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Abstract: A novel semisupervised hyperspectral imaging technique was developed to detect foreign
materials (FMs) on raw poultry meat. Combining hyperspectral imaging and deep learning has shown
promise in identifying food safety and quality attributes. However, the challenge lies in acquiring
a large amount of accurately annotated/labeled data for model training. This paper proposes a
novel semisupervised hyperspectral deep learning model based on a generative adversarial network,
utilizing an improved 1D U-Net as its discriminator, to detect FMs on raw chicken breast fillets. The
model was trained by using approximately 879,000 spectral responses from hyperspectral images of
clean chicken breast fillets in the near-infrared wavelength range of 1000–1700 nm. Testing involved
30 different types of FMs commonly found in processing plants, prepared in two nominal sizes:
2 × 2 mm2 and 5 × 5 mm2. The FM-detection technique achieved impressive results at both the
spectral pixel level and the foreign material object level. At the spectral pixel level, the model
achieved a precision of 100%, a recall of over 93%, an F1 score of 96.8%, and a balanced accuracy
of 96.9%. When combining the rich 1D spectral data with 2D spatial information, the FM-detection
accuracy at the object level reached 96.5%. In summary, the impressive results obtained through
this study demonstrate its effectiveness at accurately identifying and localizing FMs. Furthermore,
the technique’s potential for generalization and application to other agriculture and food-related
domains highlights its broader significance.

Keywords: chicken breast fillets; deep learning; foreign material detection; generative adversarial
network; hyperspectral imaging; near infrared; semisupervised learning

1. Introduction

Foreign material (FM) in the poultry industry is one of the important food safety
concerns. FMs, such as small pieces of plastic, rubber, and fabric, can be accidentally and
randomly deposited on the product’s surface or embedded in the product during poultry
processing. The final products contaminated with these FMs may pose a severe risk to
the health and safety of consumers and place a financial burden on the poultry processors
affected by product recalls. The sources of the FMs found in poultry products are primarily
the processing equipment, personal protective equipment (PPE), and various materials
used during poultry processing. Due to the massive volume of meat production in poultry
processing plants, a manual inspection of all products for the presence of surface FMs is
unfeasible. Therefore, an automated solution to detect the FMs found on the surface of
meat is highly desirable due to the limitation of the existing sensing technologies.

Previous research proposed many nondestructive sensing techniques to detect FMs in
food, such as metal detection, X-rays, thermal imaging, spectroscopy, magnetic resonance
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imaging, and computer vision [1]. Metal detectors and X-ray machines are widely adopted
in the poultry industry for FM detection. X-ray technology has effectively detected broken
bones embedded in poultry meat [2,3]. However, X-ray imaging has shortcomings in
detecting low-density materials such as plastic, rubber, and fabric [4], which are commonly
used in poultry processing equipment and PPE. Metal detectors have the same issue as
X-ray machines when detecting low-density materials. Thermal imaging can be affected by
the temperature of the surrounding environment [5]. Terahertz spectroscopy’s nonionizing
radiation and low photon energies suffer from their limited ability to penetrate water [6,7],
which is highly prevalent in poultry meat (~75% water in the muscles) [8]. Color-based
computer vision techniques can also suffer from similarities in color between FM and meat
samples [9].

Hyperspectral imaging (HSI) technology has also been applied for FM detection in
agricultural and food applications [10–12]. A support vector machine (SVM) model for
hyperspectral image classification was proposed to detect microplastics in the intestinal
tracts of fish [13]. An SVM and a backpropagation neural network were studied to detect
FMs from multispectral images of pickled and dried mustard [14]. A region proposal
network (RPN) and a 3D convolutional neural network (CNN) were combined to detect
FMs from hyperspectral images of red meat [15]. The study most closely related to this
paper is the sensor fusion work of visible near-infrared (NIR) and short-wave infrared
(SWIR) HSI modalities to detect FMs on poultry meat through chemometrics and shallow
machine learning [11].

