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Abstract: As pollinators, insects play a crucial role in ecosystem management and world food
production. However, insect populations are declining, necessitating efficient insect monitoring
methods. Existing methods analyze video or time-lapse images of insects in nature, but analysis
is challenging as insects are small objects in complex and dynamic natural vegetation scenes. In
this work, we provide a dataset of primarily honeybees visiting three different plant species during
two months of the summer. The dataset consists of 107,387 annotated time-lapse images from
multiple cameras, including 9423 annotated insects. We present a method for detecting insects in
time-lapse RGB images, which consists of a two-step process. Firstly, the time-lapse RGB images are
preprocessed to enhance insects in the images. This motion-informed enhancement technique uses
motion and colors to enhance insects in images. Secondly, the enhanced images are subsequently
fed into a convolutional neural network (CNN) object detector. The method improves on the deep
learning object detectors You Only Look Once (YOLO) and faster region-based CNN (Faster R-CNN).
Using motion-informed enhancement, the YOLO detector improves the average micro F1-score from
0.49 to 0.71, and the Faster R-CNN detector improves the average micro F1-score from 0.32 to 0.56.
Our dataset and proposed method provide a step forward for automating the time-lapse camera
monitoring of flying insects.

Keywords: camera recording; deep learning; insect dataset; motion enhancement; object detection

1. Introduction

More than half of all the described species on Earth are insects; they are the most
abundant group of animals and live in almost every habitat. There are multiple reports of
declines in abundance, diversity, and biomass of insects all over the world [1–4]. Changes
in the abundance of insects could have cascading effects on the food web. Bees, hoverflies,
wasps, beetles, butterflies, and moths are important pollinators and prey for birds, frogs,
and bats. Some of the most damaging pest species in agriculture and forestry are moths [5,6],
and insects are known to be major factors in the world’s agricultural economy. Therefore, it
is crucial to monitor insects in the context of global changes in climate and habitats.

Traditional insect-trapping methods [7] are based on the manual capturing and sam-
pling of insects. Manual trapping is very tedious and labor intensive. Typically, in-
sects are killed, manually counted, and classified by humans—which requires expert
knowledge—and rare insect species are killed. Samples from the traps are used for penol-
ogy studies and abundance and growth analyses across taxa, regions, and periods. Malaise
traps [8] are large tent-like structures made of netting, meant to funnel insects into a com-
mon area. The net is then checked and emptied periodically over days or weeks. Light
traps [9] are used to catch insects at night using different spectral lights to attract insects
like moths. Light-attracted insects fly toward the light source, hit a surface surrounding the
light, and can then be observed, recorded, sampled, or collected. All the above-mentioned
trapping methods are labor intensive, since insects need to be collected and inspected

Sensors 2023, 23, 7242. https://doi.org/10.3390/s23167242 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23167242
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6742-9504
https://orcid.org/0000-0003-3739-8983
https://doi.org/10.3390/s23167242
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23167242?type=check_update&version=1


Sensors 2023, 23, 7242 2 of 18

manually for species categorization and counting. Many trapping methods are destructive,
and rare species of insects can be killed. The largest bottleneck for traditional insect moni-
toring is in accessing data after trapping. Tools are needed to accelerate the time taken to
collect, process, and identify specimens, and for the efficient capture of data and meta-data
associated with an observation.

Automated insect camera traps and data-analyzing algorithms based on computer
vision and deep learning are valuable tools for monitoring and understanding insect trends
and their underlying drivers [10,11]. It is challenging to automate insect detection since
insects move fast, and their environmental interactions, such as pollination events, are
ephemeral. Insects also have small sizes [11,12] and may be occluded by flowers or leaves,
making it hard to separate the objects of interest from natural vegetation. A particularly
exciting prospect enabled by computer vision is the automated, non-invasive monitoring
of insects and other small organisms in their natural environment. Here, image processing
with deep learning models of insects can be applied either in real time [13] or batched, since
time-lapse images can be stored and processed after collection [14–18].

Remote optical sensing driven by deep learning has drawn remarkable attention and
achieved significant breakthroughs [19]. Remote sensing and image scene classification
aim at labeling remote sensing images with a set of semantic classes based on their contents.
In most cases, the datasets for small object detection in remote sensing images are inade-
quate [20]. Many researchers have used scene classification datasets for object detection,
which have their limitations, such as large-sized objects outnumbering small objects in
object categories. Accurate object detection is important in remote sensing. However,
detecting small objects in low-resolution images remains a challenge, primarily because
these objects have less visual information and cannot be easily distinguished from similar
background regions. To resolve this problem, Wu et al. [21] proposed a small object detec-
tion network for low-resolution remote sensing images and addressed challenges similar
to those of insect monitoring studied in our paper.

