
Citation: Alasmari, M.K.; Alwakeel,

S.S.; Alohali, Y.A. A Multi-Classifiers

Based Algorithm for Energy Efficient

Tasks Offloading in Fog Computing.

Sensors 2023, 23, 7209. https://

doi.org/10.3390/s23167209

Academic Editor: Rongxing Lu

Received: 28 June 2023

Revised: 5 August 2023

Accepted: 7 August 2023

Published: 16 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Multi-Classifiers Based Algorithm for Energy Efficient Tasks
Offloading in Fog Computing
Moteb K. Alasmari *, Sami S. Alwakeel and Yousef A. Alohali

College of Computer and Information Sciences, King Saud University, Riyadh 11362, Saudi Arabia;
ssalwakeel@ksu.edu.sa (S.S.A.); yousef@ksu.edu.sa (Y.A.A.)
* Correspondence: 435107774@student.ksu.edu.sa

Abstract: The IoT has connected a vast number of devices on a massive internet scale. With the
rapid increase in devices and data, offloading tasks from IoT devices to remote Cloud data centers
becomes unproductive and costly. Optimizing energy consumption in IoT devices while meeting
deadlines and data constraints is challenging. Fog Computing aids efficient IoT task processing
with proximity to nodes and lower service delay. Cloud task offloading occurs frequently due to
Fog Computing’s limited resources compared to remote Cloud, necessitating improved techniques
for accurate categorization and distribution of IoT device task offloading in a hybrid IoT, Fog, and
Cloud paradigm. This article explores relevant offloading strategies in Fog Computing and proposes
MCEETO, an intelligent energy-aware allocation strategy, utilizing a multi-classifier-based algorithm
for efficient task offloading by selecting optimal Fog Devices (FDs) for module placement. MCEETO
decision parameters include task attributes, Fog node characteristics, network latency, and bandwidth.
The method is evaluated using the iFogSim simulator and compared with edge-ward and Cloud-only
strategies. The proposed solution is more energy-efficient, saving around 11.36% compared to Cloud-
only and approximately 9.30% compared to the edge-ward strategy. Additionally, the MCEETO
algorithm achieved a 67% and 96% reduction in network usage compared to both strategies.

Keywords: fog computing; internet of things; module placement; energy efficiency; task offloading; iFogSim

1. Introduction

The use of the Internet of Things (IoT) is becoming increasingly dominant in many
areas of daily life, including medical care, industrial automation, smart homes, and emer-
gency response. The interconnectivity of a massive number of devices through the IoT has
led to the generation of huge amounts of diverse data, often referred to as data explosions.
According to the International Data Corporation (IDC), by 2025, IoT devices connected to
the network are expected to exceed 41 billion, producing more than 79 ZB of data yearly [1].

While Cloud computing has become a smart option for IoT device tasks due to its
vast data storage and cost-effectiveness, the proposed solution does not provide a broad
resolution for challenges, such as real-time demands, latency-sensitive applications, and
limited network bandwidth [2]. These issues often arise due to the considerable physical
distance between end-users and data centers of Cloud service providers like Amazon Web
Services (AWS), Google, ALTUS, Apple, Facebook, TATA, China Unicom Matrix, Microsoft,
and Bell [3,4]. Moreover, the exponential growth of data generated by the expanding
number of connected IoT devices presents numerous challenges and complications for
Cloud computing, including [5]:

1. The first challenge faced by many IoT applications is the requirement of short latency,
especially in Internet of Vehicles and industrial applications. These applications, such
as drone control and vehicle-to-vehicle communication, require latency of only a few
tens of milliseconds;

Sensors 2023, 23, 7209. https://doi.org/10.3390/s23167209 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23167209
https://doi.org/10.3390/s23167209
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23167209
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23167209?type=check_update&version=1

Sensors 2023, 23, 7209 2 of 14

2. The second challenge is limited link bandwidth; as the number of wirelessly connected
IoT devices continues to rise, the wireless spectrum has become overloaded. This
overcrowding leads to insufficient bandwidth for transmitting all the data to the
Cloud. To address this issue, researchers propose processing the majority of the
generated data at the endpoint;

3. Finally, IoT devices face limitations in their data communication capability due to
cost and energy limitations. Therefore, device task offloading should consider and
effectively consume the available energy in network devices.

Cloud computing has a significant downside due to the distance between the Cloud
and the data source, which can cause delays and service performance degradation, espe-
cially for time-sensitive applications like video streaming and online gaming [6]. Devices
at the thing level are inadequate for most applications as they lack the computational and
storage capabilities required by many applications and algorithms. This results in limited
functionality, making it infeasible to deploy fully featured applications. Alternatively, appli-
cations and algorithms can be hosted on Cloud nodes to perform computationally intensive
operations. However, this approach presents issues, including high latency between IoT
devices and Cloud nodes, difficulty maintaining connections to remote Cloud sites, and
security concerns due to private data being transmitted and processed in remote Cloud
sites. On the other hand, Fog devices serve as middle links in the chain, where operational
data is processed and stored by small data centers with low latency. These devices connect
IoT devices with Cloud nodes, making them a promising option for hosting applications
and algorithms. Fog devices offer Cloud-like services in terms of computational power
and storage capacity, with low latency and high bandwidth [7–9]. To address these is-
sues, researchers are working on improving Cloud computing models to achieve better
performance. Additionally, data processing costs in the Cloud are important factors to
consider. High charges may discourage users from paying for the service, even if it offers
reduced energy consumption and required time [10]. As a solution to these limitations, Fog
computing is gaining popularity in handling the computational demands of IoT mobile
applications by enabling devices to perform complex tasks at the network edge [11].

