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Abstract: African swine fever (ASF) is a lethal disease of domestic pigs that has been causing
outbreaks for over a century in Africa ever since its first discovery in 1921. Since 1957, there have
been sporadic outbreaks outside of Africa; however, no outbreak has been as devastating and as
far-reaching as the current pandemic that originated from a 2007 outbreak in the Republic of Georgia.
Derivatives with a high degree of similarity to the progenitor strain, ASFV-Georgia/2007, have been
sequenced from various countries in Europe and Asia. However, the current strains circulating in
Africa are largely unknown, and 24 different genotypes have been implicated in different outbreaks.
In this study, ASF isolates were collected from samples from swine suspected of dying from ASF on
farms in Ghana in early 2022. While previous studies determined that the circulating strains in Ghana
were p72 Genotype I, we demonstrate here that the strains circulating in 2022 were derivatives of the
p72 Genotype II pandemic strain. Therefore, this study demonstrates for the first time the emergence
of Genotype II ASFV in Ghana.

Keywords: African swine fever; ASFV; Ghana; genome

1. Introduction

African swine fever (ASF) is a deadly contagious hemorrhagic disease of domestic
and wild pigs that was first reported in Kenya in 1921 [1]. ASF has continuously caused
outbreaks throughout different parts of Africa since its discovery, with a few sporadic
outbreaks outside of Africa that were resolved without spreading worldwide. In 2007, this
situation began to change after an outbreak of Genotype II ASF occurred in the Republic
of Georgia [2]. This outbreak continued to spread to neighboring countries, and in 2018
an outbreak occurred in China [3], followed by rapid spread of ASF throughout southeast
Asia. In addition, the disease has continued to spread to east and central Europe. In 2021 an
outbreak occurred in the Dominican Republic, marking the first outbreak in recent history
of ASF in the western hemisphere [4].
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The causative agent of the disease, ASF virus (ASFV), is a large DNA virus belonging
to the family Asfarviridae; it contains a large dsDNA genome ranging from 170–192 kb that
encodes 150 to 200 proteins [5–9]. Until recently the ability to perform full-length genome
sequencing of the ASFV genome was costly and difficult, which has restricted full-length
genome sequencing to only a very few virus isolates. Accordingly, ASFV strains are often
broadly characterized by genotype; currently ASFV is classified by 24 genotypes based
on the sequencing of a 478 bp fragment of the B646L gene, which encodes for the ASFV
capsid protein p72 [10–13]. Further classifications have been implemented by combination
of the sequences of genes encoding for p54, p72, and the central variable region (CVR) of
pB602L [14]. However, due to the complexity inherent to the ASFV genome (large size,
over 150 different proteins, different number of proteins between isolates, deletions and
fusions within the multi-gene family (MGF) genes), classifications based on a small subset
of genes are insufficient. Sequencing of the entire genome of ASFV can provide a better
understanding of how many different ASFV genomes are currently circulating in the world,
and perhaps allow for better prediction of cross-protection through sequence homology.

Currently, there is only one vaccine available for commercial use for ASF, and its use
is limited to Vietnam, with several other experimental vaccines under different stages of
development [15]. Therefore, in most of the world control of ASF relies on movement
restrictions and culling of infected animals on farms. To more efficiently develop vaccines
that can offer protection against different isolates, a more thorough classification of ASFV
based on full length sequencing instead of p72 genotyping is needed. Indeed, the molecular
basis of cross-protection between or within genotypes is largely unknown, and the signifi-
cance of genotypes for predicting cross-protection is uncertain, as historically genotyping
of ASFV was performed under convivence for disease tracking, rather than because any
scientific reason suggested cross-protection within or between genotypes. However, it has
been shown that live-attenuated ASFV with specific genetic deletions offers protection
against the parental homologous strain of ASFV; see Gladue et.al., 2022 [15] for a review of
ASFV vaccines.

