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Abstract: Cannabidiol (CBD) is the primary non-psychoactive chemical from Cannabis Sativa, a plant
used for centuries for both recreational and medicinal purposes. CBD lacks the psychotropic effects
of ∆9-tetrahydrocannabinol (∆9-THC) and has shown great therapeutic potential. CBD exerts a wide
spectrum of effects at a molecular, cellular, and organ level, affecting inflammation, oxidative damage,
cell survival, pain, vasodilation, and excitability, among others, modifying many physiological and
pathophysiological processes. There is evidence that CBD may be effective in treating several human
disorders, like anxiety, chronic pain, psychiatric pathologies, cardiovascular diseases, and even
cancer. Multiple cellular and pre-clinical studies using animal models of disease and several human
trials have shown that CBD has an overall safe profile. In this review article, we summarize the
pharmacokinetics data, the putative mechanisms of action of CBD, and the physiological effects
reported in pre-clinical studies to give a comprehensive list of the findings and major effects attributed
to this compound.
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1. Introduction

Cannabis Sativa, also known as marijuana or hemp, is an indigenous plant from
Eastern Asia, which synthesizes several chemical compounds. To date, 554 chemical
compounds have been identified, including 113 phytocannabinoids [1,2] and 120 terpenes,
which are responsible for its characteristic aroma [2,3].

Marijuana was the most-consumed illicit drug in United States in 2019 and has been
used for several centuries, mainly in a recreational fashion. It exhibits a wide range of
medicinal properties, some of which are desired, such as analgesia, anti-inflammation, im-
munosuppression, anti-convulsant properties, and attenuation of vomiting. However, prej-
udicial consequences have also been described, since it has been associated with impaired
cognition with long-lasting effects, increased angina frequency, changes in sympathetic and
parasympathetic nervous system signal transduction, central and peripheral vasoconstric-
tion, Raynaud’s phenomenon, ischemic ulcers, and hypertension, among others [3].

∆9-tetrahydrocannabinol (∆9-THC) is the main psychoactive compound of cannabis,
while cannabidiol (CBD) is the primary non-psychoactive one [2,4].

CBD was first isolated from Mexican marijuana by Adams et al. [5] in the late 1930s.
Its structure was elucidated in 1963 by Mechoulam and Shvo after extraction from Lebanese
marijuana, a concentrated product made of purified cannabis preparations [6,7].
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1.1. CBD as a Therapeutic Option

In the United States of America, the Food and Drug Administration (FDA) has ap-
proved the use of a highly concentrated plant-based CDB preparation in the treatment of
seizures associated with Dravet and Lennox–Gastaut syndromes and tuberous sclerosis
complex [8].

CBD can also be produced synthetically, yielding a pure form of CBD [9,10]. The
efficacy of the plant-based CBD purified formulation versus the synthetic form has been
shown to be similar regarding pharmacokinetics and effect. Regardless, natural CBD
formulations can contain other phytocannabinoids that could be present at moderate
concentrations, modifying its effects or adverse reactions [9].

Over the last few years, cannabinoid chemistry and pharmacology have been the
object of thousands of publications. Basic and/or clinical studies have shown that CBD
has multidirectional properties and uses. However, most of these findings require further
investigation to confirm clinical effectiveness in human beings.

The aim of this review article is to summarize the available information on pharmacol-
ogy and pharmacokinetics and to list the different biological effects of CBD in cellular and
animal models.

1.2. Chemical Structure

The term ‘cannabinoid’ refers to chemical substances with a characteristic twenty-
one carbon-atom terpenophenolic structure which has the ability to interact with the
cannabinoid receptors. There are two distinct groups of compounds that engage with
the endocannabinoid system (ECS) of vertebrates: endocannabinoids, which are endoge-
nous lipid-based neurotransmitters within mammalian bodies, and phytocannabinoids,
which are naturally occurring compounds found in the cannabis plant. From a chemical
perspective, the endogenous ligands of endocannabinoids primarily consist of eicosanoid
compounds synthesized in the lipid bilayer. They are rapidly synthesized and metabo-
lized, resulting in a relatively short duration of action. They act “on demand” to uphold
homeostasis and regulate various physiological processes, like pain, mood, appetite, sleep,
and immune response [1–3]. The structure of phytocannabinoids differs significantly from
that of endocannabinoids. The duration of their effects can be prolonged depending on
the method of consumption and the individual’s metabolism. In addition, although phy-
tocannabinoids interact with the ECS, they can also exhibit other effects independent of
their activity on the ECS. This review comprehensively outlines the relevant mechanisms
of cannabidiol (CBD), some of which overlap with endocannabinoids, while others are
independent [1–3].

CBD shares the exact chemical formula of THC, C21H30O2 [10,11]. However, struc-
turally, there is one main difference: whereas THC contains a cyclic ring, CBD contains
a hydroxyl group (Figure 1) [6,12]. From this point of view, the saturated exocyclic C−C
double bond provides no pathway for the conversion of CBD to psychoactive ∆9-THC.
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The slight difference in molecular structure between these two compounds confers
profoundly different pharmacological properties [1,2] (Figure 1).
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2. Pharmacokinetics