In order to control whether tasks should be offloaded to the Fog, sophisticated re-
source management and scheduling mechanisms are required to efficiently handle Fog
devices [11]. However, due to the limited resources of Fog computing compared to remote
Cloud, Cloud task offloading is still widespread. Therefore, optimized techniques are
required to accurately determine and distribute IoT device task offloading in a hybrid
IoT, Fog, and Cloud paradigm. To address this, an intelligent and energy-efficient task
offloading algorithm for the IoT, Fog, and Cloud computing paradigm is proposed. This
algorithm utilizes a multi-classifier system to calculate the attributes of the task, network,
and processing Fog nodes to define the best-enhanced solution for service node selec-
tion. The multi-classifier system is designed to improve the offloading request situations,
considering energy consumption, data delivery throughput, service request transfer, and
execution time.

The main objective of this research is to propose a novel energy-efficient task offloading
method for IoT, Fog, and Cloud computing paradigms, using a multi-classifier-based
system. The multi-classifier system will provide the best prominent solution that considers
all the available attributes of task, network, and processing nodes (alternative IoT, Fog,
and Cloud) as input. It will then process these attributes to classify and elect the best node
for processing the task considering transfer and execution time, energy consumption, and
other service cost parameters. The major contributions of this paper are concise as follows:

• Propose and implement a novel model using multi-classifier machine learning for the
problem of task offloading decisions in an IoT Fog–Cloud computing paradigm;

• Conduct an evaluation and validation of the proposed model by comparing it to existing
works, demonstrating how the proposed approach enhances Quality of Service (QoS) pa-
rameters, precisely application response time, network usage, and energy consumption.

Sensors 2023, 23, 7209 3 of 14

The paper is organized as follows: Section 2 provides an overview of related work.
Section 3 presents the system architecture and computation models. The MCEETO algo-
rithm is termed in detail in Section 4, along with simulation evaluation results. The paper
concludes with a summary of the findings in the final section.

2. Related Works

Recent literature has shown a growing interest in exploring the benefits of Fog com-
puting for IoT environments and applications. Among the challenges faced by IoT services,
energy consumption is a key factor that impacts availability, reliability, and quality of
service (QoS). This section provides a summary of fresh studies that have proposed energy-
efficient approaches for task offloading in the Fog computing paradigm. Gupta et al. [12]
proposed a centralized edge-ward module placement algorithm for distributed applications
represented as Directed Acyclic Graphs (DAGs). Their algorithm starts module placement
from lower-level Fog nodes and moves up the hierarchy until a node with adequate re-
sources is found. However, their approach only supports vertical scaling of modules and
does not consider horizontal connections among Fog nodes at the same level.

Kim et al. [13] have proposed joint user equipment and Fog server energy optimiza-
tion (JUFO) scheme as a substitute for the energy-minimizing partial offloading (EMPO)
scheme for optimizing energy consumption in Cloud tasks. The JUFO scheme controls
the popularity distribution of Cloud tasks and an energy consumption model to reduce
the combined energy usage of the User Equipment (UE) and the Fog server. In contrast,
the approach proposed in [14] optimizes the decision-making process for task offloading,
Fog node selection, and computation resource allocation. The authors have formulated
the task offloading problem as a Mixed-Integer Nonlinear Program (MINLP) and assigned
weights to the coefficients for energy and time consumption based on the remaining battery
energy of the device and user demands. They have introduced a sub-optimal solution
using a hybrid version of GA and PSO. According to the authors, their proposed approach
surpasses the performance of the standard baseline Scheme.

In Wang et al.’s [15] study, the authors present a task offloading scheme for multi-
pair Fog–RAN systems using massive multiple-input multiple-output (MIMO) to achieve
energy efficiency. The scheme objects to minimize energy consumption by considering
realistic imperfect channel state information (CSI) and addressing a non-convex problem
involving joint power allocation and task offloading. To tackle this problem, the authors
propose a two-step iterative sequential optimization framework. In the first step, com-
putation resources and tasks are allocated based on a given power allocation, while the
second step determines the power allocation to minimize energy usage. Simulation results
validate that the proposed approach significantly reduces energy consumption compared
to benchmark schemes.

In another study by Cai et al. [16], they introduce the JOTE (Joint Offloading of
Tasks and Energy) algorithm for Fog-enabled IoT networks. This algorithm focuses on
minimizing task delay and energy consumption for a specific task, assuming the absence
of task queues. The authors debate that joint offloading of energy and task bits becomes
more beneficial as the number of helper nodes increases. Furthermore, to address energy
consumption and task execution delay in the presence of task queues, an online offloading
policy based on Lyapunov optimization is developed. Numerical experimental results
prove that JOTE effectively reduces task delay in Fog-enabled IoT networks.

