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Abstract: The vast amount of synthetic polymers used in packaging is putting a strain on the
environment and is depleting finite, non-renewable raw materials. Abundantly available biopolymers
such as alginate, chitosan and microfibrillated cellulose (MFC) have frequently been suggested in the
literature to replace synthetic polymers and their barrier properties have been investigated in detail.
Many studies aim to improve the properties of standalone biopolymer films. Some studies apply these
biopolymers as barrier coatings on paper, but the solids content in most of these studies is quite low,
which in turn would result in a high energy demand in industrial drying processes. The aim of this
study is to suggest a laboratory procedure to investigate the suitability of these biopolymers at higher
and such more industrially relevant solids content as potential coating materials for paper and board
in order to improve their barrier properties. First, biopolymer solutions are prepared at a high solids
content at which the viscosity at industrially relevant higher shear rates of 50,000 s−1 (1000 s−1 for
MFC) is in the same range as a synthetic reference material (in this case ethylene vinyl alcohol EVOH)
at 10 wt%. These solutions are analyzed regarding properties such as rheology and surface tension
that are relevant for their coatability in industrial coating processes. Then, free-standing films are
cast, and the films are characterized regarding important properties for packaging applications such
as different surface, mechanical and barrier properties. Based on these results suitable biopolymers
for future coating trials can be easily identified.

Keywords: biopolymer; chitosan; alginate; microfibrillated cellulose; solution cast film; barrier; coating

1. Introduction

With the worldwide growth in population and the concentration in cities, the demand
for packaging materials is steadily increasing. This results in multiple challenges concerning
the handling of finite fossil-based resources and collection and treatment of the packaging
materials after their intended use [1]. To counteract these negative impacts, the Directive
2018/852 of the European Parliament was issued [2]. Encouraged by this directive, the use
of biobased and biodegradable materials for packaging applications is gaining more and
more attention both in research and industry. Due to this, paper and board has become an
even more interesting packaging material because of its origin from renewable resources,
recyclability and biodegradability.

Especially in the food industry, packaging additionally plays an important role to
reduce food waste and to extend the shelf life of perishable goods. Adequate protection
of goods requires mechanical stability of the packaging and suitable barrier properties.
Paper and board can provide the required mechanical stability but fall short in providing
sufficient barrier properties. Required barrier properties strongly depend on the type of
packaged food. The demand for the barrier function of packaging intended for fruits and
vegetables is comparatively low, with oxygen transmission rates (OTR) between 10,000 and
100,000 cm3 STP/(m2·d·bar) at standard temperature and pressure (STP) of 23 ◦C and
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0% RH and water vapor transmission rates (WVTR) between 10 and 1500 g/(m2·d).
Other food groups like milk and milk products require OTR between 100 and 10,000
cm3 STP/(m2·d·bar) and low WVTR of less than 10 g/(m2·d). Oils, vacuum packed coffee,
nuts and snacks require equally low WVTR and OTR below 10 cm3 STP/(m2·d·bar) [3].
In 2015, the types of plastic most used in different kinds of packaging were polyethylene
(PE), polypropylene (PP) and polyethylene terephthalate (PET). Other kinds of synthetic
materials often applied in packaging applications are polyvinyl alcohol (PVOH) and ethy-
lene vinyl alcohol (EVOH), which are usually not used as a sole packaging material but as
coating material to increase barrier properties especially against oxygen transmission [3].

Polysaccharides such as alginate, chitosan and microfibrillated cellulose (MFC) appear
to be suitable alternatives for these petroleum-based coating materials because of their
barrier properties and could therefore help to reduce the amount of non-renewable material
used in the packaging industry.

Alginate is an unbranched hydrophilic polysaccharide produced from brown algae,
which can be found in large amounts in nature [4]. In general, films formed from al-
ginate have good oxygen barrier properties but form poor water vapor and moisture
barriers [5–7]. Multiple studies investigate the properties of alginate films and their po-
tential use in the packaging industry mainly focusing on alginate films with additional
components like plasticizers [5,8,9], linseed oil [6], aloe vera [10] or composite films [9,11].
All these modifications bring different benefits to the film and barrier properties but do not
allow for the direct comparison between materials. Therefore, investigating the property of
the material on its own is necessary.