Convolutional neural networks (CNNs) are extensively used for object detection [22–25]
in many contexts, including insect detection and species identification. CNNs for object
detection predict bounding boxes around objects within the image, their class labels, and
confidence scores. You Only Look Once (YOLO) [26,27] is a one-stage object detector that
is popular in many applications and has been applied for insect detection [28]. Two-stage
detectors, such as the faster region-based convolutional neural network (Faster R-CNN) [29],
are also very common and have been adapted for small object detection [30].

Annotated datasets are essential for data-driven insect detectors. Data should include
images of the insects for detection and images of the typical backgrounds where such
insects may be found. Suppose an object detector is trained on one dataset. In this case,
it will not necessarily have the same performance on time-lapse recordings from a new
monitoring site. One false detection in a time-lapse image sequence of natural vegetation
will cause multiple false detections in the subsequent stationary images [17].

1.1. Related Work
1.1.1. Detection of Small Objects

Small object detection in low-resolution remote sensing images presents numerous
challenges [31]. Targets are relatively small compared with the field of view, do not present
distinct features, and are often grouped and lost in cluttered backgrounds.

Liu et al. [32] compared the performances of several leading deep learning methods
for small object detection. They discussed the challenges and techniques for improving
the detection of small objects. These techniques include fusing feature maps from shallow
layers and deep layers to obtain essential spatial and semantic information. Another
approach is a multi-scale architecture consisting of separate branches for small-, medium-,
and large-scale objects, such as Darknet53 [27], which generates anchors of different scales.
Usually, small objects require a high resolution and are difficult to recognize; here, spatial
and temporal contextual information plays a critical role in small object detection [32,33].
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A comprehensive review of recent advances in small object detection based on deep
learning is provided by Tong et al. [34]. The review covers topics such as multi-scale feature
learning [35], pyramid networks [36], data augmentation, training strategies, and context-
based detection. Important requirements for the future are proposed: emerging small object
detection datasets and benchmarks, small object detection methods, and frameworks for
small object detection tasks.

1.1.2. Detection in a Single Image

Detection of small objects in the spatial dimension of images has been investigated
in several domains such as remote sensing [37] with single-shot or time-lapse images. For
small object detection tasks, detection is very difficult since these small objects can be tightly
grouped and interfere with background information.

Du et al. [38] proposed an extended network architecture based on YOLOv3 [39] for
small-sized object detection with complex backgrounds. They added multi-scale convo-
lution kernels with different receptive fields into YOLOv3 to improve the extraction of
objects’ semantic features using an Inception-like architecture inspired by GoogleNet [40].

Huang et al. [41] proposed a small object detection method based on YOLOv4 [27] for
chip surface defect inspection. They extended the backbone of the YOLOv4 architecture
with an enhanced receptive field by adding an additional fusion output (104× 104) from
the cross-stage partial layer (CSP2) with a similarly extended neck.

These works focus on improving the architecture for detecting small objects but
are only demonstrated on general datasets that don’t include insects and achieved only
minor improvements.

1.1.3. Detection in a Sequence of Images

With higher frame rates, such as those in video recordings [42], information in the
temporal dimension can be used to improve the detection and tracking of moving ob-
jects [43,44]. The detection of small moving objects is an important research area with
respect to flying insects, surveillance of honeybee colonies, and tracking the movement
of insects. Motion-based detections consist principally of background subtraction and
frame differencing. State-of-the-art methods aim to combine the approaches of both spatial
appearance and motion to improve object detection. Here, CNNs consider both motion
and appearance information to extract object locations [45,46].

LaLonde et al. [47] proposed ClusterNet for the detection of small cars in wide-area
motion imagery. They achieved a state-of-the-art accuracy using a two-stage deep network
where the second stage detects small objects using a large receptive field. However, the
inputs are consecutive adjoining frames with frame rates of 0.8 fps.

Stojnić et al. [48] proposed how to track small moving honeybees recorded by un-
manned aerial vehicle (UAV) videos. First, they performed background estimation and
subtraction, followed by semantic segmentation using U-net [49] and thresholding of
the segmented frame. Since a labeled dataset of small moving objects did not exist, they
generated synthetic videos for training by adding small blob-like objects on real-world back-
grounds. In a final test on real-world videos with manually annotated flying honeybees,
they achieved a best average F1-score of 0.71 on three small video test sequences.

Aguilar et al. [50] studied small object detection and tracking in satellite videos of
motorbikes. They used a track-by-detection approach to detect and track small moving
targets by using CNN object detection and a Bayesian tracker. The first stage uses a
lightweight motion-informed detection operator to obtain rough target locations. The
second stage combines this information with a Faster R-CNN to refine the detection results.
In addition, they adopted an online track-by-detection approach by using the probability
hypothesis density (PHD) filter to convert detections into tracks.