Keshavarznejad et al. [17] have proposed metaheuristic algorithms, namely NSGA
II and Bees, to improve both the probability of offloading and the energy consumption
required for data transmission. They conducted experiments using the iFogSim simula-
tor, demonstrating that their method achieved faster response times and reduced energy
consumption compared to substitute methods. In contrast, another paper [18] introduces a
novel algorithm named “Fair and Energy Minimized Task Offloading” (FEMTO) specif-
ically designed for Fog computing-enabled IoT networks. This algorithm considers the
offloading energy usage, historical average energy of Fog Nodes (FNs), and FN priority,

Sensors 2023, 23, 7209 4 of 14

while ensuring fairness in scheduling. FEMTO concludes the optimal transmission power,
target FN, and subtask size in a fair and energy-efficient manner. Based on extensive
simulations, the proposed algorithm demonstrates greater FN feasibility and minimized
energy consumption for work offloading.

Khosroabadi et al. [19] proposed the SCATTER algorithm, which is based on an in-
tegrated Fog–Cloud environment, to address the Service Placement Problem (SPP). They
introduced a hierarchical Fog–Cloud architecture that clusters Fog nodes into multiple
groups, emphasizing the horizontal scalability of the Fog layer. This architecture aims to
optimize the utilization of computing resources in the Fog layer. The authors conducted
simulations using the iFogSim toolkit and performed experimental evaluations using real
hardware, focusing on a smart home application. They compared the SCATTER algorithm
with two existing approaches, namely edge-ward and Cloud-only, using Quality of Ser-
vice (QoS) metrics. The experimental results demonstrated that the SCATTER approach
outperformed the edge-ward and Cloud-only approaches in terms of various performance
measures. Specifically, the SCATTER approach achieved 42.1% and 60.2% lower application
response times, 22% and 27.8% less network usage, 45% and 65.7% less average application
loop delays, and 2.33% and 3.2% less energy consumption compared to the edge-ward and
Cloud-only approaches, respectively.

In [20], the authors suggested a method for placing incoming modules onto Fog devices
that takes into account Quality of Experience (QoE) and energy efficiency. This involves
using Fuzzy logic-based approaches and a multi-constraint single objective optimization
technique for QoE-aware application mapping. The results indicate that applications
with the QoE-aware policy had shorter execution times compared to those without it.
Additionally, the simulation results demonstrated that the proposed method helped reduce
energy consumption.

Sriraghavendra et al. [21] introduced the DoSP algorithm, which considers the re-
sponse time of service placement in various layers of a Fog–Cloud architecture. This
algorithm makes decisions regarding the placement of modules/services for workflow-
based IoT applications. The DoSP algorithm was evaluated using the iFogSim simulator,
and the results showed that it outperformed other approaches, such as EdgeWard and
Cloud Only, in terms of performance.

Rahbari and Nickray [22] proposed a method for task offloading in mobile Fog comput-
ing using a regression and classification tree. Their algorithm, MPCA (Module Placement
method by Classification and regression tree Algorithm), selects the optimal Fog modules
by checking the power consumption of mobile devices and offloading if it exceeds the usage
of Wi-Fi. The authors applied seven parameters to choose the best Fog device, including
authentication, confidentiality, integrity, availability, capacity, speed, and cost. They also
optimized MPCA using the probability of network resource utilization, called MPMCP.
Comparing MPCA and MPMCP with First Fit and local processing methods, the authors
claim that the MPMCP approach outperforms them. The advantages and limitations of the
techniques used in the existing literature survey are presented in Table 1.

Table 1. Existing literature surveys with advantages and limitations of used techniques.

Author Proposed Technique Advantages/Achievement Limitations of the Techniques

Kim et al. [13] Probabilistic method
A considerable amount of energy
was saved across various Cloud
task requirements.

The stability condition of each
network component was not
deemed satisfactory.

Shahryari et al. [14]
Genetic algorithm (GA) and

particle swarm
optimization (PSO)

The proposed algorithm
demonstrated superior offloading
efficiency in comparison to
other algorithms.

Restricted to comparable
functionalities of IoT devices.

Sensors 2023, 23, 7209 5 of 14

Table 1. Cont.

Author Proposed Technique Advantages/Achievement Limitations of the Techniques

Wang et al.’s [15] Gini coefficient
Maximized the aggregate revenue
generated by user
equipment (UEs).

FCN mobility results in
incomplete task migration,
causing higher energy
consumption and delays.

Cai et al.’s [16] Lyapunov optimization
The task execution delay and
energy consumption at the task
node were reduced.

Task queues at the node level
were not taken
into consideration.

Keshavarznejad et al. [17] Bees search algorithm

Achieved a more optimal balance
between offloading probability
and power consumption
simultaneously.

The investigation did not
encompass the potential for
node failure or the deadline for
task execution.

Zhang et al. [18] Fairness metric

Successfully struck a
commendable equilibrium
between minimal energy
consumption and equitable task
offloading across Fog
Nodes (FNs).

Time-sensitive applications are
not supported.

Rahbari and Nickray [22] Classification and regression
tree algorithm

Improved energy efficiency and
task latency in comparison to the
first-fit (FF) and local
mobile strategies.

Prone to failure due to reliance
on a centralized
decision controller.

3. System Architecture and Computing Models

This section presents the IoT–Fog–Cloud framework, communication model, and com-
putation models across three layers. Figure 1 depicts a general outline of the IoT–Fog–Cloud
architecture, which contains three layers. The first layer, referred to as the infrastructure
layer, consists of IoT devices responsible for processing tasks either independently or
forwarding them to higher levels. The second layer, known as the Fog layer, encompasses
multiple Fog devices placed at various geographical locations, offering diverse capabilities.
These devices can be underutilized servers, gateway servers, routers, switches, etc. [23].
Additionally, within the second layer, a controller gathers information from the Fog devices,
such as available MIPS, host utilization, and network bandwidth. Using this data, the
controller determines whether to offload requests to the most suitable Fog nodes or to the
Cloud in the third layer. The Fog layer efficiently handles numerous tasks to minimize
service delay and energy consumption of application requests [24]. Particularly, the model
does not consider offloading between Fog nodes.