Here, we sequenced the full genomes of ASFV circulating in 2022 in Ghana, revealing
that they belong to Genotype II and are a derivative of the current pandemic strain ASFV-
Georgia/2007. Full-genome sequencing of the 2022 outbreak strains in Ghana revealed a
unique deletion in the 5′ end of the genome, completely deleting eight MGF genes. The
remaining genes in the Ghana isolates of ASFV are a 99% match to the current pandemic
strain. While previous reports determined that Genotype I was the main p72 genotype
in Ghana causing outbreaks, this report determines for the first time that Genotype II of
ASFV is causing outbreaks in domestic swine in Ghana [16]. The results presented here
show the further spread of the pandemic strain of ASFV into Ghana and evidence genetic
differences that would not be noted by purely genotyping these isolates by partial gene
sequence analysis. This additional knowledge is important for future outbreak mapping
to determine both the introduction of these isolates into new areas as well as to detect the
introduction of new isolates into areas where outbreaks have previously occurred. This
information is critical for both epidemiological control of the disease, and contributes to
determining vaccine matching.

2. Materials and Methods
2.1. Sample Collection and Next Generation Sequencing

Four isolates of ASFV were obtained from swine from various regions of Ghana that
were suspected to have died from ASF during the first few months of 2022. ASFV Ghana2002-
35 was collected on 4 January 2022 from a spleen sample, ASFV isolate Ghana2022-34 was
collected on 7 March 2022 from a kidney sample. ASFV isolate Ghana2022-40 was col-
lected on 11 March 2022 from a spleen sample, and ASFV isolate Ghana 2022-62 was col-
lected on 3 February 2022 from a spleen sample. ASFV isolates Ghana2022-34, Ghana2022-35,
Ghana2022-40, and Ghana2022-62 were passed one time in blood-derived primary swine
macrophage cultures produced as previously described in [17]. Viral genomes were sequenced
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using an Illumina Nextseq500 sequencing platform, as previously described [18]. Additionally,
for assembly across low-complexity regions of the genome, Ghana2022-35 was sequenced
using the Oxford nanopore minion [16] sequencing platform using previously described
methods [19]. In brief, viral DNA was extracted from infected macrophage cultures using a
nuclear extraction kit (Active Motif, Carlsbad, CA, USA). The cytoplasmic fraction was used
for sequencing of ASFV DNA. Libraries were created using the Nextera XT kit (Illumnia, San
Diego, CA, USA) following the manufacturer’s protocol. Sequence analysis was performed
using CLC Genomics Workbench software (CLCBio, Waltham, MA, USA).

2.2. Genome Assembly

All steps were performed using the CLC Genomics Workbench (version 21). Illumina
reads were trimmed for quality (limit = 0.05), ambiguous base pairs (max = 2), adapters, min-
imum size (min = 50), and from the 5′ (20 nucleotides) and 3′ terminal end (5 nucleotides).
Ghana2022-35 was first constructed via de novo assembly using the following methodology.
To remove reads resulting from the host sequence, 500,497,223 paired-end and 73,874 or-
phaned Illumina reads were mapped to ASFV strain ASFV-G (Accession: FR682468.2) and
collected, resulting in 249,624 paired-end reads and 105,492 orphaned Illumina reads. Next,
131,918 Minion and the collected Illumina reads were entered into the “De Novo Assembly
Long Reads and Polish with Short Reads” pipeline using the default parameters. From
the assembly, a contig that matched to ASFV was extracted, and all Minion and trimmed
Illumina reads were mapped back to the genome using the default parameters, resulting in
an average depth of coverage of 313 reads. The consensus sequence was extracted, resulting
in a 184,773 nt genome. To construct the genomes of Ghana2022-34, Ghana2022-40, and
Ghana2022-62, Illumina reads originating from each sample were trimmed as previously
described and separately mapped to the Ghana2022-35 genome, and the consensus se-
quences were extracted. Ambiguous nucleotides were manually resolved based on the
mapped reads.