Insect detection and tracking were proposed in [28], where images were recorded in
real time with a frame rate of only 0.33 fps, and insect detection and species classification
were achieved using YOLOv3, followed by a multiple object tracker using detected center
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points and the size of the object-bounding box. The camera system used edge computing in
real time to detect and classify insects; however, this approach requires more computational
power than simple time-lapse cameras.

Ratnayake et al. [51] presented an offline hybrid detection and tracking algorithm to
monitor unmarked insects in a natural environment based on video recordings. The method
was applied to track honeybees foraging outdoors using a dataset that included complex
detailed backgrounds. However, this work was based on continuous video recording,
which is a challenge for long-term in-field experiments, requiring sufficient hardware to
process and store data.

1.2. Contribution

In-field camera recording naturally requires sufficient hardware to process and store
videos with a real-time sampling frequency. This poses technical difficulties when the
recording period is long and the hardware must operate without external power and
network connections. In this paper, we focus on small object detection for time-lapse
recordings, which requires less storage space.

There are two types of remote sensing: either where the observer is moving, such as
video recordings via UAVs [48] or satellites [47,50], or where the observer is in a stationary
position, such as monitoring of insects [28,51]. The background is the same when the
observer is in a stationary position and moving objects differ from the background. Here,
we will improve insect object detection using temporal images where moving objects differ
from the background.

Annotated datasets are essential for data-driven insect detectors, and our work con-
tributes with a new comprehensive dataset (for both training and especially testing) that
is significant for small object detection of insects in time-lapse camera recordings. To
our knowledge, only datasets [28] with insects for model training have been published.
This dataset does not address the challenge of testing the model performance on new
camera sites. Here, we provide a test dataset from seven different sites with more than
100,000 annotated time-lapse images.

We hypothesize that motion-informed enhancement in insect detection from time-
lapse recordings will improve detection in the environment. In short, we summarize our
contributions as follows:

• Provide a dataset with annotated small insects (primarily honeybees) and a comprehen-
sive test dataset with time-lapse annotated recordings from different monitoring sites.

• Propose a new pipeline method to improve insect detection in the wild, built on motion-
informed enhancement, YOLOv5, and Faster R-CNN with ResNet50 as the backbone.

2. Dataset

We provide a new, comprehensive benchmark dataset to evaluate data-driven methods
for detecting small insects in a real natural environment.

Dataset images were collected using four recording units, each consisting of a Rasp-
berry Pi 3B computer connected to two Logitech C922 HD Pro USB web cameras [52] with
a resolution of 1920 × 1080 pixels. Images from the two cameras were stored in JPG format
on an external 2TB USB hard disk.

A time-lapse program [53] installed on the Raspberry Pi was used to capture time-lapse
images continuously with a frame rate of 30 s between images. The camera used automatic
exposure to handle light variations in the wild related to clouds, shadows, and direct sun.
Auto-focus was enabled to handle variations in the camera distance and orientation in
relation to scenes with plants and insects. The system recorded images every day from
4:30 a.m. to 22:30 p.m., resulting in a maximum of 2160 images per camera per day.

During the period from 31 May to 5 August 2022, the camera systems were in operation
in four greenhouses in Flakkebjerg, Denmark. The camera systems monitored insects
visiting three different species of plants: Trifolium prantese (red clover), Cakile maritima (sea
rocket), and Malva sylvestris (common mallow). The camera systems were moved during
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the recording period to ensure different flowering plants were recorded from a side or top
camera view during the whole period of observation. A small beehive was placed in each
greenhouse with western honeybees (Apis mellifera), meaning we expected primarily to
monitor honeybees visiting plants.

A dataset for training and validation was created, based on recordings from six differ-
ent cameras with side and top views of red clovers and sea rockets, as shown in Figure 1.

Finally, a comprehensive test dataset was created by selecting seven camera sites, as
listed in Table 2. The test dataset was selected to have backgrounds and camera views
other than those included during model training. At the seven sites, common mallow
was monitored for two weeks, sea rocket was monitored for one week, and red clover
was monitored for four weeks in top and side views. All images were annotated using an
iterative semi-automated process using human labeling and verification of model detections
to find and annotate insects in more than 100,000 images. The goal was to evaluate the
object detection models on a real dataset with a distribution other than images used for
training and validation.

Figure 1. Example of six background images from camera systems monitoring flowering sea rocket
and red clover plants observed from top and side views. Images were taken by camera systems at
sites shown in Table 1. (S1-1 w26, S2-1 w27, S1-1 w27, S3-0 w29, S1-0 w30, and S4-1 w29).
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Table 1. Camera sites and weeks from where data were selected to create a training and validation
dataset. System number and camera Id (Sx-0/1) identify each camera. Insects are the number of
annotated insects found in the selected images. Background (Back.) is the number of images without
any insects where FP detections were removed. The flowering plants were observed with a top or
side camera view. The plant species are sea rocket (Cakile maritima) and red clover (Trifolium prantese).
Examples of background images are shown in Figure 1.

