training
Require: train_data: Matrix of input training data
Require: desired_output: Matrix of corresponding desired output data
Require: num_epochs: Number of training epochs
Ensure: Trained neural network weights and biases
 1: Initialize the network weights and biases randomly
 2: for epoch = 1 to num_epochs do
 3:   for i = 1 to size(training_data,1) do
 4:     input_data = training_data(i,:)
 5:     output_data = desired_output(i,:)
 6:     Perform the forward phase
 7:     predicted_output = neural_network(input_data)
 8:     Calculate the error between the predicted output and the desired output
 9:     loss = loss_function(output_data, predicted_output)
 10:     Perform the backward phase
 11:     gradients = backward_phase (loss, neural_network)
 12:     Update the weights and biases of the network
 13:     neural_network=update_weights(neural_network, gradients)
 14:   end for
 15: end for
 16: return Trained neural network weights and biases