CBD is a small, lipophilic molecule; therefore, it is sequestered in fatty tissues and
penetrates highly vascularized tissue (such as adipose, heart, brain, liver, lungs, and spleen)
with subsequent equilibration into less-vascularized tissue and a rapid decrease in plasma
concentration [13,14]. For this reason, the absorption, distribution, metabolism, effects,
and elimination of CBD are highly affected by its pharmaceutical formulation, route of
administration, dosage schedule (single vs. multiple doses), and diet [15]. CBD can
be ingested as lipid/oil-based formulations, gelatin matrix pellets, and self-emulsifying
drug delivery systems (SEDDS) [15,16]; it can also be vaporized and delivered through
intravenous or transdermal administration. CBD has a protein-binding capability of >95%,
mainly to lipoproteins [12], and has a long terminal elimination half-life of 56 to 61 h after
twice-daily dosing for 7 days [17]. Following a single intravenous dose, its half-life has been
observed to be 24 ± 6 h, and post-inhalation to be 31 ± 4 h [8,18]. CBD induces rapid liver
metabolization through an extensive first pass extraction, after which its metabolites are
excreted through the fecal route and, to a lesser extent, urinary excretion [14]. Controlled
human studies to test CBD have predominantly utilized oral administration. However,
CBD’s oral bioavailability is limited and is estimated to be as low as 6% [1,2]. Existing
data from orally administered CBD formulations indicate good tolerance, with only a
few mild-to-moderate adverse events strongly related to dosage. Information on the
differential rates of CBD absorption through various application routes, such as smoking,
vaporization, oral soft gels, and oil drops, is scarce, inconsistent, and results in highly
variable pharmacokinetic profiles. Therefore, predicting the appropriate dose and route of
administration to enhance desired effects and minimize adverse consequences becomes
challenging in the absence of enough clinical data supporting the safety and efficacy of
these compounds.

Safety and Adverse Effects

CBD is considered a safe drug. Its use is associated with a few mild/moderate
adverse events which are strongly related to the dosage [19]. Serious adverse events
are rare (reported from 3% to 10%), and include elevation of alanine aminotransferase
(ALT) and/or aspartate aminotransferase (AST), pyrexia, upper respiratory tract infection,
and convulsions [20]. Increases in transaminases were mainly reported in clinical trials
involving epileptic patients and were explained by the ability of CBD to inhibit the hepatic
metabolism of other drugs (e.g., clobazam and sodium valproate) [19].

3. The Endocannabinoid System
3.1. Cannabinoid Receptors and Endocannabinoids

The first cannabinoid receptor, CB1, was isolated as a G protein-coupled receptor
derived from rat cerebral cortex cDNA mediating pharmacological effects of ∆9 -THC in
1988 [21,22]. In 1990, a protein homologous to CB1 and with an affinity for ∆9 -THC was
identified and was called CB2 [23]. Initially, CB2 expression could only be detected in rat
spleens, being especially present in marginal zones around the periarteriolar lymphoid
sheets, and was later identified as located in the macrophages/monocytes population.
However, CB2 was also later found in the brain [24,25], in the endocrine pancreas [26],
and in the bones [27–29]. It became clear that the peripheral effects of cannabinoids were
mediated by CB2, and that it could have a possible role in inflammatory and immune
responses [30–32].

‘Endocannabinoids’ are endogenous lipidic agonists for these receptors, and the main
ones are arachidonoyl ethanolamide (Anandamide), 3,2-arachidonoyl glycerol, and 4–6 and
2-arachidonyl glyceryl ether (Noladin ether) [33,34]. All of these, together with cannabinoid
receptors CB1 and CB2, comprise the ‘endocannabinoid system’ [2].

Endocannabinoids have been extensively studied, and their biosynthesis, cellular
transport, metabolism, and biological function have guided CBD research.
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CBD acts through multiple mechanisms that largely have been investigated but are
not fully understood. Selective CB2 agonists have been synthesized to avoid unwanted
psychotropic effects associated with CB1 activation. Despite these efforts, the clinical
outcomes using these CB2 ligands have shown limited effectiveness [35].

3.2. CBD and the Cannabinoid Receptors

CBD has a low binding affinity for CB1 and CB2 [23,36–38]. Nevertheless, some in vivo
effects of CBD seem to be dependent on the presence of the CB1 receptor. CBD increases
adult neurogenesis through CB1, since CBD has been shown to have no effect in CB1
knockout animals [39]. CBD displays an unexpected high potency as a non-competitive
antagonist of CB1 and CB2 in the mouse vas deferens and brain [30,40], and can behave as
a CB2 receptor inverse agonist [40]. This action has been described as a non-competitive
negative allosteric modulator, also reducing the intracellular G-dependent signaling. CBD
binds to an allosteric site on CB1 receptors that is functionally different from the orthosteric
site necessary for endocannabinoid signaling [35].

Therefore, CBD is not a primary ligand of CB1 or CB2, but it may influence their
signaling by modifying endocannabinoid tone [35]. The use of CBD over specific CB2
agonists offers several advantages. CBDs can target multiple pathways associated with
metabolic and inflammatory processes in the cell. Moreover, CBD’s anti-inflammatory
effects extend beyond CB2 receptor activation. While specific CB2 agonists may have
their advantages in certain cases, such as in targeted immune modulation, using CBD
may offer a more comprehensive and versatile approach to address multiple health con-
ditions with fewer potential drawbacks. As research on CBD and its effects continues
to expand, its therapeutic potential and utility in various medical contexts are becoming
increasingly evident.

4. CBD Effects on Membrane Receptors
4.1. Transient Receptor Potential Cation Channels (TRP)

TRP channels actively participate in signal transmission, triggered by a wide range
of chemical and physical stimuli, including intense heat or acidic environments. These
channels are a family of trans-membrane ion channels on sensitive peripheral nerves.
Activation of TRP channels is characterized by a two-phase action, with an excitatory phase
characterized by pain and/or neurogenic inflammation followed by a lasting refractory
state commonly referred to as desensitization [41].

CBD interacts with six TRP channels, activating TRP V1 (Vanilloid or VR1), TRP V2,
TRP V3, TRP V4, and TRP A1 (Ankyrin), and antagonizing TRP M8 (Mucolipin) [42,43].

The vanilloid receptor type 1 (TRPV1), via the release of inflammatory and algetic
peptides, is involved in inflammatory hyperalgesia [44]. When TRPV1 is stimulated by
capsaicin and certain analogs, it undergoes rapid desensitization, leading to unexpected
paradoxical analgesic and anti-inflammatory effects [41]. TRPV1 and TRPV2 transduce
inflammatory and chronic pain signals at both peripheral and spinal levels. Some of CBD’s
anti-hyperalgesic properties can be explained by interactions with these channels.