Cam. Week Days Insects Back. View Plant

S1-1 26 2 1079 340 Top Rocket
S1-1 27 2 21 312 Top Clover
S1-0 29 7 395 143 Top Rocket
S1-0 30 7 648 115 Side Clover
S2-1 27 7 186 136 Side Clover
S3-0 29 7 120 308 Side Clover
S4-0 28 7 154 533 Side Clover
S4-0 30 7 20 468 Top Clover
S4-1 28 7 108 77 Top Clover
S4-1 29 7 83 93 Top Clover

Total 10 60 2814 2525

Table 2. Test dataset with the number of annotated insects in recordings from seven different camera
sites and weeks. System number and camera Id (Sx-0/1) identify each camera. The percentage ratio
of annotated insects relative to the number of images recorded during each week is shown. The
average ratio is 6.2% insects, based on 6356 annotations in 102,649 time-lapse recorded images. The
flowering plants were observed with a top or side camera view. The plant species are sea rocket
(Cakile maritima), red clover (Trifolium prantese), and common mallow (Malva sylvestris).

Cam. Week Insects Images Ratio (%) View Plant

S1-0 24 170 14,092 1.2 Top Rocket
S1-1 29 333 15,120 2.2 Top Clover
S2-0 24 322 14,066 2.3 Side Mallow
S2-1 26 411 14,011 2.9 Side Mallow
S3-0 28 2100 15,120 13.9 Side Clover
S4-0 27 2319 15,120 15.3 Side Clover
S4-1 30 701 15,120 4.6 Top Clover

3. Method

Our proposed pipeline for detecting insects in time-lapse RGB images consisted of a
two-step process. In the first step, images with motion-informed enhancement (MIE) were
created. In the second step, existing object detectors based on deep learning detectors used
these enhanced images to improve the detection of small objects.

3.1. Motion-Informed Enhancement

Insects can be monitored in their natural environment with time-lapse cameras, where
a time-lapse image is recorded at fixed time intervals of typically 30 or 60 s. We hypothe-
sized that small objects in motion would be easier to detect with deep learning detectors if
images also include information from the temporal dimension when training the model.

The motion-informed detection operator proposed by Aguilar et al. [50] was modified
for this paper to improve insect object detection using temporal images without tracking.
The detection operator estimates motion by finding the difference between consecutive
frames in a time-lapse sequence. Our proposal modified this method to create an enhanced
image with motion information that is used for inference and training the deep learning
object detector. By using the standard RGB image format and only modifying the color
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content, existing object detectors can be used without modification. This approach can use
popular image object detectors with CNNs, such as YOLO [26] and Faster R-CNN [29].

Three consecutive images from the time-lapse recording were used to create the
enhanced image. The colored images were first converted to grayscale and blurred (Bk)
with a Gaussian kernel of 5 × 5 pixels (image size: 1920 × 1080 pixels). The gray scales
and blurred images were then used to create the motion likelihood, L3

k [i, j], where [i, j] ∈
[1..N] × [1..M] are the pixel coordinates and k ∈ N is the time index. This process is
summarized in Equations (1) and (2).

∆Bk[i, j] = Bk[i, j]− Bk−1[i, j] (1)

L3
k [i, j] = |∆Bk[i, j]|+ |∆Bk+1[i, j]| (2)

The original colored image at time k was then modified to create a motion-enhanced
image (M). Here, the enhanced blue color channel (Mb) was replaced by a combination
of the original red (Ir) and blue color channels (Ib), shown in Equation (3). The motion
likelihood (L3) was inserted in the enhanced red channel, see Equation (4), and the original
green channel was unchanged, and copied to the enhanced green channel (Equation (5)).

Mb[i, j] = 0.5Ib[i, j] + 0.5Ir[i, j] (3)

Mr[i, j] = L3
k [i, j] (4)

Mg[i, j] = Ig[i, j] (5)

The results of the proposed method are illustrated in Figures 2 and 3. The figures show
how the motion information is created and is finally observed as a red color on the moving
insect in the enhanced image. Most of the background colors of the leaves are green and
unchanged in the enhanced image. Flower colors such as pink, red, and orange are mixed
in the blue channel.

Figure 2. Left image shows the original colored image at time k with a honeybee. The center image
shows how the motion likelihood (L3) is emphasized in the image. The right image shows the
motion-enhanced image (M), with the red indicating information about the moving insect.
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Figure 3. A full-scale 1920 × 1080 motion-enhanced image with one honeybee.