2.3. Annotation of the Genome

ORF prediction was performed on Ghana2022-35 using CLC Genomics workbench
v21 using the “Find Open Reading Frames” module with the following parameters: both
strands, min. size = 50 nt, genetic code = standard, start codon AUG, resulting in 427 ORFs.
Protein translations of the ORFs were compared against all 195 protein sequences of the
ASFV strain ASFV-G (Accession: FR682468.2) using the default parameters of BLASTP.
ORFs with >80% sequence identity and coverage were annotated with the top ASFV-G
protein hit. The strand and the start and end nucleotide positions for each gene were
extracted from the output file and, when required, were manually edited to include the
correct start and stop codon. To cull the remaining unannotated ORFs, the nucleotide
sequences of the remaining ORFs were compared to the nucleotide sequence of ASFV-G
using the default parameters of TBLASTN. ORFs that matched ASFV-G with over 80%
identification and coverage were discarded as incorrectly predicted ORFs. Translated
sequences from the remaining unannotated ORFs were compared to proteins translated
from our previously described ASFV database [5]. ORFs with no matches or with matches
to a hypothetical protein were removed, and the remaining ORFs were annotated with
the top ASFV protein hit. The strand, start, and end nucleotide positions for each gene
were extracted from the output file and manually edited when required to include the
correct start and stop codon. Annotations were entered on the Ghana2022-35 genome in
CLC Genomics Workbench, resulting in 167 annotations. Annotations were transferred to
Ghana2022-34, Ghana2022-40, and Ghana2022-62 using the Genome Annotation Transfer
Utility [20]. Concurrently, proteins with sequences that differed compared to Ghana2022-35
and annotations that failed to transfer were collected and recorded.
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2.4. Identification of Single-Nucleotide Polymorphisms (SNPs)

Ghana2022-35 was mapped to ASFV-G (Accession: FR682468.2) using the Map Long
Reads to Reference module in CLC Genomics with long-read splice alignment enabled.
The Basic Variant Detection module within CLC Genomics was then used, followed by
the Amino Acid Changes module. The same methodology was used with Ghana2022-
34, Ghana2022-40, and Ghana2022-62 separately mapped to Ghana2022-35 in order to
determine the SNPs between the samples originating from Ghana.

2.5. Genome Alignment

A database of 32 ASFV genomes was created by downloading the top 11 ASFV genomes
on NCBI based on percent identity and coverage with respect to Ghana2022-34, Ghana2022-
35, Ghana2022-40, and Ghana2022-62 using the default parameters of BLASTN [21–24]; the
genomes of curated historical isolates were downloaded from 4virology.net accessed on,
21 May 2023 and any remaining full length ASFV sequences originating from Africa were
downloaded from NCBI. Genomes were aligned against the sequences originating from Ghana
using the Create Whole Genome Alignment module in CLC Genomics, and a phylogeny was
constructed using four combinations of comparisons (Average Nucleotide Identity (ANI) or
Average Alignment Percentage (AP)) and methods (Neighbor Joining (NJ) or Unweighted
Pair Group Method with Arithmetic Mean (UPGMA)).

2.6. Protein Alignment

The protein translations from all annotated ORFs originating from the genomes iso-
lated from Ghana were compared against the NCBI database using the default parameters
of BLASTP [21–24]. Proteins containing unique sequences were collected along with
their historical isolates’ homologs; these were downloaded from 4virology.net accessed on
21 May 2023 and aligned in CLC Genomics using the following parameters: Gap Open = 10,
Gap extension = 1, End Gap Cost = free, Alignment = very accurate.

3. Results
3.1. Characteristics of Collected 2022 Outbreak Samples

Four isolates of ASFV were obtained from outbreaks in the first few months 2022 from
the Ashanti, Northern, and Eastern regions of Ghana (Figure 1). ASFV Ghana2002-35 was
collected on 4 January 2022 from the Ashanti region during an outbreak at a small farm
with 20 head of swine, where 11 swine had died and 8 additional swine were showing
clinical signs of ASF including red patches on the skin, vomiting blood, swollen head, and
were off feed. The ASFV isolate was sequenced from a spleen sample obtained from one of
the animals that died. ASFV isolate Ghana2022-34 was obtained from the Eastern region of
Ghana on 7 March 2022 from a farm with 416 head of swine, where 186 swine were dead
and 45 additional animals were showing clinical signs of ASF, including abortion, loss of
coordination, difficulty breathing, and were off feed. The virus was isolated from a kidney
sample obtained from an animal that died. ASFV isolate Ghana2022-40 was obtained
from the Eastern region of Ghana on 11 March 2022 from a farm containing 50 head of
swine, where 4 had died and 11 more were showing clinical symptoms, including loss of
appetite, dullness and weakness, reluctance to stand, red pigmentation of the skin, fever,
and difficulty breathing. A spleen was collected from one of the animals that died, and the
ASFV isolate was sequenced. ASFV isolate Ghana 2022-62 was obtained in the Northern
region of Ghana from an outbreak occurring on February 3, 2022 at a farm consisting
of 70 head of swine, with 59 swine found dead and 8 more showing clinical symptoms
consisting of anorexia, lethargy, and hyperemia of the whole body. The virus was obtained
from a spleen sample from one of the animals that died and was sequenced. After the
clinical sample was submitted and confirmed positive, no further information was provided
by the farmers about the outcome of the outbreak. Nonetheless, these samples from three
distinct regions of Ghana (Figure 1) can provide an idea of the circulating strains of ASFV.
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3.2. Genotyping of the ASFV Isolates