Deep learning (DL) models such as CNNs have proven powerful for hyperspectral
image classification and analysis with their ability to automatically learn hierarchical,
complex, and nonlinear representations of data [16]. This ability is achieved through deep
neural networks (DNNs) consisting of multiple layers of interconnected nodes that are
trained to extract increasingly abstract and informative features from the data so that
the DNNs can capture the underlying patterns and relationships in the data and can
make accurate and robust predictions [17]. In contrast, traditional chemometrics and/or
machine learning approaches often rely on hand-crafted features and models designed
based on domain knowledge and assumptions, which can be limited and prone to error [18].
Another advantage of DL models is that they can handle large high-dimensional data such
as hyperspectral images. Several studies have reported that the use of DL in HSI improved
the classification accuracy, computational efficiency, and robustness to noise and solved
other challenges [13,19,20]

Recently, a generative adversarial network (GAN) was used for anomaly detec-
tion [21,22] in an unsupervised way. Jiang et al. [21] proposed a GAN-based anomaly
detection model for hyperspectral images in remote sensing, where anomaly suppressed
hyperspectral images were reconstructed and a detection map was predicted by using
differences between the original and reconstructed images. Another study also utilized a
GAN for anomaly suppression by background reconstruction [23]. The aforementioned
unsupervised GAN models for anomaly detection adopted a data distribution assump-
tion that anomalies always reside in low-density areas and can be distinguished from the
background not only in a reduced low-dimensional representation space but also in the re-
construction space. This data distribution assumption did not directly apply to our research
problem because FMs could be observed only at random times and locations. In addition,
our preliminary study suggested that the performance of these GAN-based unsupervised
approaches was relatively poor when it came to detecting FMs on poultry meat because
the prediction of the low-density areas was not always accurate. Unsupervised learning
also increases the computational complexity due to the need for an extensive training
set, which may decrease the model’s performance. Supervised FM detection could be an
alternative to unsupervised FM-detection models. However, supervised learning models
may require both normal chicken and abnormal FM data for the model training and often
can be difficult to calibrate in practice due to the time and cost of collecting high-quality
annotated FM data. A recent study demonstrated that a semisupervised multichannel
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GAN model could address the inadequacy of labeled data in medical image analyses [24].
Similarly, a semisupervised model using a GAN can be useful in practice for FM detection
because only normal (clean) chicken data can be used for training, which is cost effective
because of the abundance of normal data. Even though the 1D spectral data of chicken
meat were easily obtainable, the training dataset would be imbalanced between spectrally
different components of chicken meat, such as the muscle tissue and fatty connective tissue.

The architecture of the original GAN [25] and its most common variations [26,27]
is composed of a generator to generate fake samples and a discriminator to determine
whether the generated sample is a fake or real one. Schönfeld et al. [28] proposed a new
GAN model with a 2D U-Net-based discriminator adopting an encoder–decoder network
with bottleneck and skip connections connecting the encoder and decoder for the localized
segmentation of fake and real pixels (or regions) and the global classification of fake and
real image samples. This new GAN model increased the quality of the generated 2D color
images while increasing the distinction between the real and generated images.

This study is based on several hypotheses: (1) it is feasible to develop a semisupervised
FM-detection model by using hyperspectral imaging; (2) the performance of the FM-
detection model is affected by the spectral heterogeneity between the muscle tissue and
fatty tissue; (3) integrating a 1D U-Net discriminator into a GAN architecture enhances
the model’s performance; and (4) there exists an optimal spectral range suitable for the
FM-detection model.

The specific objectives of this study are (1) to develop a semisupervised GAN model
for FM detection by incorporating a 1D U-Net discriminator into the GAN model, (2) to
improve the FM-detection performance by training two independent GAN models for
spectral signatures unique to the muscle tissue and fatty tissue in chicken meat, and (3) to
conduct a comparative analysis of the model’s performance by using different wavelength
ranges. Additionally, the main contributions of this paper are as follows: (1) a semisuper-
vised training strategy eliminated the need for FM data collection during the training of
the FM-detection models, (2) NIR HSI (1000–1700 nm) was combined with the DL-based
multichannel GANs and a 1D U-Net GAN discriminator, and (3) the outputs of the 1D
spectrum-based GAN model were aggregated and spatially mapped onto a 2D prediction
image to allow for FM detection at object and image levels.

Following this Introduction, the Materials and Methods section provides a detailed
description of the hyperspectral dataset of chicken fillets used and the proposed semisu-
pervised deep learning model. This includes the explanation of the Gaussian mixture
model-based spectral clustering, generative adversarial network architecture, postprocess-
ing steps for foreign material detection, and model performance evaluation. The Results
and Discussion section presents the performance of the foreign material detection models
at the pixel, blob, and image levels. Finally, the conclusion summarizes the key findings
and implications of this work.