3.2. Object Detection with Deep Learning

Image object detection methods based on deep learning rely solely on spatial image
information to extract features and detect regions of objects in the image. Object detection
combines the tasks of localization by drawing a bounding box around each object of interest
in the image and assigning them a class label.

One-stage object detectors predict the object with a bounding box boundary, detect
whether an object is present, and classify the object in the same process stage. One-state
detectors are typically faster than two-stage detectors at the cost of a lower accuracy.
However, fast execution is important when millions of images need to be processed on
a large scale, for example, in remote sensing. Although remarkable results have been
achieved across several benchmarks, the detectors’ performances decrease with small
objects in complex environments, such as those in insect monitoring. Two-stage detectors
perform region proposals before inference and classification.

In our work, Faster R-CNN with a backbone of ResNet50 [54] and YOLOv5 [55] with
a backbone of CSPDarknet53 were used to detect small insects in wildlife images. YOLO is
a one-stage object detector and Faster R-CNN is a two-stage detector.

YOLO is a state-of-the-art, real-time object detection algorithm that uses a single neural
network to process an entire image. The image is divided into regions and the algorithm
predicts probabilities and bounding boxes for each region. YOLOv5 uses the modified
backbone CSPDarknet53 and introduces new features such as “bag of specials” and “bag of
freebies”, where advanced data augmentation for training is improved without affecting
the inference cost. The CSPDarknet53 architecture uses three residual skip connections that
perform detections at three different scales, including small objects.

Faster R-CNN uses a region proposal network (RPN), which is a fully convolutional
network (FCN) that generates region proposals with various scales and aspect ratios. It
scans the proposed regions to assess whether future inference needs to be carried out. The
content of the proposed regions, defined by a bounding box, is classified in the second
stage and the box coordinates are adjusted. We used Faster R-CNN with the backbone of
residual networks (ResNet) to learn residual functions with reference to the layer inputs,
instead of learning unreferenced functions. ResNet stacks residual blocks on top of each
other to form a CNN. Here, ResNet50 was used, which has fifty layers of residual blocks.
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Residual networks are easier to optimize and gain accuracy from the increased depth of
the network.

In paper [56], different YOLOv5 architectures were evaluated, finding that YOLOv5m6
with 35.7 million parameters was the optimal model to detect and classify small insect
species. To improve performance and speed up training, YOLOv5m6 and Faster R-CNN
with ResNet50 in our work were pre-trained on the COCO dataset [57]. We used a simple
pipeline [58] with data augmentation to train the Faster R-CNN model. The data augmen-
tation includes random vertical and horizontal image flips, image rotation, and different
types of blurring. Images were re-sized to 1280 × 720 pixels for training with the two
evaluated networks, and transfer learning (COCO) was used to fine-tune the parameters of
the CNN.

3.3. Evaluation and Performance Metrics

To evaluate model performance, the precision, recall, and F1-score metrics were chosen.
These metrics are based on true positive (TP), false positive (FP), and false negative (FN)
insect detections. A detection is true positive if the predicted bounding box overlaps the
labeled insect bounding box with more than 0.25 IoU (intersection over union) [59]. Since
the insects were very small in the images, the annotated bounding box had a relatively high
uncertainty. Therefore, a lower value was used compared with the commonly used 0.5 IoU.
Precision is the metric that measures the proportion of positively predicted detections
that are actually correct, given in Equation (6). As such, a high precision indicates a high
number of correctly detected insects. Recall represents the model’s ability to predict the
positives correctly out of actual positives, and is given in Equation (7). It measures the
model’s ability to find and detect all labeled insects in the dataset. Recall and precision
were used in conjunction to obtain a complete picture of the model’s ability to find all
insects and detect them correctly. To balance precision and recall, we used the F1-score. The
F1-score is calculated as the harmonic mean of precision and recall, given in Equation (8),
and it provides a balance between the two metrics. It prioritizes the importance of detecting
and classifying the insect species correctly over fitting the correct bounding box size.

precision =
TP

FP + TP
(6)

recall =
TP

FN + TP
(7)

F1 =
2 · precision · recall
precision + recall

=
2 · TP

2 · TP + FP + FN
(8)

A micro- and macro-average metric was computed for the model predictions of the
selected seven different physical sites in the test dataset. The macro-average metric was
computed as the average recall, precision, and F1-score for the model performance for each
test site. The micro-average aggregates the contributions from all test sites to compute
metrics based on the total number of TP, FP, and FN predictions.

4. Experiment and Results

A total of 717,311 images were recorded in the experimental period, monitoring
honeybees and other insects visiting three different plant species.