Fog devices possess limited resources in terms of processor, memory, and bandwidth
capacity. When developing Fog computing applications, the distributed data stream model
is employed. In order to deploy IoT applications in a distributed environment, it is essential
to create models for the different application modules that make up the data processing
components. This paper adopts the Distributed Data Flow Model (DDF) to accomplish this
task [25].

In Fog computing, modules require specific resources for program execution. When
these modules are installed in a Fog environment, it is important to ensure that the requested
resources do not go beyond the available resources of the respective machine. Hence, within
Fog computing, there exist N nodes that serve as Fog sources, with each node possessing a
selected capacity. If we denote node i of the network as f i, we can represent the following:

N = ∑ fi (1)

R f i = (CPUi; RAMi ; Bandwithi) (2)

Sensors 2023, 23, 7209 6 of 14

R f i represents the capacity of node i and also, IoT applications include the M modules,
so that:

M = ∑ mi (3)

If we consider m as a module of the application:

Remi = (CPUi; RAMi ; Bandwithi) (4)

Remi represents the required resources for the module from the program and shows
the module mapping to the device with the following (5):

P: M→ F (5)

In this map, some restrictions are considered as follows in Equation (6).

∀(mi; fi) | Remi < R f i; ∀ fi ∈ N; ∀mi ∈ M (6)

Figure 1. The system architecture.

4. Proposed Algorithm

This section presents a detailed explanation of our proposed algorithms. The recom-
mended approach, outlined in Algorithm 1 and Algorithm 2, focuses on energy productivity
by effectively assigning incoming application modules (tasks) to the most suitable Fog
devices. If an IoT device is incapable of executing a task, an agent controller selects the
optimal Fog node for task execution based on the result of the multi-classifier machine
learning model (MCEETO). We evaluated various individual and ensemble classification
techniques to select the highest accuracy to be used in MCEETO. In contrast to individual
techniques, ensembles have the capability to amalgamate multiple weak learners into
robust learners, resulting in improved accuracy, stability, and robustness [26]. Bagging,
boosting, and stacking are three widely recognized ensemble techniques, although there
are also other alternatives and ensemble algorithms utilized in practical applications. As

Sensors 2023, 23, 7209 7 of 14

stated in [27], here is a brief description of the different bagging, boosting, and stacking
ensemble techniques:

• Bagging is an ensemble technique that involves training multiple learners on subsam-
ples of the original data. The predictions from these learners are then combined to
generate a representative value, which can be the mean, median, or majority vote
for classification tasks, or averaging for regression tasks. The specific choice of the
combination depends on the nature of the problem being addressed;

• Boosting algorithms employ a forward stage-wise technique to enhance the perfor-
mance of weak learners, by iteratively adjusting the weights of training samples that
were inaccurately classified or miscalculated. The ultimate outcome of boosting is
derived by aggregating the outputs from all iterations, utilizing either a weighted
voting scheme for classification or a weighted sum for regression;

• In 1992, Wolpert introduced the concept of stacked generalization, also referred to as
stacking. Stacking is a heterogeneous learning approach that trains a model by com-
bining multiple diverse base learners. In contrast to the homogeneous bagging and
boosting methods that aggregate learner outputs for final predictions, stacking lever-
ages the unique strengths of various base learners. By utilizing either majority voting
or weighted averaging, stacking is expected to outperform individual base learners.

The classification model takes into account the characteristics of the task, as well as
different information about the Fog nodes and network topology, including node utilization,
latency, bandwidth, and more. This process is proved in Figure 2. If there are no available
Fog nodes capable of handling the task, it will be offloaded to the Cloud through the Internet.
Furthermore, the approach aims to optimize the utilization of Fog devices, ensuring a well-
balanced distribution of workloads that prevents both underutilization and overloading of
individual Fog devices. The MCEETO pseudo-code can be found in Algorithms 1 and 2.

Figure 2. Scheme of the module offloading from IoTs to FDs or Cloud.

Sensors 2023, 23, 7209 8 of 14

Algorithm 1 Intelligent placement strategy (MCEETO)

Input: camDeviceList, FogDeviceList, CloudDevice, modulesList
Output: module allocation on the most suitable Fog device in energy efficient manner

1. for each module in modulesToPlaceList do
2. if camDevice can execute module then
3. allocatedDevice = camDevice
4. else if FogDevice can execute module then
5. allocatedDevice = findBestFogNodeforProcessingModule (FogDeviceList, module)
6. else
7. allocatedDevice = CloudDevice
8. end
9. place module on allocatedDevice
10. end

Algorithm 2 Find best fog node for processing module

Input: FogDeviceList, module
Output: bestFogDeviceId

1. while (True) do
2. seletedFogNode = findbestFognode (trainedclassifier, FogDeviceList, module)
3. if (seletedFogNode can execute module)
4. return selectedFogNodeId
5. else
6. go step 2
7. end while
8. end

The time complexity of our proposed approach is analyzed under two phases: the
time complexity of placement request processing, which is handled by Algorithm 1, and
the time complexity of selecting a Fog node for the placement of the module covered by
Algorithm 2. The time complexity of Algorithm 1 is approximated as O(m) multiplied
by the time complexity of the classification (prediction) step that is used in Algorithm 2,
considering a machine learning model like the decision tree. Thus, the time complexity
of our proposed approach is O(m × d), where ‘m’ is the number of modules and ‘d’ is
tree depth.