CBD is a weak agonist of human TRPV1 and lowers their sensitivity to capsaicin, thus
leading to the possibility that this cannabinoid exerts anti-inflammatory action in part by
desensitization of sensory nociceptors [45].

Another relevant mechanism of CBD is enhancing endocannabinoid actions. The
chemical similarity between anandamide and olvanil suggests that certain vanilloids might
interact with either of the two cannabinoid receptors, or with the anandamide transporter
or the fatty-acid amide hydrolase (FAAH). Anandamide exerts anti-inflammatory and
neuroprotective actions. CBD inhibits anandamide amidase [46], is responsible for its
enzymatic hydrolysis, and inhibits transporter-mediated anandamide uptake by cells,
thereby enhancing the putative tonic inhibitory action of anandamide on inflammation [45]
and favoring desensitization of sensitive neurons (Figure 2).
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and nuclear receptors, antagonizing PI3K/AKT, MAPK/ERK, and JAK/STAT pathways. CBD
inhibits through PPARγ receptor DNA transcription of proinflammatory mediators. Moreover, CBD
modifies membrane and organelle calcium channels, altering intracellular signaling. (B) CBD exerts
indirect effects on cannabidiol receptors and affects the uptake of adenosine and GABA, reinforcing
their signaling.

4.2. Serotonin Receptor 1 A

Serotonin receptor 1A (5-HT1A) plays a critical role in the pathophysiology of de-
pression, aggression, and anxiety. CBD is an agonist of 5HT1A with a micromolar affinity
and might exert anxiolytic effects by activating its post-synaptic interaction [47,48]. In this
receptor, the glutamate pyruvate transaminase (GTP)-binding proteins are responsible for
the coupling between 5-HT1A activation and its subsequent effect, and CBD has demon-
strated the ability to increase GTP binding to the receptor-coupled G-protein, Gi, which
is a characteristic behavior of a receptor agonist [48]. CBD also increases serotoninergic
and glutamatergic transmission through a positive allosteric modulation of 5-HT1A [20,38]
(Figure 2).

4.3. GABAA Receptors

Gamma-aminobutyric acid (GABA) plays a key role in vertebrates’ central nervous
systems, facilitating a rapid inhibitory neurotransmission, and causing brain hyperexcitabil-
ity through its interactions with GABAA receptors. CBD is an allosteric modulator of
GABAA receptors, and amplifies the currents produced by low, but not by high, GABA
concentrations, effectively increasing GABA’s apparent affinity for its receptor [49].

Due to the regulation of GABA signaling, CBD could interfere in different pathophysio-
logical brain processes such as anxiety and sleeping disorders and may
reduce seizures.

Interestingly, the effects of CBD on GABAA are easily reversible, indicating that its
action does not rely on intracellular pathways [50] (Figure 2).

4.4. Nuclear Peroxisome Proliferator-Activated Receptors (PPAR)

PPARγ is a key transcription factor regulating adipocyte differentiation [51] and lipid
and glucose homeostasis [52]. In addition to its role in metabolic tissues, some of the
beneficial effects of PPARγ ligands are due to anti-inflammatory actions, including inhibi-
tion of pro-inflammatory cytokines such as interferon gamma (IFNγ) and tumor necrosis
factor-alpha (TNFα) [53,54], increase of anti-inflammatory cytokines, and inhibition of
inducible nitric oxide synthase (iNOS) expression. It is expressed in several immune-cell



Molecules 2023, 28, 5980 6 of 24

types, such as macrophages, dendritic cells, T cells, and B cells [53], and affects nuclear
factor kappa beta (NF-κB) transcriptional activity by inhibiting the inhibitor of κB (IκB)
kinase [55,56] and the DNA binding domains of NF-κB [53,57].

Endocannabinoids, endocannabinoid-like compounds, phytocannabinoids, and syn-
thetic cannabinoids bind and activate PPARs [58,59]. CBD binds to, and increases the
transcriptional activity of, PPARγ, mediating its effects both in the vasculature and in
adipocytes [60].

CBD, via PPARγ, increases anti-inflammatory cytokines, inhibits iNOS expression, and
decreases the inflammatory response in cardiovascular cells, particularly endothelial cells.
Furthermore, CBD decreases monocyte adhesion and trans-endothelial migration [9,61,62]
and reduces the expression of the adhesion molecule VCAM in human brain microvas-
cular endothelial cells [63,64]. CBD also protects against β-amyloid neurotoxicity and
inflammation in rats through PPARγ agonism [61,65].

In summary, the evidence suggests that PPARγ is a key factor in CBD’s ability to
suppress the inflammatory response (Figure 2).

4.5. Adenosine Receptors

Adenosine release is an endogenous mechanism evoked during cellular stress or
inflammatory activation and it mediates an autoregulatory loop by which immunosuppres-
sion protects the organs from the injury caused by the initiating stimuli [66].

Adenosine prevents the activation of IκB kinase subunit β (IKK-β) and NF-κB translo-
cation to the nucleus [67]. It inhibits adhesion and cytokine release of stimulated neu-
trophil [67], and, in monocytes, it binds the adenosine A2 (A2A) receptors and inhibits
TNF-α [68,69], IL-6 [70], and IL-12 [71], while it enhances IL-10 synthesis [72,73].

CBD exerts some of its effects through the activation of adenosine receptors A1 and
A2, which has raised the possibility that CBD might act as an adenosine receptor agonist.
Consequently, several trials have proved that the co-treatment of CBD and A1 or A2 adeno-
sine receptor blockers abolishes the ability of CBD to elicit a response through adenosine
receptors [74–76]. The literature suggests that direct agonism of A1/A2 receptors by CBD is
unlikely due to its concentration–effect (E/c) curve and surplus agonist concentration, and,
as such, indirect elevation of local adenosine levels is not only more plausible, but could
represent a viable mechanism underlying CBD’s actions through those receptors [73,77–79].

