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Proteomic and phosphoproteomic profiling of
SARS-CoV-2-associated liver injury: a report based
on rhesus macaques

Dear Editor:
Since the COVID-19 pandemic, SARS-CoV-2 has contin-

uouslymutated to produce newmutant strains. The highly
contagiousDelta variantwas originally found inDecember
2020,1 and rapidly replaced other SARS-CoV-2 variants,
achieving global dominance by the summer of 2021. Com-
pared with the original virus or other mutant strains, the
variants B.1.1.7 (Alpha variant) andB.1.617.2 (Delta variant)
are characterized by higher transmissibility and lethality,
and higher prevalence rates.2 We would like to explore
the co-pathogenic mechanism of Delta and the original
virus to find some potential protein targets for COVID-19
treatment and also provide inspiration for the treatment of
future variants.
Our study included livers from nine monkeys (three

infected with the original virus [OV], three infected with
Delta virus [DV], and three healthy controls [HC]). Our
early data suggested that SARS-CoV-2 infection in rhesus
macaques can induce typical characteristics of COVID-19
after 7 days,3,4 and the study of omics at this time point
can better reflect and highlight the correlation between
COVID-19 and other systemic tissue and organ function
changes. Therefore, we euthanized all animals 7 days
post infection, and liver tissues were harvested for virus
load measurement, H&E staining, and proteomic and
phosphoproteomic analysis (Figure 1A).
SARS-CoV-2 RNA was detected in liver homogenate,

and the mean viral load of OV and DV groups was
6.6 × 104 and 7.0 × 104 copies/g, respectively. H&E stain-
ing showed hepatocyte edema, hepatic hemorrhage, and
scattered infiltration of inflammatory cells in the infected
livers. The pathological lesion of the liver after infection of
Delta was more severe than that of the original virus strain
(Figure S1). Therefore, all the above information showed
liver injury in the animals used in our study.
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First, DV and HC groups were compared to explore
liver protein and phosphosite level changes after Delta
infection. For the proteomic analysis, 7540 and 7332
proteins in the DV and HC groups were quantified,
respectively (Figure S2A,B and Table S1). The principal
components analysis (PCA) score plot (Figure S3A) sug-
gested an apparent difference between the two groups and
1417 differentially expressed proteins DEPs) (Figure S3B
and Table S2). Gene Ontology (GO) terms were mainly
enriched in peptide metabolic process, translation, ribo-
some, and so forth, which were related to protein synthesis
and metabolism (Figure S3C–E). Pathway enrichment
associated with coronavirus disease-19, protein synthesis
(such as ribosome, protein in export), and metabolism
were enriched (Figure 1B and Table S3). Meanwhile,
we quantified 8095 phosphosites in 3170 proteins and
10,560 sites in 3668 proteins in the DV and HC groups,
respectively (Figure S2C,D and Table S4). The PCA score
plot (Figure S4A) suggested an apparent difference, and
6964 sites in 3080 proteins (Figure S4B and Table S5) were
differentially expressed. The GO terms of these proteins
with differently expressed phosphosites were enriched
in actin cytoskeleton organization, actin binding, and so
forth (Figure S4C). Kinase prediction analysis showed
that there were 20 kinases with a p-value less than 0.05, of
which CLK1, CLK2, and TLK2 were activated, and others,
including AKT1 and MARK4, were inhibited according
to the NetworkKIN analysis (Figure S5A and Table S6).
Pathway enrichment analysis showed insulin signaling
pathway, tight junction, and so forth were enriched
(Figure 1B). Both proteomics and phosphoproteomics
data showed enrichment in fatty acid degradation, carbon
metabolism, and protein processing in endoplasmic
reticulum. The proteins enriched in the three pathways
for proteomic data were submitted to STRING for protein–
protein interaction analysis, and 25% of proteins in the
network had differently expressed phosphosites (Figure
S5B). Separately, proteomics data showed the enrichment
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F IGURE 1 The proteomic and phosphoproteomic characterization of liver from rhesus macaques with the original COVID-19 virus and
Delta variant strain. (A) Brief workflow of this study. (B) Pathway enrichment analysis of differentially expressed proteins (top) and proteins
with differently expressed phosphosites (down) in the liver of Delta virus (DV) versus healthy controls (HC) group. (C) Pathway enrichment
analysis of differentially expressed proteins (top) and proteins with differently expressed phosphosites (down) in the liver of the DV versus
original virus (OV) group. (D) Ferroptosis signaling pathway in livers. Red boxes: upregulated proteins in the DV groups. Green boxes:
downregulated proteins in the DV groups. Orange boxes: proteins predicted to be activated in the DV groups. Blue boxes: proteins predicted to
be inhabited in the DV groups. Asterisk: proteins with differently expressed phosphosites. (E) Protein–protein interaction (PPI) analysis
among 45 proteins that were differently expressed in DV and OV groups when compared with HC, respectively. They also had differently
expressed phosphosites in DV and OV groups when compared with HC, respectively.
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of protein synthesis-related pathways, such as ribosome
and phosphorylation data showed that liver intercellular
connection, such as tight junction, and adherens junction
were changed after infection. The above results indicated
that liver protein synthesis and metabolism were signifi-
cantly activated accompanied by Delta infection, and liver
intercellular connection, such as cytoskeleton and cell
adhesion, were also changed (Figure 1B and Table S3).
Then we explored differences in liver proteomics and