Chitosan is the deacetylated derivate of chitin, which is sourced from crustacean shell
waste, and is one of the most abundant polysaccharides in nature second to cellulose [12].
Commonly, films made from chitosan have low water barrier properties due to their high
hydrophilicity [13–16], but like alginate, they are good oxygen barriers [16–18]. Most
studies investigating film formation use plasticizers to alter film properties [13,19]. Other
studies focus on the solution concentration used to cast films and add surfactant [20] or in-
vestigate films containing additional starch [14,15] or acetate [21]. With these modifications
again the direct assessment of different materials is not possible.

MFC is mainly produced from bleached cellulosic pulp by mechanical treatments like
a homogenizer, microfluidizer or via a grinding process [22]. Films produced from this
material show good barrier properties against air and oxygen [23]. These properties depend
on multiple factors like the source and production of MFC [24,25], and the preparation of
films and many studies focus on their improvement [20,21].

The properties of solution cast films strongly depend on the preparation and drying
method and the addition of other components. The solids content of the casting solution is
kept below 1 wt% in most studies. Some studies use higher concentrations, but this results
in a limitation regarding how thin the films can be produced [26–28]. In general, it was
observed that the water and oxygen permeability decreases with higher drying tempera-
ture [8,17,20,29]. The influence of temperature on the mechanical properties depends on the
addition of plasticizer, but without its addition, the mechanical properties of alginate [17]
and chitosan [19] films decrease with increased drying temperature. Whilst many studies
cited above focus on improving certain film and barrier properties for one biopolymer, an
overall characterization and comparison of different biopolymers films prepared under
the same conditions and referenced to a state-of-the-art packaging material can be used to
determine the principal suitability of individual materials for packaging. As a next step, the
application of biopolymer coatings on paper or board is of interest. To estimate achievable
barrier properties data from these films can be used as guidelines. Often coatings are
performed without additional additives [30–34]; therefore, the correlation between solution
cast films without and containing specific additives is difficult.

Another important factor in the coating process that has not been researched in
sufficient depth are the properties of the above-mentioned biobased coating materials.
Because of their high viscosities in aqueous solutions or dispersions [35–38] materials like
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alginate, chitosan or MFC are commonly used at very low solid content for coating of
paper in research [30–34]. This leads to a high demand of drying energy in paper coating
applications and therefore higher costs. Therefore, this study additionally focuses on the
investigation of properties relevant for coating applications such as rheology and surface
tension at higher solids content to assess the possibility of using these biopolymers in
industrial coating applications in the future. These high solids contents were chosen so
that the viscosity of the biopolymer materials at high shear rates (50,000 s−1) relevant for
industrial coating applications are comparable to the synthetic reference material (EVOH).

2. Materials and Methods
2.1. Materials and Solution Preparation

Aqueous alginate and chitosan solutions were prepared following Kopacic et al. [39].
To prepare an aqueous alginate solution, powdery alginic acid sodium salt with a pre-
defined viscosity of 15–25 mPa·s at 1 wt% in water at 25 ◦C (from Sigma-Aldrich, Saint
Louis, MO, USA)) was used. The solution was prepared by heating deionized water to
75 ◦C and by subsequently adding the desired alginic acid sodium salt amount to achieve a
concentration of 5 wt%. To prevent agglomerations, alginate was added in small portions
and stirred continuously. The solution was kept at the defined temperature for 6 h. The
storage temperature of the aqueous alginate solution was 5 ◦C.