CBD indisputably affects the adenosinergic signaling through a competitive inhi-
bition of adenosine uptake at the equilibrative nucleoside transporter 1 (ENT1), as ev-
idenced in neurons, macrophages, and retinal and brain microglial cells, and in the
myocardium [77–80], it increases its endogenous activity.

This adenosine signaling enhancement by CBD in vivo activates the A1 receptor and
can exert an antiarrhythmic effect during ischemia/reperfusion [74], while the A2A receptor
activation is responsible for some of the drug’s observed anti-inflammatory effects, like
the decrease in serum TNFα, IL-6, and cyclooxygenase-2 (COX-2) and iNOS expression
after treatment with lipopolysaccharide (LPS) [77,78]. Also, the drug is responsible for
the transmigration of blood leukocytes by downregulating the expression of vascular cell
adhesion molecule-1 (VCAM-1), chemokines (CCL2 and CCL5), and the pro-inflammatory
cytokine IL-1β. It also attenuates the activation of microglia in a mouse model of multiple
sclerosis [81] (Figure 2).

5. CBD’s Effect on Inflammatory Signaling
5.1. NF-κB and Interferon Beta

The dual nature of the inflammatory response has been broadly described. While, in
the short term, it exerts a protective role against infections and injuries, persistent or chronic
activation potentially leads to adverse consequences and participates in the development
of various chronic conditions.
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CBD modulates the function of the cells of the immune system and exerts anti-
inflammatory and antioxidant effects, and its anti-inflammatory effects can be attributed to
the NF-κB and the interferon beta (IFN-β) pathways [82].

5.1.1. NF-κB

The NF-κB pathway includes a family of inducible structurally related transcription
factors, including NF-κB1 (p50), NF-κB2 (p52), RelA (p65), RelB, and c-Rel. These mediate
the transcription of target genes by binding to a specific DNA element, κB enhancer [82].

The inhibitors of the κB (IκB) family sequester NF-κB proteins in the cytoplasm,
preventing the activity of these transcription factors in the absence of pro-inflammatory
or stress signaling [83]. When activated, this pathway orchestrates the transcription of
numerous inflammatory genes, including those encoding TNF-α, IL-1β, IL-6, IL-12p40,
and COX-2 [84]. LPS activation of toll-like receptor (TLR)- 4 leads to IκB inactivation via
interleukin-1 receptor-associated kinase 1(IRAK-1) -dependent phosphorylation, which
is followed by ubiquitin-dependent degradation, leading to p65 nuclear translocation.
Moreover, canonical NF-κB members RelA and c-Rel have a significant role in mediating
TCR signaling and naive T cell activation [84].

CBD decreases IRAK-1 degradation and reverses the IkB degradation, ultimately
reducing NF-κB p65 nuclear translocation [84,85]. CBD also influences the interaction
of transcription factors like nuclear-factor-erythroid-2-related factor 2 (Nrf2) with NF-κB,
increasing the expression of Nrf2 activators, and stimulating the transcription activity of
Nrf2, inhibiting the NF-κB pathway [4]. CBD also suppresses NF-κB-mediated transcription
by increasing anti-inflammatory STAT3 phosphorylation while reducing pro-inflammatory
STAT1 phosphorylation [84].

Furthermore, IL-1 β, essential for the host response and resistance to pathogens, leads
to the activation of NF-κB [86]. Since CBD also reduces IL-1β synthesis, it prevents NF-
κB activation downstream of this pathway [87]. CBD is a potent inhibitor of the NF-κB
pathway, but the exact mechanism or molecular target by which CBD reduces NF-κB
signaling is unknown (Figure 3).
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5.1.2. IFN-β

Interferon regulating factor 3 (IRF-3) binds the IFN-stimulated response-elements-
DNA sequence, inducing the production of the IFN-β cytokine [84]. IFN-β activates a
second wave of gene expression, mostly chemokines, such as interferon-γ-inducible protein
10 kDa (CXCL10), C-C motif ligand 5 (CCL5), and C-C motif ligand 2 (CCL2), by binding to
an IFN receptor and inducing phosphorylation of Janus kinase (JAK), leading to the signal
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transducer and activator of transcription proteins (STAT) pathway activation [84]. CBD
(10 µM) inhibits IFN-β transcription and synthesis [88] by inhibiting interferon regulating
factor 3 (IRF-3) [86]. Although the exact mechanism of action is unknown, it is likely that
CBD targets the upstream phosphorylation, and therefore the nuclear sequestration, of
IRF-3. CBD alters STAT1 phosphorylation following LPS treatment, suggesting that JAK-
STAT signaling may mediate the mechanism by which CBD regulates IFN-β-dependent
inflammatory processes in peripheral blood mononuclear cells [82,89]. As for the NF-κB
signaling cascade, the exact mechanism or molecular target by which CBD regulates IFN-β
is unknown.

Collectively, these studies support the theory of immunomodulatory properties of
CBD due to the downregulation of the NF-κB pathway and modulation of the IFN-β/STAT
signaling cascade [84].

5.2. NLRP3 Inflammasome

The NACHT-, LRR- and pyrin-domain-containing protein 3 (NLRP3) is an apical
proinflammatory receptor controlling the innate immune response. It detects pathogen-
associated molecular patterns (PAMPs) from microbes and danger-associated molecular
patterns (DAMPs) from host-derived damaged cellular and extracellular material linked
to sterile inflammation. Upon sensing the initial pro-inflammatory signal, NF-κB trig-
gers non-transcriptional or transcriptional NLRP3 inflammasome priming, leading to
increased expression of the NLRP3 inflammasome pathway proteins. Persistent pro-
inflammatory and stress signaling promote NLRP3 activation and assembly of the inflam-
masome, a multiprotein complex containing the apoptosis speck-like protein containing
a caspase recruitment domain (ASC) and pro-caspase-1 [90]. Inflammasome formation
induces caspase-1 activation, an enzyme necessary for the conversion of pro-interleukin-1β
(pro-IL-1β) and pro-IL-18 into their mature forms [91].