phosphoproteomics between DV and OV groups. Regard-
ing the proteomic analysis, similarly, the PCA plot of
the two groups showed a significant separation (Figure
S3A), and 1220 DEPs were identified (Figure S6A and
Table S2). The ingenuity pathway analysis (IPA) showed
that pathways associated with protein synthesis (such
as EIF2 signaling, mTOR signaling, regulation of EIF4,
and p70S6K signaling) and metabolic pathways (such as
mitochondrial dysfunction and the protein ubiquitina-
tion pathway) were enriched (Figure 1C and Table S3).
Moreover, the ferroptosis signaling pathway was activated;
GPX4 was predicted to be inhibited, and TP53 was pre-
dicted to be activated. Delta virus infection might inhibit
the expression ofGPX4 and activate the expression of TP53,
promoting ferroptosis in liver cells (Figure 1D). The expres-
sion levels of the proteins involved in ferroptosis in our
dataset were higher than those in the HC and OV group
(Figure S6B). Moreover, the integrated network analysis
revealed that the upregulated expressed proteins in the
DV group associated with the processes of responses to
the virus, including viral infection and viral entry, may
cause changes in liver function, such as lipid acid and
drug metabolism (Figure S6C). For the phosphoproteomic
analysis, 6334 phosphosites in 2044 proteins were differ-
ently expressed between DV and OV groups (Figure S7A
and Table S5). Kinase prediction analysis showed that
30 kinases had a p-value less than 0.05 (Figure S7B and
Table S6), and were associated with processes including
necrosis and apoptosis (Figure S7C). IPA analysis showed
protein kinase A signaling, insulin receptor signaling, and
so forth were enriched (Figure 1C). Ferroptosis signaling
pathway, NRF2-mediated oxidative stress response, and
tight junction signaling were enriched both in proteomic
data and phosphoproteomic data. In ferroptosis signal-
ing pathway, five DEPs (STEAP3, SLC3A2, etc.) also had
differentially expressed phosphosites (Figure 1D). How-
ever, protein synthesis-associated pathways were enriched
with proteomics data, while autophagy, protein kinase A,
and so forth were enriched with phosphoproteomics data.
The above results indicated that the liver infected with
the two strains showed differences in protein synthesis,
metabolism, autophagy, ferroptosis, and so forth.
Finally, we compared the DV and OV groups with

the HC group, respectively, to explore common changes

between the two strains. The proteomic analysis showed
425 DEPs after viral infection (Figure S8A and Table S7),
among which 408 proteins showed the same trend by
MFUZZ analysis (Figure S8B). Similarly, the phosphosites
of 1732 proteins were changed after viral infection. The
Venn diagram analysis revealed 45 proteins in common
(Figure S8A). The co-expression network showed that
the top proteins according to the degree score, such as
ALDH3A2, GOT2, and HMGCS2, were all related to
liver function (Figure 1E and Figure S8B). Therefore,
the expression level of 45 proteins, including GOT2 and
ALDH3A2, were changed after viral infection, reflecting
the common changes in the liver after infection of the two
strains of COVID-19.
We conducted the proteomic and phosphoproteomic

profiling of SARS-CoV-2-associated liver injury, and our
findings may represent shared characteristics of COVID-
19 infection andwere not limited toDelta variant infection.
The hepatobiliary system might be influenced by COVID-
19 infection; patients with chronic liver disease have been
frequently affected, experiencing high morbidity and mor-
tality. SARS-CoV-2 can promote existing chronic liver
diseases to liver failure and activate the autoimmune liver
disease.5 By analyzing liver proteomics after the Delta vari-
ant infection, a comprehension of the associated biological
processes and pathologicalmechanisms thatmay transpire
during the illness of other variant strains can be attained,
and potential therapeutic targets can be revealed.
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