4.1. Training and Validation

First, a trained model [56] was used to find insects in recordings from 10 different
weeks and camera sites, as listed in Table 1. These predictions generated a large number of
images of candidate insects, which were subsequently verified. Images with predictions
were manually corrected for FPs, resulting in several images with corrected annotated
insects and background images without insects. During quality checks, non-detected
insects (false negatives) were found, annotated, and added to the dataset.
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This dataset was used to create a final training dataset with an approximate split of
20% annotations used for validation. The training and validation dataset was manually
corrected a second time based on the motion-enhanced images, and additional corrections
were made. An additional 253 insects were found, an increase of 8% more annotated insects
compared with the first manually corrected dataset. Two versions of the datasets were
created with color and motion-enhanced images. The resulting final datasets for training
and validation are listed in Table 3.

Table 3. Final training and validation datasets with annotated insects and number of images. Back-
ground is the number of images without any insects.

Dataset Insects Images Background

Train 2499 3783 1953
Validate 568 946 508

Total 3067 4729 2461

The training and validation datasets were used to train the two different object detec-
tion methods: Faster R-CNN with ResNet50 and YOLOv5. The models were trained with
color and motion-enhanced datasets as listed below:

• Faster R-CNN with color images.
• Faster R-CNN with MIE.
• YOLOv5 with color images.
• YOLOv5 with MIE.

Each model and dataset combination was trained five times. The highest validation
F1-score was used to select the best five models without overfitting the network. For each
of the five trained models, the precision, recall, F1-score, and average precision (AP@.5)
were calculated on the validation dataset. AP@.5 is calculated as the mean area under the
precision–recall curve for a single class (insects) with an intersection over union (IoU) of
0.5. The averages of the five trained models are listed in Table 4.

The results show a high recall, precision, and F1-score for all models in the range of
85% to 92%. The trained models with motion-enhanced images have a recall 1–2% higher
than with color images, but the precision is 4–5% lower. The trained YOLOv5 models have
approximately a 1% higher F1-score and 2% higher AP@.5 than Faster R-CNN. Based on
the results, training with motion-enhanced images does not improve the F1-score.

Table 4. Average validation recall, precision, F1-score, and AP@.5 for five trained Faster R-CNN and
YOLOv5 models with color and motion-enhanced images.

Model Dataset Recall Prec. F1-Score AP@.5

FR-CNN Color 0.867 0.889 0.878 0.890
FR-CNN Motion 0.889 0.862 0.875 0.900
YOLOv5 Color 0.888 0.897 0.892 0.914
YOLOv5 Motion 0.919 0.852 0.884 0.924

Training YOLOv5 and Faster R-CNN models took 18–24 h on an Intel i7 CPU 3.6 GHz
and a GPU NVIDIA GeForce RTX 3090 with 24 GByte memory. Processing all camera
images from the two months, shown in Figure 4, took approximately 48 h.
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(a) YOLOv5 with color images.

(b) YOLOv5 with motion-enhanced images.

Figure 4. The abundance of insects from the two-month monitoring period of flowers and insects. A
two minute filter is used to remove detections at the same spatial position in the time-lapse image
sequence. The red and green curves show the non-filtered and filtered detections, respectively. The
difference between the curves indicates false predictions or an insect detected at the same position
within two minutes.

4.2. Test Results and Discussion

The test dataset was created from seven different sites and weeks not included in the
training and validation datasets. A separate YOLOv5 model was trained on the training and
validation dataset described in Section 4.1. This model performed inference on the selected
seven sites and weeks of recordings. The results were manually evaluated, removing
false predictions and searching for non-detected insects in more than 100,000 images.
In total, 5737 insects were found and annotated in this first part of the iterative semi-
automated process.

In the second part, two additional object detection models with Faster R-CNN and
YOLOv5 were trained with motion-enhanced images. These two models performed infer-
ence on the seven sites, and predictions were compared with the first part of annotated
images, resulting in the finding of an additional 619 insects. The complete test dataset is
listed in Table 2.

The test dataset contains sites with varying numbers of insects, ranging from a ratio of
1.2% to 15.3% insects compared with the number of recorded images. An average ratio of
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6.2% insects was found in 102,649 images. Most of the annotated insects were honeybees,
but a small number of hoverflies were found at camera site S1-1. The monitoring site S1-0
(sea rocket) contained other animals such as spiders, beetles, and butterflies. Many of the
images at site S1-1 were out of focus, caused by a very short camera distance to the red
clover plants. Sites S2-0 and S2-1 monitored common mallow, which was not part of the
training and validation dataset. Site S4-0 had a longer camera distance to the red clover
plants, where many honeybees were only barely visible. In general, many insects were
partly visible due to occlusion by leaves or flowers, where only the head or abdomen of the
honeybee could be seen. Additional illustrations of insect annotations and detections are
included in Supplementary Materials.