There are a few recent studies that have investigated the effect of CBD on NLRP3
activation. Huang et al. [92] showed that CBD significantly inhibits NF-κB p65 nuclear
translocation and the activation of NLRP3 inflammasome, both in vivo and in vitro studies,
in a liver inflammation induced by high-fat high-cholesterol diet model, which leads
to the reduction of the expression of inflammation-related factors. In human gingival
mesenchymal stem cells, CBD prevents NLRP3-inflammasome pathway activation by
suppressing the expression of key genes, including NLRP3 and caspase 1, and inhibiting
downstream production of IL-18. CBD has induced down-regulation of pro-inflammatory
cytokines and genes associated with the IL-1 pathway [93].

Moreover, LPS was used to significantly increase the production of IL-1β in monocytes,
and CBD successfully attenuates this IL-1β production [84,94]. Furthermore, CBD in
concentrations of 0.1, 1, and 10 µM inhibits the NLRP3 inflammasome activity through
reduced expression of NLRP3 and IL-1β mRNA, which is associated with reduced IL-1β
secretion in vitro [87].

Overall, the data support the concept that CBD inhibits NLRP3 inflammasome activa-
tion via the inhibition of NF-κB, reducing inflammasome priming [84,94,95].

5.3. IFN-γ

IFN-γ plays a pivotal role in the host defense system. It is a key regulator of type 1 T
helper (Th1) lymphocytes, CD8 lymphocytes, B cells, natural killer (NK) T cells (NKT), and
antigen-presenting cells like monocytes, macrophages, and dendritic cells. This cytokine is
responsible for orchestrating both innate and adaptive immune responses. Notably, IFN-γ
enhances the capacity of cytotoxic T cells to identify foreign peptides, thereby promoting
the development of cell-mediated immunity [96,97].

CBD treatment significantly reduces plasma levels of proinflammatory cytokines
(IFN-γ, TNF-α) produced by activated Th1 cells and peritoneal macrophages and prevents
the onset of autoimmune diabetes in non-obese diabetes (NOD)-prone mice [98,99]. A pos-
sible mechanism of CBD-mediated suppression of IFN-γ is associated with the suppression
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of the transcriptional activity of activator protein-1 (AP-1) and nuclear factor of activated
T cells (NFAT) [100], raising the question of whether CBD may target a common protein
upstream of AP-1, NFAT, NF-κB, and IFN3, or whether these are independent targets.

5.4. TNF-α

The administration of CBD leads to the suppression of T cell response and reduces
TNF-α release from synovial cells obtained from arthritic knee joints in mice [101,102].
Moreover, a single CBD dose resulted in decreased serum TNF-α levels in mice treated
with lipopolysaccharide (LPS) as a consequence of the activation of the A2A adenosine
receptors [6,77]. CBD also alleviated the TNF-α-mediated expression of pro-inflammatory
cytokines IL-1β and IL-6 [103].

CBD treatment significantly reduces the expression of M1 macrophage-related genes
(TNFα and MCP-1), suggesting that inhibition of M1 polarization could contribute to the
anti-inflammatory effects of CBD [104–107]. Suppression of TNF-α expression and effects
may be a direct effect of CBD inhibition of NF-κB signaling.

5.5. Oxidative Damage

Reactive oxygen species (ROS) are bioproducts of the normal metabolism of oxygen
that serve as key regulators of several functions. Immune cells produce ROS via the NADPH
oxidase 2 (NOX2) complex as a mechanism to eradicate pathogens [108]. ROS production
is both a consequence and a cause of inflammation. Enhanced levels of cytokines or the
presence of PAMPs and DAMPs induce ROS. Conversely, ROS cause irreversible damage
to DNA, lipid peroxidation, and enzyme inactivation, and when persistent, can ultimately
lead to cell death and tissue destruction [109–111]. Furthermore, nitric oxide (NO), which
can originate locally or from cells that infiltrate the site of inflammation [112], rapidly reacts
with free radicals, namely, superoxide anions, inducing lipid peroxidation and promoting
generalized oxidative/nitrosative damage [109,113]. ROS promote activation of the NLRP3
inflammasome during inflammation [114,115] and contribute to NF-κB signaling.

CBD possesses intrinsic antioxidant effects [116,117], since it has the ability to donate
electrons, being oxidized in the process [118]. CBD inhibits mitochondrial superoxide
generation in high-glucose-stimulated human coronary endothelial cells and diabetic mice
by indirectly increasing the iNOS expression and 3-NT formation [105,119] and, therefore,
attenuating mitochondrial ROS generation and simultaneously reversing the abnormal
changes in antioxidant biomarkers following hippocampal oxidative damage post-oxygen–
glucose-deprivation/reperfusion injury.

Experimentally, the use of CBD can also attenuate xanthine oxidase (XO) activity
in keratinocytes exposed to UVB irradiation and H2O2 [11] and reduces the expression
of the superoxide generators RENOX (NOX4) and NOX1 in a mouse model of cisplatin-
induced nephrotoxicity [109,120]. Repeated doses of CBD suppress the lipid peroxide
overproduction in paw tissue of neuropathic and inflamed rats [121]. CBD can also increase
the activity of multiple antioxidant enzymes like superoxide dismutase (SOD), glutathione
peroxidase-1 (GPx-1), glutathione (GSH), and glutathione peroxidase [105,122,123].