5. Performance Evaluation
5.1. Simulation Tool

Simulation tools, such as DEVS (discrete event system specification) [28], SimPy [29],
and iFogSim [12], can be applied for simulating scenarios, including Fog-enabled CoT
(Cloud of Things). As stated in [12,30], iFogSim is considered the most applicable tool for
simulating application environments incorporating IoT, Fog, and Cloud. iFogSim offers
several structures that make it well-suited for this purpose:

• It expands upon CloudSim, a widely-utilized tool for simulating Cloud environments,
by enhancing its core elements, including the data center and Cloudlets;

• It is the first simulator that integrates IoT objects, such as sensors, by connecting them
to Fog nodes and the Cloud using a hierarchical architecture;

• It is highly suitable for studying and assessing different facets of Fog-enabled CoT
applications, including latency, mobility, and energy efficiency.

5.2. Case Study

In the case study development, the effectiveness of the proposed placement strategy is
evaluated through simulation experiments using a modified application based on intelli-
gent surveillance through distributed camera networks [12]. The intelligent surveillance
application comprises five main modules: Motion Detector, Object Detector, Object Tracker,

Sensors 2023, 23, 7209 9 of 14

PTZ Control, and User Interface. This model is influenced by the research conducted by
Hong et al. [31], where they introduced an API for Fog applications and utilized it to design
a vehicle tracking system based on CCTV technology. In this surveillance application,
real-time video streams from multiple CCTV cameras are received, and the PTZ control in
each camera constantly adjusts the PTZ parameters.

5.3. Experimental Setup

In order to conduct experiments using the iFogSim toolkit, it is essential to identify
the attributes of the physical infrastructure, application modules, application edges, and
their corresponding data flow tuples. The characteristics of the hardware nodes included
in the physical infrastructure are outlined in Table 2. Each physical node is defined by its
MIPS, RAM (in KB), uplink bandwidth (upBW in KB/s), downlink bandwidth (downBW
in KB/s), position in the tree-like topology, rate per MIPS ($), busy power, and idle power
(in W). Furthermore, each physical node is equipped with an internal physical host, 1M
of storage, x86 system architecture, and a Linux operating system. The latency between
the Cloud and proxy server is set to 100 ms, the proxy server to a router is 10 ms, and the
router to a camera is 5 ms. The study presented in this paper was conducted on a computer
running Windows 10 64-bit, with an Intel Core i7 CPU and 8 GB of memory. These used
configuration values in Table 2 are commonly used in the related literature.

Table 2. Physical nodes configuration.

Cloud Fog Node IoT Camera

CPU (MIPS) 89,600 6400–9600 500–3200
RAM (KB) 40,000 2000–4000 1000–2000

UpBW (Kb/s) 100 10,000 10,000
DownBW (KB/s) 10,000 10,000 270
BusyPower (W) 103 × 16 107.339 87.53

5.4. Performance Metrics

To relate the proposed method with other placement strategies, we used performance
metrics, including energy consumption, which refers to the overall energy consumed by
various components of the network, such as Fog devices, sensors, gateways, and others.
Equation (7) can be used to calculate this energy consumption.

energy = CEC + (CT − LUUT) × HLU (7)

CEC stands for current energy consumption, whereas CT represents the current time.
Furthermore, LUUT provides the value of the most recent utilization update time, and
HLU signifies the previous operation of the host. At the beginning of the simulation, the
energy consumed is set to zero. After running the simulation and obtaining the energy
consumed, the simulation time is determined by subtracting the last utilization update time
from the current system time, and then multiplying it by the previous host utilization. This
result is then added to the current energy consumed. The energy consumption is measured
in megajoules.

Network usage = MST/(TL × TS) (8)

In Equation (8), the values of TL and TS represent the total latency and total size of the
tuple, respectively. Maximum Simulation Time Shown with MST.

Cost = CC + (CT − LUUT) × RPM × LU × TM (9)

CC stands for the present cost, CT refers to the current time, LUUT indicates the time
of the most recent utilization update, RPM represents the MIPS rate per unit, LU symbolizes
the previous utilization, and TM represents the total MIPS capacity of the host. The cost of
resource allocation contains various costs, including memory, bandwidth, storage space,

Sensors 2023, 23, 7209 10 of 14

and processor allocation. At the onset of the simulation, all costs are initialized to zero.
Once the simulation runs and the updated values are obtained, the total simulation cost is
calculated using Equation (9). The rate of obtaining per million instructions per second, the
last system utilization, and the total million instructions per second per host is multiplied
by the difference between the current system time and the utilization update time. The
obtained value is then added to the current cost of the simulator. It is important to note
that the cost value is always a non-negative number.

Execution Time = CT − SST (10)

Equation (10) employs CT as a representation of the current time and SST as an
indicator of the simulation’s starting time. After the simulation is completed, the difference
between the system’s current time and the simulation’s start time is determined, signifying
the elapsed simulation time. This measurement is stated in milliseconds and is computed
using the executive clock of the simulator.