Chitosan powder (88–89% degree of deacetylation, BioLog Heppe, Landsberg, Ger-
many) was used to prepare the solution. According to the specifications, a 1 wt% solution
dissolved in a 1 wt% acetic acid has a dynamic viscosity lower than 30 mPa s. The powder
was added to deionized water at 70 ◦C in small portions to again achieve a concentration
of 5 wt%. After the solution was stirred for 6 h at 70 ◦C, the pH value was adjusted to four
by adding acetic acid (Carl Roth, Karlsruhe, Germany, ≥99%) and stirred for another 4 h.
The aqueous chitosan solution was then stored at 5 ◦C in the refrigerator.

Microfibrillated cellulose (MFC) produced from softwood pulp was purchased from
Sappi Biotech (Gratkorn, Austria) at a solids content of 3.3 wt% and stored at 5 ◦C.

Granular ethylene vinyl alcohol (EVOH) was used to prepare the solution following
the instructions provided by the manufacturer. The Exceval ethylene vinyl alcohol (from
Kuraray, Hattersheim am Main, Germany) has 98–99 mol% of hydrolysis, and according
to specifications, a 4 wt% aqueous solution has a viscosity of 3.5–4.5 mPa s at 20 ◦C. To
prepare a 10 wt% solution, EVOH was added to deionized water at room temperature and
continuously stirred until evenly dispersed. The mixture then was heated to 95 ◦C and
kept at this temperature for 1–2 h. After preparation, the EVOH solution was slowly cooled
down and stored at 50 ◦C until use.

2.2. Solution Properties

A halogen moisture analyzer HR73 (Mettler Toledo, Columbus, OH, USA) was used
to measure the solids content. Solution densities were measured with a density meter
DMA 4500M (Anton Paar, Graz, Austria). The pH values were determined using an
inoLab pH 7110 (WTW, Weilheim, Germany). A data physics OCA200 (DataPhysics
Instruments, Filderstadt, Germany) device was used to determine surface tension by the
pendant drop method using a cannula diameter of 1.83 mm. For MFC, this method led
to a separation of fibrils and water because the fibrous material is not pressed out at the
same rate as the liquid phase, and thus, the surface tension of this material could not be
evaluated. All solution properties were measured at ambient conditions of 23 ◦C and 50%
RH. Viscosities were determined using a Physica MCR 301 rheometer (Anton Paar, Graz,
Austria). Alginate, Chitosan and EVOH were measured at shear rates up to 50,000 s−1 in
a cylindrical measuring system with a gap width of 0.1 mm and a gap length of 15 mm.
MFC could not be measured in the cylindrical system and therefore was measured between
two parallel plates with 50 mm diameter and a gap width of 1 mm at shear rates up to
1000 s−1.
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2.3. Film Casting

To cast freestanding films, all mixtures were diluted to 1 wt% with deionized water.
No plasticizers or other additives were added to the mixtures. The desired amount was
poured into polystyrene Petri dishes to obtain films with a grammage of 40 ± 5 g/m2. The
films were dried at room temperature for 72 h and afterwards conditioned in accordance to
ISO 187 [40] (23 ◦C and 50% relative humidity) for at least 48 h prior to characterization.

2.4. Films Characterisation
2.4.1. Optical Properties

Optical properties of the films were measured using a Datacolor Elrepho® spectropho-
tometer (Lorentzen & Wettre, München, Germany). The transparent polymer films were
measured on top of a white brightness standard, which was measured without a film
placed on its surface for comparability. The L*, a* and b* values (CIE 1976 system) were
determined according to ISO 5631-2:2022 [41].

2.4.2. Thickness and Apparent Density

The basis weight of the films was measured using an analytical balance and the
thickness was measured according to EN ISO 534 [42] at three different positions on each
film. These measurements were performed on twenty films. To obtain the grammage of
each individual film, the individual film weight was divided by the area of the Petri dishes.
The apparent density was determined according to EN ISO 534 [42].

2.4.3. Surface Properties

Several surface properties of the films were analyzed. The roughness was measured on
ten individual films using a Parker Print Surf (PPS, Luhne Messtechnik, Jüchen, Germany)
instrument according to TAPPI standard T 555 [43]. Surface wettability was investigated
via contact angle measurements with deionized water using a Fibro Dat 1100 (Fibro System,
Stockholm, Sweden) according to TAPPI standard T 558 [44]. For each type of film, 15
drops of 4 µL were measured.