Genotyping was performed, and all four isolates (Ghana2022-34, Ghana2022-35,
Ghana2022-40, and Ghana2022-62) were determined to be Genotype II from the coding
sequences of p72 (B646L) and Genotype IIa based on p54 (E183L) (Table 1).

Table 1. Origin and genotyping of Ghana samples.

Sample GenBank
Accession

Location of
Animal/Farm Region Date of

Outbreak
Genotype

p72/VP73 (B646L)
Genotype

p54 (E183L)

35 OP479889 AKUMADAN Ashanti 1/4/2022 II IIa

62 OP718535 CENTRAL GONJA
DISTRICT Northern 2/3/2022 II IIa

34 OP718533 BUNSO Eastern 3/7/2022 II IIa
40 OP718534 SUHYEN Eastern 3/11/2022 II IIa

3.3. ASFV Full-Genome Alignments

Using whole-genome alignments for ASFV isolates available on NCBI, phyologenic
trees were constructed using four different parameters: ANI + NJ, AP +NJ, UPGMA + ANI,
and UPGMA + NJ. All methods grouped the Ghana 2022 genomes (blue font) together as a
sister group to RV502 (Accession: OP672342), a 2020 isolate from Nigeria [25]. However
further analysis relied only on ANI + NJ, as it correctly grouped the prototypical isolates.
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The Ghana 2022 genomes shared a sister group with Estonia-2014 (Accession: LS478113.1)
as well (Figure 2). RV502 was recently shown to have a ~6500 bp deletion resulting in the
loss of MGF_110-8L, MGF_110-XR, ACD 00190, MGF_110-9L, ACD 00210, MGF_110-10L-14
L, G ACD 00240, MGF_110-12L, MGF_110-13La, MGF_110-13Lb, ACD 00270, MGF_360-4L,
ACD 00300, and G ACD 00350 [25]. Estonia-2014 has been previously shown to have
a ~14,500 bp deletion of the 5′ end, resulting in the loss of the MGF genes MGF_110-1L
through MGF_110-14L and MGF_360-1L through MGF_360-3L, along with the partial
deletion of MGF_110-13 L [26].
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3.4. Genetic Variation between Ghana 2022 Isolates

To determine genetic differences between the four Ghana isolates, the genomes of
Ghana2022-34, Ghana2022-40, and Ghana2022-62 were compared to the first outbreak strain
in Ghana identified in 2022, Ghana2022-35 (Supplementary Table S1). Note that the follow-
ing genes could not be compared because of gaps in the assembly: EP402R (Ghana2022-34,
Ghana2022-40, and Ghana2022-62), DP79L (Ghana2022-62), EP153R (Ghana2022-34 and
Ghana2022-40), and MGF_360-6L (Ghana2022-40).

Comparison between the Ghana2022-35 and Ghana2022-34 genome resulted in 34 SNPs.
Comparison of the genome of Ghana2022-35 and Ghana2022-40 resulted in 26 SNPs, seven
of which led to a change in the amino acid (AA) sequence of seven ORFs: X69R (P16L),
MGF_505-1R (R450I), K145R (Y166H), C315R (Q30H), E199L (P85A), MGF_505-11L (I280V),
and a frameshift in MGF_360-13L at A262. Comparison of the genome Ghana2022-35 and
Ghana2022-62 contained thirteen SNPs, twelve of which led to a change in AA sequence of
six ORFs: X69R (P16L), C475L (Q148H), E199L (P85A), MGF_505-11L (I280V), a frameshift
in MGF_360-13L at A262 and a frameshift in MGF_360-18R at L54.