2. Materials and Methods
2.1. Chicken Fillet and Foreign Material Samples

A total of 12 raw halved boneless skinless broiler breast fillets (pectoralis major muscle)
and 30 different types of FMs were used for this study. The 12 fillets were divided into a
training set of 6 and a test set of 6. Both surfaces (the skin and bone sides) of each fillet were
imaged by using a short-wave infrared (SWIR) HSI system in the wavelength range from
1000 nm to 2500 nm with and without FMs. All 12 clean fillets were imaged first, and then
each fillet surface was contaminated with the FM samples and imaged. The background
of the images was a food-grade polyurethane conveyor belt (blue). There were two types
of sizes for the FM pieces for imaging: 2 mm × 2 mm (small) and 5 mm × 5 mm (large),
approximately. Details of the FM samples were described in the previous work [11]. The
FMs used in this study belonged to one of three FM groups: polymer (rubber and plastic),
metal (aluminum and stainless steel), and wood.
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2.2. SWIR Hyperspectral Image Acquisition and Preprocessing

The SWIR hyperspectral images were acquired with a push broom HSI system equipped
with in-house developed C++ application software, a mercury–cadmium–telluride (MCT)
camera, a spectrograph, illuminators (two 50 W tungsten halogen lamps), and a motorized
linear stage for line scanning in a diffuse reflectance mode. They were preprocessed as
described in the previous work [11]. In this section, key highlights are provided with
updated information next.

The C++ application software controlled the motorized linear stage for the line scans
and the MCT camera to acquire and save hyperspectral images. The intensity calibration
of an acquired hyperspectral image was conducted with a dark current and white refer-
ences recorded as horizontal stripes on top of each image. A lens cap was put on while
collecting the dark current references (60–70 lines) at the beginning, and a white reference
standard with dimensions of 1′′ × 12′′ and a 99% diffuse reflectivity (Fluorilon FW-99,
Avian Technologies, New London, NH, USA) was used to collect additional 60–70 white
lines right after the current dark lines. The horizontal stripes of the dark current (DC) and
white (WH) references were averaged when calculating the intensity calibration to obtain
a percent reflectance value (Rc) from a measured digital number (DN) at each pixel via
Rc =

DN−DCaverage
WHaverage−DCaverage

× 100(%).
Each calibrated hyperspectral image was denoised with a Savitzky–Golay (SG) smooth-

ing filter (the 4th order polynomial with a kernel size of 7) followed by the removal of the
top reference slices spatially and the cropping of the wavelength range to 1000–2500 nm
(199 bands) spectrally.

The foreground region corresponding to the fillet was automatically detected and
segmented with a thresholding algorithm as described in the previous work [11]. The
FMs on the images were labeled with the region-of-interest (ROI) tool in ENVI (v4.8,
L3Harris Geospatial, Broomfield, CO, USA). When evaluating the model performance,
these annotated pixels and ROIs were used as the ground truth. The binary labeling
rule for FM detection assigned 0 to the meat and 1 to the FMs within the foreground
area. On the other hand, the multilabeling rule for analyzing the model’s performance on
material types assigned 1 to muscle, 2 to fat, 3 to any other normal features, and 4 to 33
to each type of the 30 FMs. Figure 1 shows two example waveband images at 1000 nm
with large and small FMs that were overlaid with the ground-truth ROIs (magenta color).
The SWIR 1000–2500 nm wavelength range with 199 wavebands was reduced to the NIR
1000–1700 nm (exactly 997.2–1698.9 nm) range with 95 wavebands. In this study, both the
SWIR and NIR wavelength ranges as well as the data dimensionality reduction by principal
component analysis (PCA) were compared with each other in terms of their FM-detection
performance, and the best one was selected.
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2.3. Dataset

A total of 48 SWIR hyperspectral images were collected for this study. Each hyperspec-
tral image had three dimensions along the X (horizontal), Y (vertical), and λ (wavelength)
axes, and each image was flattened to a 2D array, where a 1D spectral row vector (1xλ)
at each pixel position (x,y) was put into a single row in the 2D array. Note that only the
spectral vectors at the pixels on the foreground fillet region were added to the 2D array.
A single-column vector of each pixel’s class membership, such as the meat, fat, and FM
type, was also added to the 2D array as a class label vector. The spatial coordinates (x,y)
of each 1D spectral vector were kept such that the outputs of the deep learning model
using 1D spectral vectors would be remapped into the original image locations. Then, these
2D arrays from all the hyperspectral images were concatenated (stacked) vertically into a
skinny-and-tall matrix of 2D arrays, constituting the dataset used for the prediction model
development and evaluation. This dataset was divided for training and testing according
to the following rule: (1) 12 images of two surfaces of six clean fillets were set aside for
training, and (2) the other 12 clean images of the remaining six fillets and 24 images of all
of the contaminated twelve fillets were used for testing.