2.4.4. Mechanical Properties

The mechanical properties of the films were investigated using a universal tensile
tester Zwick Z010 (ZwickRoell, Ulm, Germany). To prepare the samples for mechanical
testing, ten strips of 15 mm width and at least 80 mm length were cut from the center of
the round films. The tensile tests were performed according to EN ISO 1924-2 [45] with an
initial clamp separation of 50 mm and at a test speed of 20 mm/min.

2.4.5. Barrier Properties

Air permeability (Bendtsen) was examined on five different films according to DIN
53120-1. Water vapor transmission rate (WVTR) was determined on three films according to
TAPPI standard T 448 [46] and oxygen transmission rate (OTR) on five films according to EN
ISO 15105-2 [47] using a Perme OX2/230 oxygen transmission rate test system (Labthink,
Jinan, China) at 50% RH and 23 ◦C. For each of the five films, the OTR measurement was
repeated three times resulting in 15 measurements. Grease resistance was investigated by
performing a KIT test on three films according to TAPPI standard T 559 cm−12 [48].

For all data, an outlier test was performed to remove values more than three scaled
median absolute deviations (MAD) from the median. Mean values, 95% confidence inter-
vals and number of outliers of all measured film properties are presented in Tables A2–A5
in the Appendix A.

3. Results
3.1. Biopolymer Solution Properties

Despite preparing the biopolymer solutions at higher solids content than comparable
studies, solids contents of the biobased material mixtures shown in Table 1. are still
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considerably lower than the synthetic reference material ethylene vinyl alcohol (EVOH).
For future applications in paper coatings, this would results in a higher total wet application
amount for the same application weight of dry coating and therefore higher drying energy
demand. At the chosen concentrations, the surface tension of alginate is slightly lower
than of EVOH whilst the surface tension of chitosan is higher. Depending on potential
application techniques (e.g., curtain or spray coating), this has to be considered. An
important property in every coating process is the viscosity of the material at relevant shear
rates. The viscosities of the materials are shown in Figures 1 and 2. All three biobased
materials have higher viscosities than the reference material especially at lower shear rates
but also show distinct shear-thinning behavior. The reference material EVOH shows a less
pronounced shear-thinning behavior, which, however, is difficult to detect given the scale
of the y-axis in Figure 1. Thus, at higher shear rates, the biobased materials have similar
viscosities as the reference material. For a successful and uniform application of these
materials, a suitable application method preferably at high shear rates has to be chosen to
reduce the viscosity accordingly. In general, the low solids content, the high viscosity and
the pronounced shear-thinning behavior make the application of these biobased materials
using established coating methods challenging.

Table 1. Properties (solids content, density, pH value, surface tension) of alginate, chitosan, microfib-
rillated cellulose (MFC) and ethylene vinyl alcohol (EVOH) (n.m., not measurable).

Material Solids Content
(wt%)

Density
(g/cm3) pH Surface Tension

(mN/m)

Alginate 5.10 1.025 6.95 53.47
Chitosan 4.92 1.019 4.85 67.87

MFC 3.30 1.001 7.23 n.m.
EVOH 10.30 1.008 5.10 56.769
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3.2. Optical Properties

Depending on the application, optical appearance of films is of interest. Alginate (a),
chitosan (b) and EVOH (d) form transparent films as shown in Figure 3. Alginate and
chitosan films, while transparent, have a yellow–green tint that is not detectable visually in
the images depicted in Figure 3, but can be clearly seen in Figure 4, with high b* and higher
negative a* value in the Elrepho measurements. Both alginate and chitosan films are also
less bright (lower lightness L*) than the also transparent EVOH film. These apparent optical
properties might limit the application possibilities of alginate and chitosan as pure films, but
should not hinder application as a coating material on paper. Contrary to the transparent
appearance of the other three materials, microfibrillated cellulose (MFC) films (c) have
a significantly higher opacity and will thus strongly disturb the visibility of packaged
goods, when pure films are used. For paper coating application, this higher opacity is no
hindrance, as paper is opaque anyway. Since it is bleached MFC, the brightness is higher
than for the other films. It can be concluded that alginate and MFC may not be suitable
for all applications due to their optical appearance if pure films are used and undisturbed
visibility of products is desired, but for paper coating application, all materials are suitable.
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3.3. Thickness and Density