Furthermore, CBD had indirect effects on mitochondrial function, improving basal
mitochondrial respiration and the rate of ATP-linked oxygen consumption, as well as in-
creasing glucose consumption in a neuronal cell line model of oxygen/glucose deprivation
and reperfusion. Additionally, the activation of glucose 6-phosphate dehydrogenase and
the preserved NADPH/NADP+ ratio indicate that CBD stimulates the pentose phosphate
pathway [104,122]. It also prevents oxidative stress generated by microglial cells in response
to LPS exposure, probably operating by inhibition of ROS-dependent activation of NF-
κB [116], and regulates redox-sensitive transcription factors such as Nrf2; a key role of Nrf2
is initiating the transcription of antioxidant and cytoprotective genes in microglia [124].

CBD also protects against vascular damage by attenuating oxidative/nitrative stress,
inflammation, cell death, and fibrosis in the high-glucose environment of a rat model of
type 2 diabetes [105].
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Nevertheless, it is difficult to point out which effects of CBD are due to its antioxidant
properties, anti-inflammatory activity, or a direct effect on specific enzymes/proteins
involved in the regulation of ROS.

6. CBD Modulates Inflammatory Cell Functions
6.1. Neutrophil Activation

The neutrophil recruitment cascade to inflamed tissues involves neutrophil rolling
and adhesion to the activated endothelium, extravasation by chemotaxis through breach
of the endothelial barrier, recognition of activating signal, phagocytosis, and occasionally,
release of neutrophil extracellular traps (NETs).

Experimentally, CBD reduces chemotactic mediators, mainly consisting of inflamma-
tory cytokines like TNF-α, IL-1β, and IL-8, reducing the chemotaxis of neutrophils [125–127].

CBD interferes with the translocation of the NOX2 subunits to the membrane, pre-
venting the oxidative burst and, consequently, the generation of O2− and H2O2 [104].
Additionally, CBD reduces neutrophil activation and degranulation [128].

CBD reduces the hepatic expression of E-selectin/CD62, or endothelial-leukocyte
adhesion molecule 1, which is a key adhesion factor expressed in the activated endothelium,
which is involved in the recruitment of leukocytes, particularly neutrophils [119,129].

Furthermore, CBD attenuates high-glucose-induced upregulation of adhesion molecules
ICAM-1 and VCAM-1, trans-endothelial migration of leukocytes, leukocyte-endothelial
adhesion, and disruption of the endothelial barrier function in human coronary arteries
in a dose-dependent manner [119]. Also, CBD significantly inhibits the myeloperoxidase
activity of neutrophils [130].

Recent studies evidenced that neutrophils adopt distinct functional phenotypes,
namely N1 and N2, which have pro- and anti-inflammatory characteristics, respectively.
The specific phenotype they assume depends on the cues in their microenvironment and
is influenced by the expression of specific cell markers [131]. In a mouse model of bi-
lateral renal ischemia–reperfusion injury, treatment with CBD demonstrated significant
reno-protective effects. This was accompanied by a reduction in the proinflammatory
N1 phenotype and a decrease in Th-17 cells. Remarkably, CBD treatment also led to the
restoration of the anti-inflammatory N2 phenotype and T regulatory (Treg)17 cells [132].

Furthermore, CBD inhibits the expression of both COX-1 and COX-2 mRNA, en-
zymes responsible for the conversion of arachidonic acid to prostaglandins in activated
human polymorphonuclear cells. Prostaglandins, specifically prostaglandin E2, increase
the sensitivity of nociceptors to stimuli and are important mediators of pain, constituting
another mechanism by which CBD exerts its analgesic properties. The effects of CBD were
compared with the reference NSAIDs showing high efficacy: CBD at a concentration of 1
µM downregulated the LPS-mediated increase of COX-1 and COX-2, similar to the effects
of well-established COX inhibitors such as paracetamol and ibuprofen [133]. The CBD
effects of neutrophils can be attributed to the inhibition of NF-κB and, potentially, the other
transcription factors described above (Figure 4).

6.2. Effects on Lymphocytes

CBD affects humoral immune responses via a generalized suppressive effect on T cell
functional activities. CBD attenuates the serum production of antigen-specific antibodies in
mice and suppresses T cell proliferation and cytokine production, including IL-2, IL-4, and
IFN-γ, both ex vivo and in vitro [134,135]. CBD significantly decreases the total number of
CD4+ T cells in mice, as compared with vehicle treatment [136], and enhances apoptosis in
three major subsets of normal splenic lymphocytes, including CD4+, CD8+, and B220+ [135].
A dose of 5 mg/kg/day causes lymphopenia by reducing B, T, T cytotoxic, and T helper
lymphocytes [137,138]. Furthermore, when adult male rats were repeatedly treated with
relatively low doses of CBD for 14 days, the total number of NKT cells increased, as well
as the relative percentages of NKT and NK cells. Moreover, CBD regulates autoimmune
memory T cells, defined as the Th17 phenotype, decreasing the production and release
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of IL-17, as well as that of IL-6 [139–141]. CBD leads to the upregulation of CD69 and
lymphocyte-activation gene 3 (LAG3), regulatory molecules on CD4+CD25− accessory T
cells, a recognized subtype of induced regulatory phenotype promoting anergy in activated
T cells. Also, CBD treatment led to the upregulation of EGR2, which is a crucial inducer of
T cell anergy. This upregulation was accompanied by increased levels of anergy-promoting
genes such as IL-10 and STAT5. Additionally, CBD treatment promoted cell cycle arrest.
Moreover, CBD had a significant impact on CD19+ B cells, since it decreased the levels of
major histocompatibility complex class II (MHCII), CD25, and CD69, indicating a reduction
in their antigen-presenting capabilities and a decline in their pro-inflammatory functions.
The observed effects on lymphocytes can be attributed to the inhibition of NF-κB, IFN3,
AP-1, and NFAT [139–141] (Figure 4).
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7. CBD Affects the Fibrotic Response

Fibrosis is an irreversible scarring process characterized by excessive collagen and
extracellular matrix component deposition promoted by immune cells that produce and
release chemokines/cytokines and growth factors that enhance cell proliferation, tissue
remodeling, and dysfunction [73].