5.5. Comparison with Other Placement Strategies

To calculate the effectiveness of the proposed placement algorithm, we conducted a
comparative analysis between our MECCTO approach and two existing policies, edge-ward,
and Cloud-only approaches, implemented within the iFogSim framework. In the edge-ward
approach, services are primarily placed closer to the network edge. If edge devices lack
sufficient computational resources to handle the services, a hierarchical search is performed
to identify appropriate devices at higher levels with the required computational capabilities.
Particularly, the edge-ward approach does not reflect factors such as application and task
priorities, horizontal connections between devices at the same level, or clustering of Fog
nodes. In contrast, the Cloud-only approach places all modules of an application to be run
in data centers.

5.6. Result and Analysis

In this paper, ensemble machine learning classifier methods such as Bagging, Stacking,
and Voting were used to achieve better performance than single-classier models and reduce
the spread or dispersion of the predictions. To perform classifier training, a dataset was
utilized through Weka Java API. The dataset consists of over 10,000 samples, where each
sample represents one simulation cycle and contains runtime attribute information of all
nodes, network links, and task attributes. The samples are categorized by the ID of the
selected processing node. The dataset was generated based on a similar implementation of
Algorithm 1, with the only difference being that in step 9, a deterministic approach was
used instead of an intelligent ML classifier. In this approach, the node selection involves
iterative loops across all available Fog nodes. For each Fog node, the expected energy
consumption, time execution, and network usage are calculated, and the Fog node with the
minimum value is selected as the processing node for the task offloading. The prediction
accuracy achieved by all the models is shown in Table 3 below:

Table 3. Prediction accuracy of different ML methods with latency and energy values.

Accuracy List

Classifier Accuracy
Bagging 91.19%
Decision tree 92.93%
Vote 93.55%
RandomForest 94.16%
Stacking 94.54%

Sensors 2023, 23, 7209 11 of 14

Table 3. Cont.

Accuracy List

Total Energy (MJ) Execution Time (MS) Total Network
Usage (MB)

Cost of execution
in Cloud ($Million)

MCEETO 39 6531 0.2 0.7
Edge-ward 43 13,111 0.6 2
Random 49 4314 4.5 28
Cloud only 44 13,819 5 28

5.6.1. Energy Consumption

The energy consumption of IoT devices, Fog devices, and the Cloud datacenter is
calculated using three different strategies: Cloud only, edge-ward, and the proposed
MCEETO placement strategy. The total energy consumed is shown in Figure 3. The results
demonstrate that the proposed strategy is more energy-efficient compared to the other
three strategies, with energy savings of nearly 11.36% compared to Cloud-only and 9.30%
compared to the edge-ward strategy.

Figure 3. The total energy consumed in joules under various allocation strategies.

5.6.2. Network Usage

Every Internet of Things (IoT) application starts by generating a request from the
end-user device. This request is then sent to higher layers for task execution. Each request
has a defined size in bytes and is transmitted to a specific target device. The network
usage of each request depends on its size and the latency between the starting and tar-
get devices. The overall network utilization is calculated by summing up the network
usage of each individual request over the entire simulation period. Figure 4 clarifies
that the proposed MCEETO algorithm outperformed both Edgeware and Cloud-only
strategies, respectively.

Sensors 2023, 23, 7209 12 of 14

Figure 4. The total network usage under various placement strategies.

5.6.3. Simulation Time

The simulation execution time for the three strategies being compared is calculated
using Equation (4). Figure 5 illustrates that the MCEETO strategy exhibits the shortest
execution time compared to both the edge-ward and Cloud-only strategies. This is at-
tributed to the developments made in the processing node section of our projected strategy,
which facilitates a greater portion of task execution in the Fog layer compared to the
other strategies.

Figure 5. Execution time under various allocation strategies.

6. Conclusions and Future Works

This paper introduces a groundbreaking Fog computing model and offloading policy
to efficiently bring computing power closer to mobile users, addressing challenges in
ensuring satisfactory computation performance within the Fog computing environment.

Our study proposes an efficient heuristic algorithm for the service placement problem
in Fog–Cloud computing. It prioritizes placing delay-sensitive application services near IoT
devices. We compare it with edge-ward, random, and Cloud-only strategies. Unlike Cloud-
only and edge-ward approaches causing significant task delay and energy consumption,
our algorithm ensures no violation of application deadlines. It optimally utilizes resources
in the Fog landscape.

Sensors 2023, 23, 7209 13 of 14

Our approach demonstrates significant energy consumption reduction compared to
edge-ward and Cloud-only policies, achieving approximately 11.36% and 9.30% reductions,
respectively. Additionally, MCEETO exhibits superior network usage compared to both
strategies, with reductions of 67% and 96%, respectively. Future research aims to implement
the proposed approach in realistic environments, testing it under various user preferences
and application criticality levels within the Fog–Cloud computing paradigm.

Author Contributions: Conceptualization, M.K.A.; Methodology, M.K.A., S.S.A. and Y.A.A.; Soft-
ware, M.K.A.; Validation, S.S.A. and Y.A.A.; Formal analysis, M.K.A.; Investigation, M.K.A.; Re-
sources, M.K.A.; Data curation, M.K.A.; Writing—original draft, M.K.A.; Writing—review & editing,
S.S.A. and Y.A.A.; Visualization, M.K.A.; Supervision, S.S.A. and Y.A.A.; Project administration, S.S.A.
and Y.A.A. All authors have read and agreed to the published version of the manuscript.