Figures 5–7 depict basis weight, thickness and apparent densities of the films. Regard-
ing their calculated apparent densities, both alginate and chitosan can be compared to the
petrochemical reference material EVOH. MFC films have a higher thickness and therefore
have a lower apparent density of 0.72 compared to the other materials. Density values of
MFC films in the literature [24,49] range between 0.8 g/cm3 and 1.1 g/cm3 [23,50]. This
discrepancy is caused by the high measured thickness of MFC films, which can be ascribed
to the wrinkling of the films during the drying process. These investigation of the materials
leads to the conclusion that the required thickness of the biopolymer coating layers to be
applied on paper will not differ from those of the established EVOH.
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3.4. Surface Properties

Except for MFC, all materials form very smooth films as is demonstrated by the PPS
roughness depicted in Figure 8. MFC films have a high PPS roughness of 7 µm while all
other films exhibit values below 1 µm. Reasons for this high PPS roughness is significant
shrinkage of the MFC films during free drying of the films and to some extent also the
particulate nature of the MFC fibrils.
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Figure 9 shows the behavior of water drops applied on the films after different times.
Both alginate and chitosan show little time-dependent behavior at the beginning but start
to show an increase in contact angle after the first five seconds. On MFC films, due
to the hydrophilic nature of cellulose, contact angles decrease significantly within the
first seconds. For EVOH films, no distinct change in contact angle is noticed in the
first seconds after drop application.
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Figure 10 shows the contact angles for drops of deionized water on the films for the
duration of 20 s. All contact angles start below 90◦ indicating wetting of the surface and
hydrophilicity. While contact angles on EVOH films stay constant after the initial drop
application, the other materials show distinct time-dependent behavior. The decrease in
contact angle on MFC films was so rapid that measured drops could no longer be detected
after approximately 6 s because the contact angle became too low. At very low contact
angles, the drops can no longer be measured because the software can no longer detect the
correct contour line of the drop. This is in part due to the surface roughness of the films,
which makes drop detection more difficult. While fast wetting of the surface was observed
due to the hydrophilic nature of MFC films, we observed that penetration into the MFC
films was only noticed to some extent because a lack of porosity hinders the water from
entering into the film.
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On alginate and chitosan films, the contact angle shows an increase after the initial
wetting of the surface. This behavior results from the swelling and partial dissolution of
the films, which falsifies the detection of the drop. The swelling causes the surface on
which the drop lies to rise, while the baseline of the measurement stays the same, leading
to higher detected contact angles (see also Figure A1). On alginate films, the drop can
even create a hole in the film when too much of the film is dissolved. For this reason,
two drops in addition to the outliers had to be excluded from the analysis. Chitosan films
show more swelling than alginate films within the first 10 s. But the films still prevent
all applied drops from penetrating through the material during the measurement time of
20 s. According to the initial contact angle after 0.1 s shown in Figure 9 And before the
start of swelling, alginate and chitosan films are less hydrophilic than the EVOH films
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and especially MFC films. Due to their hydrophilic behavior when in contact with water,
alginate, chitosan and MFC on their own are not applicable as packaging materials for moist
products and only of limited applicability for packaging of food in general. Regarding
coating of paper, additional components would have to be added to these materials or a
multilayer coating would have to be applied to fulfil the desired requirements. On the
other hand, the hydrophilicity of the evaluated materials can be considered as beneficial
when recyclability of the materials coated on paper is considered.