These results show that even in early 2022 there were unique genomic features at
both the nucleotide and protein level between closely related outbreaks of ASFV in Ghana,
suggesting variation between isolates causing outbreaks even within a restricted area and
time of outbreak in Ghana.

3.5. Analysis of a 6534 nt Deletion and Individual MGFs

When Ghana2022-35 was compared to the original outbreak strain ASFV-Georgia/2007,
there were a total of 69 SNP, insertions, and deletions, of which 37 resulted in an AA change
in 34 ORFs, as detailed in Supplementary Table S2. Compared to ASFV-Georgia/2007,
there was a 6534 nt deletion in the Ghana genomes that is not present in other isolates
that are decedents of the original Georgia/2007 outbreak. This deletion is between the
coding regions of MGF_110-8L and MGF_360-6L, and resulted in the loss of the multi-gene
family (MGF) proteins MGF_110-8L, MGF_100-1R, MGF_110-9L, 0 MGF_110-10-14L fusion
protein, MGF_110-12L, MGF_110-13La, MGF_110-13Lb, and MGF_360-4L. This deletion
additionally consists of the open reading frames (ORFs) ASFV G ACD 00190, ASFV G ACD
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00300, ASFV G ACD 00210, ASFV G ACD 00240, and ASFV G ACD 00270. This deletion
resulted in the replacement of the 35 C-terminal of MGF_360-6L with the sequence “RFT-
TNPLSS*” that originated from an off-frame translation within the original MGF_110-8L
ORF (Figure 3). Further, a mutation led to the loss of the start methionine codon in the
genome that originated from Ghana2022-40, leading to a further shortening of MGF_360-6L.
When compared to ASFV-G, an additional 688 nt deletion was observed within the Ghana
isolates, which created an MGF_110-3L-4L fusion protein (Figure 3). Further differences
that led to truncation or extensions were seen in the coding sequences of other MGF
proteins (Supplementary Table S2 and Table 2). KP360L is a fusion of MGF_360-1la and
MGF_360-1lb resulting from a single nucleotide insertion in MGF_360-1Lb (Figure 3 and
Supplementary Figure S1), though the amino acid sequence is closer to ASFV-G MGF_360-
1La and MGF_360-1Lb than to the sequence of KP360L encoded by historical ASFV isolates.
Additional differences in the genes of the MGF families include an extension of MGF_110-
1L (all Ghana 2022 genomes), a truncation of MGF_360-13L (all 2022 Ghana genomes, and
samples Ghana2022-40 and Ghana2022-62 are further truncated compared to Ghana2022-34
and 35), a truncation of MGF_360-16R that may possibly lead to the encoding of MGF_360-
16Ra and MGF_360-16Rb (all 2022 Ghana genomes), a truncation of MGF_300-2R that may
possibly lead to the encoding of MGF_300-2Ra and MGF_300-2Rb (all Ghana genomes),
an extension of MGF_100-3L (all Ghana 2022 genomes), and a truncation of MGF_360-18R
that may lead to the encoding of MGF_360-18Ra and MGF_360-18Rb (Ghana2022-62 only).
Mutations that led to the encoding of MGF genes with unique AA sequences are further
explored in the next section.
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Figure 3. Graphic illustrating MGF genes that contain truncations, elongations, and fusions encoded
by the 2022 Ghana isolates compared to the original outbreak strain ASFV-Georgia/2007. Note that
the MGF_360-6L fusion was not annotated in Ghana2022-34 because of a single nucleotide gap in
the genome.