Funding: The authors would like to thank Deanship of scientific research in King Saud University
for funding and supporting this research through the initiative of DSR Graduate Students Research
Support (GSR).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Deanship of scientific research in King Saud
University for funding and supporting this research through the initiative of DSR Graduate Students
Research Support (GSR).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Safaei, B.; Mohammadsalehi, A.; Khoosani, K.T.; Zarbaf, S.; Monazzah, A.M.H.; Samie, F.; Bauer, L.; Henkel, J.; Ejlali, A. Impacts

of Mobility Models on RPL-Based Mobile IoT Infrastructures: An Evaluative Comparison and Survey. IEEE Access 2020, 8,
167779–167829. [CrossRef]

2. Hu, P.; Dhelim, S.; Ning, H.; Qiu, T. Survey on fog computing: Architecture, key technologies, applications and open issues. J.
Netw. Comput. Appl. 2017, 98, 27–42. [CrossRef]

3. Mukherjee, M.; Shu, L.; Wang, D. Survey of Fog Computing: Fundamental, Network Applications, and Research Challenges.
IEEE Commun. Surv. Tutor. 2018, 20, 1826–1857. [CrossRef]

4. Puliafito, C.; Mingozzi, E.; Longo, F.; Puliafito, A.; Rana, O. Fog Computing for the Internet of Things. ACM Trans. Internet Technol.
2019, 19, 1–41. [CrossRef]

5. Naha, R.K.; Garg, S.; Chan, A. Fog-computing architecture: Survey and challenges. In Big Data-Enabled Internet Things; IET Digital
Library: London, UK, 2019; pp. 199–223. [CrossRef]

6. Abdullah, S.; Jabir, A. A Light Weight Multi-Objective Task Offloading Optimization for Vehicular Fog Computing. Iraqi J. Electr.
Electron. Eng. 2021, 17, 66–75. [CrossRef]

7. Ghaleb, M.; Farag, A. Towards scalable and efficient architecture for modeling trust in iot environments. Sensors 2021, 21, 2986.
[CrossRef]

8. Confais, B.; Lebre, A.; Parrein, B. A Fog Storage Software Architecture for the Internet of Things. In Advances in Parallel Computing;
Elsevier BV: Amsterdam, The Netherlands, 2020; pp. 61–105. [CrossRef]

9. Karagiannis, V.; Schulte, S. Comparison of Alternative Architectures in Fog Computing. In Proceedings of the 2020 IEEE 4th
International Conference on Fog and Edge Computing (ICFEC), Melbourne, VIC, Australia, 11–14 May 2020; pp. 19–28. [CrossRef]

10. Zhu, Q.; Si, B.; Yang, F.; Ma, Y. Task offloading decision in fog computing system. China Commun. 2017, 14, 59–68. [CrossRef]
11. Jiang, Y.-L.; Chen, Y.-S.; Yang, S.-W.; Wu, C.-H. Energy-Efficient Task Offloading for Time-Sensitive Applications in Fog Computing.

IEEE Syst. J. 2019, 13, 2930–2941. [CrossRef]
12. Gupta, H.; Vahid Dastjerdi, A.; Ghosh, S.K.; Buyya, R. iFogSim: A toolkit for modeling and simulation of resource management

techniques in the Internet of Things, Edge and Fog computing environments. Softw. Pract. Exp. 2017, 47, 1275–1296. [CrossRef]
13. Kim, J.; Ha, T.; Yoo, W.; Chung, J.-M. Task Popularity-Based Energy Minimized Computation Offloading for Fog Computing

Wireless Networks. IEEE Wirel. Commun. Lett. 2019, 8, 1200–1203. [CrossRef]
14. Shahryari, O.-K.; Pedram, H.; Khajehvand, V.; TakhtFooladi, M.D. Energy and task completion time trade-off for task offloading

in fog-enabled IoT networks. Pervasive Mob. Comput. 2021, 74, 101395. [CrossRef]
15. Wang, K.; Zhou, Y.; Li, J.; Shi, L.; Chen, W.; Hanzo, L. Energy-Efficient Task Offloading in Massive MIMO-Aided Multi-Pair

Fog-Computing Networks. IEEE Trans. Commun. 2021, 69, 2123–2137. [CrossRef]

https://doi.org/10.1109/ACCESS.2020.3022793
https://doi.org/10.1016/j.jnca.2017.09.002
https://doi.org/10.1109/COMST.2018.2814571
https://doi.org/10.1145/3301443
https://doi.org/10.1049/pbpc025e_ch10
https://doi.org/10.37917/ijeee.17.1.8
https://doi.org/10.3390/s21092986
https://doi.org/10.3233/apc200004
https://doi.org/10.1109/icfec50348.2020.00010
https://doi.org/10.1109/CC.2017.8233651
https://doi.org/10.1109/JSYST.2018.2877850
https://doi.org/10.1002/spe.2509
https://doi.org/10.1109/LWC.2019.2911521
https://doi.org/10.1016/j.pmcj.2021.101395
https://doi.org/10.1109/TCOMM.2020.3046265

Sensors 2023, 23, 7209 14 of 14

16. Cai, P.; Yang, F.; Wang, J.; Wu, X.; Yang, Y.; Luo, X. JOTE: Joint Offloading of Tasks and Energy in Fog-Enabled IoT Networks.
IEEE Internet Things J. 2020, 7, 3067–3082. [CrossRef]