3.5. Mechanical Properties

The mechanical properties of the cast films are shown in Figures 11 and 12. Tensile
strength of MFC films is significantly higher than for EVOH films, and while alginate and
chitosan also have higher tensile strength, the difference cannot be considered as significant.
The elongation at break is significantly lower for all three biopolymers compared to the
petrochemical reference material EVOH, indicating a more brittle behavior. For this reason,
in most studies, they are mixed with plasticizers to improve their flexibility and handling,
which in turn can reduce their tensile strength [5]. Regarding their application as a coating
material for paper, there is a need to modify the barrier-coating formulation to improve
the elongation at break but at the same time keep the tensile strength high to achieve good
processability.
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3.6. Barrier Properties

All films have air permeabilities (Bendtsen) of 0 mL/min and a grease resistance
value of 12 according to the KIT test (see Table A1 in the Appendix A). Thus, all tested
materials are good air and grease barriers and show the potential to be used as packaging for
greasy goods.

The water vapor transmission rate (WVTR) could not be measured for the chitosan
films as they could not withstand the temperatures caused by the hot wax seal required
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by this method. The resulting cracks in the film prevented the measurement. Performed
tests show that alginate has the highest and EVOH the lowest WVTR of the considered
materials (Figure 13). The WVTR of alginate is high compared to the reference material
EVOH but can still provide a sufficient barrier for some packaging applications. MFC films
have transmission rates below 70 g/m2·d and can therefore be used for packing foodstuff
more sensitive to water vapor.
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The measured oxygen transmission rates (OTR) shown in Figure 14 depict the mean
values and confidence intervals of three measurements on five individual films. Because the
deviations between individual films are very high, the detection and exclusion of outliers is
very important. One film produced from EVOH has an OTR of 47 cm3/m2·d although this
material is known for its excellent oxygen barrier properties, and the remaining films have
OTR values below 0.15 cm3/m2·d. The variance between the individual measurements
cannot be linked to any of the other measured parameters like air permeability or thickness
of the individual films and is most likely caused by pinholes in the µm range. These can be
caused by the films preparation or handling and have been shown to decrease the oxygen
barrier of polymer films [49]. The oxygen transmission rates of alginate and chitosan are
not as low as the results for EVOH films but sufficient even for food with high requirements
regarding oxygen transmission. This leads to the conclusion that with the right application
and handling the materials provide excellent oxygen barriers and are suitable for coating
packaging materials of oxygen-sensitive food.
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With regard to the application of these materials as a barrier coating for paper and
board, it should be considered that the thickness of the layers applied on paper and board
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is significantly lower than the thickness of the pure films, which of course will also tend to
reduce the barrier properties.

4. Conclusions

Whilst many studies focus on the optimization of barrier or tensile properties of
a certain biopolymer film or the combination of biopolymers with other materials, this
research focuses on the properties of individual pure biopolymers in order to evaluate
their applicability in the barrier coating of paper and board. In this research, alginate,
chitosan and MFC solution cast films were investigated for barrier applications on paper
and compared to EVOH as a synthetic reference material.

All surveyed biopolymers exhibit brittle material behavior with tensile strength higher
or as high as EVOH and lower elongation at break than the reference material. Therefore,
applications requiring specific mechanical properties regarding processability will need
additional components like plasticizers. Contact angles of alginate and chitosan increase
over time because of swelling of these materials. Alginate has higher WVTR than MFC
and EVOH and both alginate and chitosan have low OTR. These materials applied on
paper or board as a barrier layer therefore show the potential to be used in a multitude
of packaging applications where oxygen transmission is the main requirement and water
vapor transmission is not crucial or to be a part of multilayer coating. The contact angle
of MFC films is steadily decreasing, and therefore, this material is not suited for moist
products, but because of its low WVTR, it may be adequate as a water vapor barrier in
multilayer coating. OTR of MFC is not as low as that of other tested biopolymers but is still
on a level that is suitable for a wide range of packaging applications.