As mentioned, CBD affects numerous biological functions and downregulates proin-
flammatory and profibrotic cytokines. CBD can reduce fibrosis by downregulating intracel-
lular ROS generation and lipid peroxidation [73,142], inhibiting profibrotic signaling often
associated with IL-6 [143] and IL-1 production [144], and favoring the transition of CD133+
progenitor cells into myofibroblasts [145].

CBD administration reduces inflammation and fibrosis in different experimental
disease models, like multiple sclerosis, diabetes, cardiac ischemic disease, myocarditis,
allergic asthma, and liver steatosis, among others [89,98,105,146,147]. Therefore, CBD may
represent a pharmacological tool for reducing the pathological effects of aberrant fibrosis
during organ remodeling following injury.

8. CBD Regulates Apoptosis

Apoptosis is a regulated mechanism of cell death, important in phases of tissue and
organ development, cell activity regulation, and response to cell damage [148]. CBD
induced apoptosis in different cancer cell lines, mainly breast carcinoma, glioma, leukemia,
thymoma, neuroblastoma, and prostate and colon cancer, by activating caspase-8, caspase-9,
and caspase-3, cleavage of poly (ADP-ribose) polymerase, translocation to mitochondria of
Bid, and increasing the generation of ROS [149–153].
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In breast cancer, CBD-induced apoptosis is accompanied by down-regulation of the
mammalian target of rapamycin (mTOR), which regulates cell proliferation and apoptosis,
cell cycle, and localization of PPARγ in the nuclei and cytoplasmic of the tested cells [154].

Additionally, CBD leads to dysregulation of calcium homeostasis, mitochondrial Ca2+

overload, stable mitochondrial transition pore formation, loss of mitochondrial membrane
potential, and release of cytochrome c [151,155,156].

CBD modulates kinase activities in cancer cell lines, including inhibition of membrane-
bound and intracellular kinases, and induces mRNA expression of several dual-specificity
and protein tyrosine phosphatases, resulting in their dephosphorylation [149]. After CBD
treatment, in human leukemia, in thymocytes and EL-4 thymoma cells, apoptosis was ac-
companied by an increased production of ROS and activation of NAD(P)H oxidases NOX4
and p22phox, further supporting the role of ROS in CBD-induced apoptosis [150,151].

Contradictory evidence exists pertaining to the influence of CBD on the apoptosis of
normal, rather than transformed, immune cells [149,156,157].

CBD significantly reduces the apoptosis rate in a model of acute myocardial ischemia-
reperfusion in rabbits [158]. Also, pretreatment of mice with CBD (10 mg/kg) in a model
of hepatic I/R injury causes a significant decrease in apoptotic bodies at 24 h of reperfu-
sion [159]. Moreover, CBD attenuates DNA fragmentation and poly(ADP-ribose) poly-
merase (PARP) activity [159].

In a mouse model of type I diabetic cardiomyopathy, CBD treatment for 11 weeks
significantly decreased caspase-3 cleavage, caspase 3/7 activity, chromatin fragmentation,
PARP activity, and apoptosis [105].

In a study conducted by Hsin-Ying Wu and colleagues [160], the impact of CBD on
monocytes was explored in two distinct conditions: freshly isolated cells and cells precul-
tured for 72 h. Surprisingly, they found opposite effects. In freshly isolated cells, CBD
induced apoptosis, while precultured cells remained insensitive to its effects. These experi-
mental findings propose a potential link between monocyte apoptosis and the reported
anti-inflammatory properties of CBD.

Although clinical trials that specifically address immunomodulation and its possible
complications are still lacking, no augmented incidence of infections or severe forms of
them have been reported after seven years of experience with Sativex [19] and Epidiolex [8],
the FDA-approved CBD compounds [161,162].

9. CBD Effect on Ion Channels
9.1. Calcium Channels

Calcium plays a crucial role in regulating various cellular processes, including excitation–
contraction coupling, secretion, and the activity of numerous enzymes and ion channels.
Within cardiac muscle, two types of Ca2+ channels are responsible for transporting Ca2+

into the cells: the L-type (low threshold type) and T-type (transient-type) channels. The
L-type calcium channel is present in all types of cardiac cells, while the T-type calcium
channel is predominantly found in the pacemaker cells, atrial cells, and Purkinje cells [163].

CBD modulates the ryanodine-sensitive intracellular Ca2+ stores in neurons [22,164].
This effect has not been proven in myocardial cells, but CBD significantly depresses electri-
cally induced Ca2+ transients, further suggesting that it inhibits Ca2+-induced
Ca2+ release.

In the presence of CBD, resting levels of intracellular Ca2+ and cell length in ventric-
ular myocytes remain unchanged, indicating that it does not disrupt Ca2+ homeostasis
under resting conditions [165]. However, several studies have provided evidence that
CBD (1–10 µM) significantly inhibits voltage-dependent L-type Ca2+ channels in cardiomy-
ocytes by accelerating the inactivation of these channels [165–167]. This inhibition reduces
Ca2+-induced/Ca2+-release from the sarcoplasmic reticulum during excitation–contraction
coupling [165–167], resulting in a negative inotropic effect in rat ventricular myocytes.
Additionally, CBD acts as an inhibitor of recombinant human CaV3 channels and native
mouse T-type currents. It shifts the steady-state inactivation of these channels to more neg-
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ative potentials, reducing the number of open channels upon cell depolarization. However,
CBD does not affect channel activation or the decay of currents after opening, indicating a
possible open channel block [168].