17. Keshavarznejad, M.; Rezvani, M.H.; Adabi, S. Delay-aware optimization of energy consumption for task offloading in fog
environments using metaheuristic algorithms. Clust. Comput. 2021, 24, 1825–1853. [CrossRef]

18. Zhang, G.; Shen, F.; Liu, Z.; Yang, Y.; Wang, K.; Zhou, M.-T. FEMTO: Fair and Energy-Minimized Task Offloading for Fog-Enabled
IoT Networks. IEEE Internet Things J. 2019, 6, 4388–4400. [CrossRef]

19. Khosroabadi, F.; Fotouhi-Ghazvini, F.; Fotouhi, H. SCATTER: Service Placement in Real-Time Fog-Assisted IoT Networks. J. Sens.
Actuator Netw. 2021, 10, 26. [CrossRef]

20. Keat, L.C.; Ang, T.F.; Chong, C.Y.; Tew, Y. (Offloading) QOE-Aware application mapping and Energy-Aware module placement in
fog computing + offloading. Int. J. Web Serv. Res. 2022, 19, 1–28. [CrossRef]

21. Sriraghavendra, M.; Chawla, P.; Wu, H.; Gill, S.S.; Buyya, R. DOSP: A Deadline-Aware dynamic service placement algorithm
for Workflow-Oriented IoT applications in FOG-Cloud computing environments. In Energy Conservation Solutions for Fog-Edge
Computing Paradigms; Springer: Singapore, 2021; pp. 21–47. [CrossRef]

22. Rahbari, D.; Nickray, M. Task offloading in mobile fog computing by classification and regression tree. Peer Peer Netw. Appl. 2020,
13, 104–122. [CrossRef]

23. Li, H.; Ota, K.; Dong, M. Learning IoT in Edge: Deep Learning for the Internet of Things with Edge Computing. IEEE Netw. 2018,
32, 96–101. [CrossRef]

24. Chang, Z.; Zhou, Z.; Ristaniemi, T.; Niu, Z. Energy Efficient Optimization for Computation Offloading in Fog Computing System.
In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; pp. 1–6.
[CrossRef]

25. Taneja, M.; Davy, A. Resource aware placement of IoT application modules in Fog-Cloud Computing Paradigm. In Proceedings
of the 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), Lisbon, Portugal, 8–12 May 2017.
[CrossRef]

26. Li, X.; Liu, J.; Liu, S.; Wang, J. Differentially private ensemble learning for classification. Neurocomputing 2021, 430, 34–46.
[CrossRef]

27. Zhang, Y.; Liu, J.; Shen, W. A Review of Ensemble Learning Algorithms Used in Remote Sensing Applications. Appl. Sci. 2022,
12, 8654. [CrossRef]

28. Etemad, M.; Aazam, M.; St-Hilaire, M. Using DEVS for modeling and simulating a Fog Computing environment. In Proceedings
of the 2017 International Conference on Computing, Networking and Communications (ICNC), Silicon Valley, CA, USA, 26–29
January 2017; pp. 849–854. [CrossRef]

29. Li, W.; Santos, I.; Delicato, F.C.; Pires, P.F.; Pirmez, L.; Wei, W.; Song, H.; Zomaya, A.; Khan, S. System modelling and performance
evaluation of a three-tier Cloud of Things. Futur. Gener. Comput. Syst. 2017, 70, 104–125. [CrossRef]

30. Bittencourt, L.F.; Diaz-Montes, J.; Buyya, R.; Rana, O.F.; Parashar, M. Mobility-Aware Application Scheduling in Fog Computing.
IEEE Cloud Comput. 2017, 4, 26–35. [CrossRef]

31. Hong, K.; Lillethun, D.; Ramachandran, U.; Ottenwälder, B.; Koldehofe, B. Mobile Fog: A programming model for large-scale
applications on the internet of things. In Proceedings of the MCC’13: Proceedings of the Second ACM SIGCOMM Workshop on
Mobile Cloud Computing, Hong Kong, China, 16 August 2013; pp. 15–20. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/JIOT.2020.2964951
https://doi.org/10.1007/s10586-020-03230-y
https://doi.org/10.1109/JIOT.2018.2887229
https://doi.org/10.3390/jsan10020026
https://doi.org/10.4018/IJWSR.299017
https://doi.org/10.1007/978-981-16-3448-2_2
https://doi.org/10.1007/s12083-019-00721-7
https://doi.org/10.1109/MNET.2018.1700202
https://doi.org/10.1109/GLOCOM.2017.8254207
https://doi.org/10.23919/inm.2017.7987464
https://doi.org/10.1016/j.neucom.2020.12.051
https://doi.org/10.3390/app12178654
https://doi.org/10.1109/iccnc.2017.7876242
https://doi.org/10.1016/j.future.2016.06.019
https://doi.org/10.1109/MCC.2017.27
https://doi.org/10.1145/2491266.2491270

	Introduction
	Related Works
	System Architecture and Computing Models
	Proposed Algorithm
	Performance Evaluation
	Simulation Tool
	Case Study
	Experimental Setup
	Performance Metrics
	Comparison with Other Placement Strategies
	Result and Analysis
	Energy Consumption
	Network Usage
	Simulation Time

	Conclusions and Future Works
	References