3.6. Analysis of Ghana 2022 Proteins

All proteins encoded by Ghana2022-34, Ghana2022-35, Ghana2022-40, and Ghana2022-
62 were submitted to BLASTP on NCBI [21–24]. Sequences that did not have 100% identity
and 100% coverage matches were considered to be unique protein sequences specific to
the 2022 Ghana genomes. As summarized in Table 2, the following proteins encoded
from the specified Ghana genome contained unique amino acid sequences that can be
used as markers for the 2022 Ghana genomes (Supplementary Figure S1): B117L (Y98F,
all genomes), B602L (V13I, all genomes), C315R (Q30H, Ghana2022-40), C475L (Q148H,
Ghana2022-62), EP402R (L300V and P313L, Ghana2022-35), EP424R (N155S, all genomes),
F334L (S282G, all genomes), H339R (Q319R, all genomes), K145R (Y116R, Ghana2022-40),
KP360L (F19L, H41Y, and K47E, all genomes), MGF_110-1L (an additional 54 amino acids
to the C-terminus, all genomes), MGF_110-7L (Y112, all genomes), MGF_360-13L (G177D,
all genomes, NINQAM-LTSVQYYNIGNIFFCID 262-284 ATSTKLCLLQYNIITSVIYFSV*,
(Ghana2022-34 and Ghana2022-35 and NINQAMLTSVQYYN 262-276 QHQPSYAY-FSTIL*,
(Ghana2022-40 and Ghana2022-62), MGF_360-14L (P351L, all genomes), MGF_360-16R
(split into MGF_360-16Ra and MGF_360-16Rb, all genomes), MGF_360-18R (split into
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MGF_360-168a and MGF_360-18Rb, Ghana2022-62), MGF_360-6L (LHKKILEPSE 341-350
RFTTNPLSS*, Ghana2022-34, Ghana2022-35, and Ghana2022-62), MGF_505-11L (S231L, all
genomes) and (I280V, Ghana2022-40 and Ghana2022-62), MGF_505-1R (I450R, all genomes),
MGF_505-2R (T355A, all genomes), MGF_505-5R (G477S, all genomes), NP868R (A9T and
A589V, all genomes), and X69R (L16P, Ghana2022-34 and Ghana2022-35).

Table 2. Proteins with unique amino acid sequences encoded by the indicated Ghana samples.

Gene Ghana2022-34 Ghana2022-35 Ghana2022-40 Ghana2022-62

B117L Y98F Y98F Y98F Y98F
B602L V13I V13I V13I V13I
C315R no mutation no mutation Q30H no mutation
C475L no mutation no mutation no mutation Q148H

EP402R na L300V, P313L na na
EP424R N155S N155S N155S N155S
F334L S282G S282G S282G S282G
H339R Q319R Q319R Q319R Q319R
K145R no mutation no mutation Y116R no mutation

KP360L F19L, H41Y, K47E F19L, H41Y, K47E F19L, H41Y, K47E F19L, H41Y, K47E

MGF_110-1L 54 AA extension to the
C-terminus

54 AA extension to the
C-terminus

54 AA extension to the
C-terminus

54 AA extension to the
C-terminus

MGF_110-7L Y112R Y112R Y112R Y112R

MGF_360-13L

G177D, NIN-
QAMLTSVQYYNIGNIF-

FCID 262-284
ATSTKLCLLQYNI-

ITSVIYFSV*

G177D, NIN-
QAMLTSVQYYNIGNIF-

FCID 262-284
ATSTKLCLLQYNI-

ITSVIYFSV*

G177D,
NINQAMLTSVQYYN

262-276
QHQPSYAYFSTIL*

G177D,
NINQAMLTSVQYYN

262-276
QHQPSYAYFSTIL*

MGF_360-14L P351L P351L P351L P351L

MGF_360-16R
D92*, split into

MGF_360-16Ra and
MGF_360-16Rb

D92*, split into
MGF_360-16Ra and

MGF_360-16Rb

D92*, split into
MGF_360-16Ra and

MGF_360-16Rb

D92*, split into
MGF_360-16Ra and

MGF_360-16Rb

MGF_360-18R no mutation no mutation no mutation Split into MGF 360-18Ra
and MGF 360-18Rb

MGF_360-6L LHKKILEPSE 341-350
RFTTNPLSS*

LHKKILEPSE 341-350
RFTTNPLSS* na LHKKILEPSE 341-350

RFTTNPLSS*
MGF_505-11L S231L S231L S231L, I280V S231L, I280V
MGF_505-1R I450R I450R I450R I450R
MGF_505-2R T355A T355A T355A T355A
MGF_505-5R G477S G477S G477S G477S

NP868R A9T, A589V A9T, A589V A9T, A589V A9T, A589V
X69R L16P L16P no mutation no mutation

na: Gene was not annotated.