In summary, the number of hyperspectral images used for training was 12 (25%) with-
out FMs while the number of hyperspectral images used for testing was 36 (75%), including
12 clean images without FMs and 24 contaminated images with FMs. The dimensions
of the spectral data matrix used for training were 865,583 (height: number of spectral
responses) × the number of bands (width), where the number of bands was different based
on the wavelength range used, i.e., 199 for SWIR, 95 for NIR, and 3 for the PCA-based
model. Each SWIR hyperspectral image was utilized to generate a corresponding NIR
hyperspectral image. Additionally, from the NIR hyperspectral image, three PCA score
images, derived from the three principal components (PCs), were created. The dimensions
of the spectral data matrix used for testing were 2,607,898 (height: the number of spectral
responses) × the number of bands (width), where the number of bands was the same as
that of the training set.

2.4. Semisupervised Deep Learning Model for Foreign Material Detection

The developed semisupervised DL model assumed that (1) the clean chicken meat
was only necessary to make the model learn the distribution of spectral responses during
training, and (2) when a spectral response of FM was presented to the trained model,
a prediction error would be much higher than when a normal spectral response was
presented. To realize these assumptions, a DL model was designed to detect the FMs at
each pixel without its spatial context and to map the pixel-level detection results back to
the image domain via postprocessing. Technically, the DL model was constructed with
two-channel GAN modules featuring 1D U-Net discriminators. The inputs to these GAN
modules were derived from the outputs of two 1D spectral clustering modules. The model’s
input was a 1D spectral vector at position (x,y) while the output was a binary value (1: FM
or 0: normal) assigned to each pixel position (x,y). The architecture and workflow of the
DL model for the automatic detection of FMs are shown in Figure 2.

2.4.1. Unsupervised Spectral Clustering

Diffuse reflectance spectra of chicken breast fillets are inhomogeneous [29] because
poultry meat consists of various compositions with different quantities, including water
(~75%), protein (~20%), fat (~3%), and other chemical nutrients [8,30]. These components
in poultry meat respond spectrally differently in the NIR wavelengths [31–33]. This inho-
mogeneity in the spectral responses would make a machine learning model more complex
compared to the case of homogeneous spectral responses because the features to learn from
inhomogeneous spectral responses would be more complex and varied.
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This study tackled this issue by automatically splitting image pixels with different
spectral characteristics into spectrally more homogenous subgroups via unsupervised
clustering by utilizing the Gaussian mixture model (GMM) [34,35]. The GMM is based
on the characterization of a heterogenous input data distribution with a linear mixture of
unimodal Gaussian distributions and has been used in many different HSI applications,
such as hyperspectral image segmentation [36,37], the monitoring of saline vegetation [38],
and anomaly detection [39]. Given the input data vectors in an n-dimensional space and
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the number of clusters K, the GMM estimated the distribution of a data vector x with K
unimodal Gaussian distributions that were linearly mixed in the following equation:

P(x) = ∑K
k=1 wkN (x|µk, Σk ) s.t. ∑K

k=1 wk = 1 (1)

where N (x|µk, Σk ) is the kth normal distribution with a mean of µk and a covariance
matrix of Σk, and wk is the weight of the kth Gaussian distribution. The shape of the
estimated normal distribution was modeled with two parameters, µk and Σk. Expectation
maximization (EM) was used to estimate the parameters of µk, Σk, and wk for each of the k
normal distributions that would fit the data best.