Based on these identified properties, none of the surveyed materials in their pure
form can be used as a packaging film, but they all provide promising properties for future
applications in the packaging industry as barrier coating materials for paper and board.
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Appendix A

Table A1. Optical properties (L*, a*, b*-values) of alginate, chitosan, MFC and EVOH solution cast
films including measurement of a standard.

Material L* a* b*

Standard 94.95 ± 0 −0.53 ± 0.03 1.2 ± 0.02
Alginate 90.57 ± 1.21 −1.87 ± 0.69 7.13 ± 3.52
Chitosan 90.17 ±0.09 −2.66 ± 0.11 9.08 ± 0.35

MFC 59.09 ± 0.05 −0.93 ± 0,14 2.78 ± 0.41
EVOH 92.34 ± 0.41 −0.62 ± 0.03 1.12 ± 0.08
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Table A2. Basis weight (n = 20), thickness (n = 20), apparent densities (n = 20) and roughness (n = 10)
of solution cast films. Mean value ± 95% confidence interval.

Material Basis Weight
(g/m2) Thickness (µm) Apparent

Density (g/cm3)
PPS Roughness

(µm)

Alginate 44.80 ± 0.04
(one outlier) 39.90 ± 2.05 1.14 ± 0.06 0.71 ± 0.19

Chitosan 42.33 ± 0.24 38.37 ± 1.47 1.11 ± 0.04 0.72 ± 0.26
MFC 37.07 ± 0.25 52.17 ± 2.07 0.72 ± 0.03 7.06 ± 0.42

EVOH 35.10 ± 0.03 32.16 ± 0.96
(one outlier)

1.10 ± 0.03
(one outlier) 0.45 ± 0.29

Table A3. Water contact angles of solution cast films after 0.04 s, 0.1 s, 1 s and 5 s. Mean values and
95% confidence intervals (n = 15).

Material Contact Angle
after 0.04 s (◦)

Contact Angle
after 0.1 s (◦)

Contact Angle
after 1 s (◦)

Contact Angle
after 5 s (◦)

Alginate
(three outliers) 71.55 ± 1.38 65.16 ± 1.22 66.69 ± 2.29 72.24 ± 3.09

Chitosan 83.93 ± 4.71 84.69 ± 4.47 84.88 ± 4.13 95.37 ± 3.25
MFC

(two outliers) 65.97 ± 2.81 56.21 ± 2.00 45.80 ± 2.92 41.08 ± 4.65

EVOH 66.17 ± 2.70 65.46 ± 3.37 64.92 ± 3.17 64.52 ± 3.34
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Figure A1. Water contact angle measurement on alginate solution cast film after 0.01 s (left) and 20 s
(right). Right image shows the swelling induced rise of the surface on which the drop lies leading to
higher detected contact angles as the baseline of the measurement stays the same.

Table A4. Tensile strength (n = 10), elongation at break (n = 10), water vapor transition rate
(n = 3) and oxygen transmission rate (n = 15) of solution cast films. Mean values and 95% con-
fidence intervals.

Material
Tensile

Strength
(kN/m)

Elongation at
Break (%)

WVTR
(g/m2·d)

OTR
(cm3/m2·d)

Alginate 2.25 ± 0.66 4.60 ± 1.56 258.95 ± 4.24
(one outlier)

0.47 ± 0.16
(six outliers)

Chitosan 2.29 ± 0.48
(one outlier)

2.53 ± 0.70
(three outliers) - 2.32 ± 0.89

(three outliers)

MFC 3.20 ± 0.42 3.19 ± 0.67 66.45 ± 6.25 96.40 ± 43.62
(three outliers)

EVOH 1.78 ± 0.18 14.51 ± 5.40 0.45 ± 0.40
(one outlier)

0.10 ± 0.02
(three outliers)
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Table A5. Air permeability (n = 10) and grease resistance (n = 3) of solution cast films.

Material Air Permeability
(mL/min)

Grease Resistance
KIT

Alginate 0 12
Chitosan 0 12

MFC 0 12
EVOH 0 12
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