In Table 5, the recall, precision, and F1-score are shown, calculated as an average of
the five trained Faster R-CNN models evaluated on the seven test sites. The Faster R-CNN
models were evaluated on color and motion-enhanced images. The recall, precision, and
F1-score increased for all seven test sites with Faster R-CNN models trained with motion-
enhanced images. The micro-average recall was increased by 15% and precision by nearly
40%, indicating that our proposed method has a huge impact on detecting small insects.
This was further verified on a test dataset with a marginal distribution other than for the
training and validation dataset. The F1-score was increased by 24% from 0.320 to 0.555. The
most difficult test site for the models to predict was S1-0, which had a low ratio of insects
(1.2%) and contained animals such as spiders and beetles not present in the training dataset.

Table 5. Average recall, precision, and F1-score for each camera site used in the test dataset. The
average was calculated based on five trained Faster R-CNN with ResNet50 models compared with
five models trained with motion-enhanced images. The macro- and micro-average metrics cover
results from all seven camera sites and weeks. The best macro- and micro-average of recall, precision,
and F1-Score are marked with bold.

FR-CNN Motion FR-CNN Motion FR-CNN Motion
Camera Recall Recall Precision Precision F1-Score F1-Score

S1-0 0.051 0.262 0.032 0.758 0.037 0.385
S1-1 0.141 0.413 0.112 0.488 0.112 0.435
S2-0 0.305 0.529 0.250 0.650 0.274 0.576
S2-1 0.355 0.496 0.398 0.599 0.374 0.532
S3-0 0.404 0.487 0.538 0.840 0.459 0.612
S4-0 0.178 0.365 0.539 0.891 0.267 0.515
S4-1 0.496 0.585 0.262 0.634 0.337 0.603

Macro 0.276 0.448 0.305 0.694 0.266 0.522
Micro 0.300 0.446 0.344 0.751 0.320 0.555

In Table 6, the recall, precision, and F1-score are shown, calculated as an average of
five trained YOLOv5 models evaluated on the seven test sites. The YOLOv5 models were
evaluated on color images and motion-enhanced images. The micro-average recall was
increased by 28.2% and precision by only 7%. However, the micro-average F1-score was
increased by 22% from 0.490 to 0.713, indicating that motion-enhanced images did increase
the ability to detect insects in the test dataset. The YOLOv5 models outperformed the Faster
R-CNN trained models, achieving an increase of 16% for the micro-average F1-score from
0.555 to 0.713.

Note that camera sites S2-0 and S2-1 (with common mallow), which were not included
in the training set, performed extremely well with motion-enhanced images, achieving
F1-scores of 0.643 and 0.618, respectively. This indicates that the dataset for training was
sufficiently varied for models to detect insects in new environments. Camera site S1-1 with
red clover had a lower F1-score than other sites with the same plant (S3-0, S4-0, and S4-1).
This could be related to the foreground defocus due to the close camera distance to the
plants. Camera sites S3-0, S4-0, and S4-1 had the best recall, precision, and F1-score. This
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is probably due to the high insect ratio of 4.6–15.3% and because red clover plants were
heavily represented in the training dataset.

Table 6. Average recall, precision, and F1-score for each camera site used in the test dataset. The
average was calculated based on five trained YOLOv5 models compared with five models trained
with motion-enhanced images. The macro- and micro-average metrics cover results from all seven
camera sites and weeks. The best macro- and micro-average of recall, precision, and F1-Score are
marked with bold.

YOLOv5 Motion YOLOv5 Motion YOLOv5 Motion
Camera Recall Recall Precision Precision F1-Score F1-Score

S1-0 0.028 0.284 0.019 0.693 0.017 0.389
S1-1 0.126 0.502 0.210 0.437 0.147 0.463
S2-0 0.288 0.630 0.619 0.674 0.376 0.643
S2-1 0.335 0.635 0.784 0.621 0.461 0.618
S3-0 0.442 0.694 0.890 0.879 0.587 0.772
S4-0 0.368 0.665 0.890 0.865 0.517 0.747
S4-1 0.486 0.733 0.917 0.727 0.634 0.727

Macro 0.296 0.592 0.619 0.699 0.392 0.623
Micro 0.377 0.659 0.718 0.784 0.490 0.713

The box plot of the F1-scores shown in Figure 5 indicates an increased F1-score with
motion-trained models. It also shows a lower variation in the ability to detect insects
between the seven different test sites, indicating a more robust detector.