In pathological conditions with elevated extracellular K+ levels, CBD can influence the
activation of the Na+/Ca2+ exchanger (NCX), releasing additional Ca2+ from the cytosol
into the extracellular space. At the mitochondrial level, CBD has a minor impact on
mitochondrial Ca2+ regulation [169]; however, during ischemia–reperfusion, CBD can
restrict the entry of Ca2+ into the mitochondria by avoiding IP3-dependent Ca2+ liberation
from the sarcoplasmic reticulum, therefore preventing further injury caused by the overflow
of Ca2+ [170,171] (Figure 5).
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9.2. Sodium Channels

Voltage-gated sodium channels (NaVs) are hetero-multimeric membrane proteins
responsible for the rapid upstroke of the action potential (AP) in excitable cells, allowing
an influx of Na+ ions (INa) down their concentration gradient. Of the nine human voltage-
sensitive sodium channel isoforms, NaV1.4 and NaV1.5 are primarily expressed in skeletal
and cardiac muscle cells [172–174].

CBD is a nonselective sodium-channel inhibitor and creates a steep average Hill slope,
suggesting multiple interactions. It prevents the activation of sodium channels from rest
while also stabilizing the inactivated states of these channels without altering the voltage
dependence of activation [166,170].

At a concentration of 3.3 µM, CBD can inhibit about 90% of the sodium conductance.
However, the remaining population of channels, unaffected by CBD, maintain their origi-
nal voltage dependence of activation without any significant changes in the midpoint or
apparent valence of activation. Consequently, exposure to CBD at this concentration pre-
vents those channels from conducting, while leaving their voltage activation characteristics
unaltered [170,173] (Figure 5).

9.3. Potassium Channels

Cardiac potassium (K+) channels can be classified into three main categories: voltage-
gated channels (including Ito, IKur, IKr, and IKs), inward rectifier channels (such as IK1,
IKAch, and IKATP), and background K+ currents (comprising TASK-1 and
TWIK-1/2 channels). The expression levels of these channels vary across the heart, leading
to regional differences in the action potential (AP) characteristics in the atria and ventricles,
and across the myocardial wall [163].
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CBD suppresses the delayed rectifier currents IKr and IKs, while it has less impact
on the transient outward current Ito and inward rectifier IK1 [167,175]. In Purkinje fibers,
CBD demonstrates a stronger reduction in the AP duration at half-maximal repolarization
compared to near-complete repolarization. It also causes a slight decrease in the AP
amplitude and its maximal upstroke velocity. However, CBD does not exert any significant
effects on the membrane’s resting potential [74,167].

Moreover, CBD functions as a competitive inhibitor of the equilibrative nucleoside
transporter (ENT), which hinders the cellular uptake of adenosine. This leads to an in-
crease in the extracellular concentration of adenosine, facilitating the heightened activation
of adenosine A1 receptors [74,176,177]. Consequently, the activation of these receptors
triggers the opening of potassium K+-ATP channels, resulting in hyperpolarization of the
cell membrane.

Thus, CBD prolongs repolarization, increasing the action potential duration [56,175].
Overall, low or high CBD concentrations can induce arrhythmic effects in rabbits, mice,
and rats [74,167]. In opposition, CBD suppresses ischemia-induced ventricular arrhythmias
and exerts cardioprotective effects [74,169].

In human clinical trials, in healthy individuals under normal physiological conditions,
CBD administration poses a minimal or insignificant risk of causing proarrhythmic effects.
This aligns with clinical observations, in which CBD administration did not result in
significant QTc prolongation in patients. However, caution should be exercised when
using CBD concurrently with drugs that influence cardiac repolarization or impair drug
metabolism, as well as in certain pathophysiological situations, such as hypokalemia,
channelopathies, diabetes mellitus, hypertrophic myocardiopathy, or heart failure, among
others, CBD can have an additive effect, further increasing the proarrhythmic risk and the
possible incidence of sudden cardiac death (Figure 5).

10. Conclusions

CBD is active in different cellular and physiological processes like inflammation,
apoptosis, oxidative damage, and fibrosis. The molecular targets where CBD exerts its
direct effects are TRPV1, 5-HT1A, PPARγ, and L-type Ca2+ channels, which are responsible
for its anxiolytic effects, blocking the transduction of chronic pain by affecting sensory
nociceptors, modifying intracellular concentrations of calcium and the resting potential of
excitatory cells, and profoundly affecting the inflammatory response by increasing anti-
inflammatory cytokines and decreasing pro-inflammatory cytokines, monocyte adhesion,
and neutrophiles’ trans-endothelial migration, as well as reducing the expression of the
adhesion molecules. Also, CBD possesses intrinsic antioxidant effects. Also, by indirect
mechanisms, CBD enhances the concentration and actions of endocannabinoids, adenosine,
and GABA.

Despite considerable headway in unraveling CBD’s pharmacology and therapeutic po-
tential, several gaps in knowledge persist. It is clear that CBD interacts with various cellular
mechanisms; however, the precise mechanism(s) of action remains elusive. Furthermore,
our existing knowledge predominantly originates from preclinical and cellular models,
thereby raising concerns regarding genetic and physiological variations between species or
models that might influence outcomes. Factors such as dosage, diverse metabolic profiles,
timing of administration, and interactions with concurrent medications can introduce
modifications to a study drug’s real-world implications.

The endorsement of cannabis-based medications poses unique regulatory challenges
due to the intricate nature of cannabis and cannabis derivatives’ regulation and legal
restrictions in different countries. As the scientific understanding of CBD and its ther-
apeutic potential continues to evolve, regulations are likely to adapt and become more
accommodating if the benefits will outweigh the risks.

Overall, CBD has been shown to have a wide range of effects, ones mainly described
as beneficial, becoming an attractive potential treatment for a variety of acute and chronic
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disorders that involve auto-immunity, inflammation, tissue repair processes, or augmented
oxidative damage.
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