4. Discussion

Here, we report four full-length sequences from the 2022 outbreaks in Ghana. This
is the first report of Genotype II strains circulating in Ghana that are derivatives of the
current Eurasia strain that caused the 2007 outbreak in the Republic of Georgia, as previous
outbreaks of ASFV in Ghana were identified as Genotype I [16]. It is interesting that
derivatives of ASF can occur with distinct genetic markers even within a few months
of outbreaks. However, common markers can be seen when evaluating the differences
between the four isolates, suggesting that they originated from the same parental strain or
outbreak in recent history.

While the exact number of ASFV strains currently circulating in Africa is unknown,
the information provided by full-genome sequencing of outbreak strains is imperative to
track the continued evolution of ASFV strains. Historically, genotyping was performed
to track ASF outbreaks out of convenience; however, partial genome sequencing does not
provide an accurate representation of the currently circulating strains. This study and
others [25–27] based on ASFV whole-genome sequencing clearly indicate that there are
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different circulating strains of Genotype II, an observation that would be missed by only
sequencing a few selected genes. For example, the isolates from Ghana have a deletion
of eight MGF family genes. Recently, a 6534 nt deletion, MGF_110-3L-4L fusion, and
MGF_360-1La-ILb fusion were observed in RV502 [25]. Interestingly, unlike RV502, the
Ghana isolates do not contain the reverse complement duplication of the 5′ end of the
genome on the 3′ end of the genome, and no fusion between MGF_360-21L and MGF_360-
2L was observed [25]. There have been previous reports that deletion of six MGF genes can
result in full or partial attenuation of ASFV [28–33]. It is important to note that the deletion
observed in the Ghana isolates is not the same or even close to the deletion observed in the
genetically engineered strains that were attenuated. Other isolates such as Nigeria-RV502
had deletions of MGF genes; however, these do not show any decreased virulence in
domestic swine [25]. Conversely, large deletions that include many MGF genes of the p72
Genotype I or Genotype II strains have been found in animals surviving outbreaks [25,34],
although when tested in swine these strains had a level of residual virulence. It should be
noted that there are multiple families of MGF genes. Furthermore, even MGF genes within
the same family appear to be unique based on structural prediction [9], suggesting that
different MGF genes have different specific molecular functions and that different deletions
of specific MGF genes would have a differential effect on ASFV [35]. It is possible that these
genetic deletions have occurred as a fit for a purposely smaller genome in domestic swine,
and that these strains could have reduced replication in ticks (as was observed in other
isolates [36]) or perhaps in wild suidae; however, further experiments would have to be
performed to evaluate this theory.

Although in this study there were minor differences in ASFV proteins when comparing
the genomes of the outbreak strains in Ghana to that of the original ASFV-Georgia/2007
backbone, our results would nonetheless suggest that vaccines using the ASFV-Georgia/2010
backbone [28,37–40] would be effective against the outbreak strain occurring in Ghana, as
previous reports using the ASFV-G-∆I177L vaccine strain have determined this vaccine to be
effective against both the original ASFV-Georgia/2010 strain and recent strains in Vietnam [41].
It is important to note that domestic pigs in Ghana are a crossbreed between European pigs
and the local Ashanti Dwarf pig, a breed that is noted for being hardy and less susceptible to
local diseases [42]. It would be expected that an ASFV vaccine would show similar results in
these pigs, as it did in local Vietnamese breeds [41], though the efficacy of any vaccine would
have to be tested under local conditions. When vaccination becomes a method of controlling
ASF worldwide, it will become increasingly important to determine the full-length genome
of ASFV in order to accurately predict the effectiveness of vaccines rather than relying on
one individual protein, as historically used out of convenience for genotyping, particularly as
the persistence of Genotype II continues to evolve throughout different parts of the world.
The information presented in this manuscript is important, as we have discovered currently
circulating strains of ASFV in Africa, providing information on the potential to use either
commercial or experimental ASF vaccines in particular areas.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/v15081722/s1, Figure S1: Protein Alignments; Table S1: SNPs present
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in Ghana2022-45 compared to ASFV-G.
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