Figure 4 shows the abundance of insects detected with two YOLOv5 models trained
on color and motion-enhanced images over the two months of the experiment, including
images from training, validation, and test datasets. False insect detections were typically
found in the same spatial position of the image. A honeybee visit within the camera view
typically had a duration of less than 120 s, as documented in [28]. A filter was therefore
used to remove detections for the same spatial position within two minutes in the time-
lapse image sequence. Figure 4a shows the abundance of a YOLOv5 model trained with
color images. There are periods with a high difference in the filtered and non-filtered
detections, probably due to a high number of false insect detections. Figure 4b shows the
abundance of a YOLOv5 model trained with motion-enhanced images. The model trained
with motion-enhanced images showed in general a higher number of detections than the
model trained with color images, indicating more insects were found and detected. A
visual overview of the results showing the micro-average F1-score for six different sites is
shown in Figure 6. Here, it is evident that MIE improves the ability to detect small insects
with a variety of background plants, camera views, and distances. It can also be seen that,
with a higher ratio of insects, the overall F1-score is increased. Trained models with MIE
are especially better at detecting insects on sites with sparse insects (Rocket top 1.2) and
plants out of focus close to the camera (Clover top 2.3).

Challenges in Camera Monitoring

Automated camera monitoring of insects visiting flowering plants is a particularly
exciting prospect for non-invasive monitoring of insects and other small organisms in
their natural environment. Compared with traditional manual sampling methods, camera
recording also has challenges. Many cameras are required to monitor a large area, which
produces an immense amount of images for offline processing. Many remote nature
locations where the system needs to operate without human intervention do not have
power or mobile network coverage, such as the time-lapse cameras we installed and
operated in East Greenland [60].
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Figure 5. Box plot of F1-score for seven sites of YOLOv5 and Faster R-CNN models trained with
color and motion-enhanced (M) images. The horizontal orange mark indicates the micro-average
F1-score based on all seven test sites.

 

 

Figure 6. Images with micro-average F1-scores from six different sites for YOLOv5 and Faster R-CNN
trained models. Faster R-CNN (F)—light blue, Faster R-CNN with motion (FM)—blue, YOLOv5
(Y)—purple, and YOLOv5 with motion (YM)—red. The six sites are Rocket top 1.2 (S1-0), Mallow 2.9
(S2-1), Clover top 2.3 (S1-1), Clover top 4.6 (S4-1), Clover side 13.9 (S3-0), and Clover side 15.2 (S4-0).

For insect pollinators, flowering plants are used to attract the insects; however, this
requires adjustment of the camera position during the flowing season to record a high
abundance of insects, and this approach is difficult to standardize. Here, the challenge was
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to ensure that insects were visible in the camera view during monitoring. Cameras were
moved to different viewing positions to ensure blooming flowers during the monitoring
period of our experiment. This is probably the most important limitation for automated
camera insect monitoring to ensure a high amount of insect detections.

Calibration can also be a challenge when the camera is moved and plants grow during
the monitoring period. In our experiment, we used autofocus, which often focuses on
the vegetation in the background and not flowers close to the camera, which the insects
frequently visit. In [56], manual focus was used to focus on flowering Sedum plants in the
foreground. However, this only works well with vegetation that has a near-constant height
during the monitoring period.

Due to the small size of the objects of interest, deep learning models will often falsely
identify elements in the complex background of plants as the object of interest. This is
a challenge for processing and especially for monitoring areas with a low abundance of
insects, since the signal-to-noise ratio in terms of TP relative to FP detections will be very
low. However, we have addressed this challenge in our proposed method, which is able to
increase both the recall and precision in insect detection.

5. Conclusions

This work provides a public benchmark dataset of annotated insects for time-lapse
monitoring from seven different sites. The dataset meets an important demand for future
research in detecting small objects [34]. The test dataset includes 6356 annotated insects
in 102,649 images of complex scenes of the natural environment, including three different
vegetation plants. A training and validation dataset was also published and verified with
our newly proposed method to train deep learning models with motion-enhanced images.

The hypothesis that motion-informed enhancement will improve insect detection in
wildlife environments has been proven. The trained CNN object detectors with YOLOv5
and Faster R-CNN demonstrate a micro-average F1-score of 0.71 and 0.56, respectively,
on the test datasets. This is a higher F1-score compared with the scores for the models
trained on normal color images; only 0.49 was achieved with YOLOV5, and 0.32 with Faster
R-CNN. Both models trained with motion-enhanced images have a higher recall than those
trained with color images; YOLOv5’s and Faster R-CNN’s recall scores increased by 28%
and 15%, respectively.

Our work provides a step forward for automating flying insect monitoring in a com-
plex and dynamic natural environment using time-lapse cameras and deep learning. The
study shows that more insects will be accurately detected by using motion-informed en-
hancement compared with state-of-the-art deep learning object detectors. The prospect of
applying time-lapse photography and deep learning enables studies in a wider temporal
and spatial space compared with traditional insect sampling methods, where our presented
method improves the detection of small insects.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23167242/s1, Figure S1: Example of time-lapse test images;
Figure S2: Example of labels and detections of the test dataset; Figure S3: A honeybee and a
hover fly shown in RGB and motion-enhanced images; Figure S4: Motion-enhanced images that
show how plants move between captured images; Figure S5: Motion-enhanced images show more
detected insects.
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