In this study, K = 2 was chosen as the number of spectrally homogeneous clusters.
This choice was based on the findings of previous work, which showed notable differences
in the average spectral responses between muscle tissue and fatty materials, such as
excessive fat deposits and whitish connective tissue, observed on the surface of chicken
breast fillets [11,29]. It is worth noting that poultry meat primarily comprises muscle
tissue with a high water and protein content, whereas fatty tissues, including excessive
fat deposits, whitish connective tissue, white stripes, and tendons, have a high fat content
and are frequently observed on the surface of chicken breast fillets. Hence, this study
hypothesized that the spectral responses of the pixels in the muscle and fatty tissues
would be homogeneous within each spectral cluster but heterogeneous between the two
spectral clusters. Accordingly, two distinctive GAN models were trained, each trained
independently focusing on one of the two different spectral clusters (Figure 2). The rationale
behind this approach was to effectively capture the inherent differences between muscle
and fatty tissues in chicken breast fillets through the training of separate GAN models,
ultimately leading to an improved spectral analysis and classification of the fillet surface.

2.4.2. Generative Adversarial Network (GAN)

A GAN works as a two-player game with a generator and a discriminator that com-
pete with each other [25]. The generator is modeled as a convolutional decoder network
with upsampling-transposed convolutions (i.e., inverse convolutions) to generate fake
samples while the discriminator is modeled as an encoder network with downsampling
convolutions to classify/predict whether the generated sample is a fake or real one. The
standard GAN is trained by minimizing the loss functions LG (a generator loss) and LD
(a discriminator loss) in an alternating manner:

LG = −Ez[log(D(G(z) )]

LD = −Ex[logD(x)]− Ez[log(1− D(G(z)))] (2)

where the generator G aims to map a latent variable z to a realistic sample, while the
discriminator D aims to differentiate between the real sample x and the generated sample
G(z).

Since the standard GAN [25] uses an encoder-based discriminator, many other GANs
also use encoder-based generators [40–42]. Schönfeld et al. [28] proposed a 2D U-Net-based
discriminator to increase the discrimination power between real and generated samples in
2D color images. The U-Net is a widely used deep neural network and has demonstrated
a state-of-art performance in many complex image segmentation tasks [43–45] through a
U-shaped architecture, where a contracting path in the encoder can extract global features
while an expansive path in the decoder can provide local information combined with global
contextual information from the encoder. More specifically, a 1D U-Net can process and
classify spectral data through hierarchical feature extraction with convolutional layers. The
initial convolutions detect basic patterns. Deeper layers extract more complex abstract
features by combining prior outputs and learning intricate interband relationships and dis-
tinctive characteristics. The encoder compresses the data into highly representative features.
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The decoder then upsamples and concatenates these features for precise localization and
classification. In this paper, a 1D U-Net discriminator is proposed instead of the 2D U-Net
discriminator, and the proposed 1D U-Net-based discriminator (UnetD) is compared with
the standard encoder-based discriminator, called the encoder-only discriminator (EncD), to
determine their FM-detection performance.

Figures 3 and 4 show the architectures of the GAN generators and discriminators
used in this study. The input layer size was adjusted to accommodate the different dimen-
sionalities of the SWIR (n = 199) and NIR (n = 96) and PCA (n = 3) spectral data. Note
that the NIR spectral input vector was padded with one zero to make the length of the
input layer 96 (Figures 3b and 4b). Each generator consisted of an input layer, multiple
1D convolution layers with ReLu activation, and the last layer of the 1D convolution with
sigmoid activation.
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Each discriminator consisted of a contracting path and an expansive path, similar to
U-Net. One layer in the contracting path of the discriminator-operated 1D convolution with
kernel size 3 and stride 1 was followed by the 1D convolution with kernel size 3 and stride
2 for downsampling. The expansive path of the discriminator included 1D convolutional
layers with kernel size 3 and stride 1 followed by 1D transposed convolutional layers
of kernel size 2 and stride 2 for upsampling. The contracting and expansive paths were
connected through skip connections (also known as residual connections) at each layer
to stabilize the gradient updates by providing an uninterrupted gradient flow from the
first to the last layer (Figure 4). There were two layers with a logistic sigmoid function as
an activation function, one at the end of the contractive path and another one at the end
of the expansive path. The classification losses from these two sigmoid activation layers
were combined to generate a single loss map for FM detection. Note that the designed DL
model provided a general global prediction over the input at the end of the contracting
path, whereas the prediction from the model was more localized over wavelengths at the
end of the expanding path. Similar to the generator, three versions of the discriminator
were developed as well. Different versions were created to handle the SWIR, NIR, or 3PC
input ranges with varying network depths (Figure 4).

2.4.3. Training

The generator and discriminator of the GAN were trained separately but alternately
in an iterative process one at a time. The generator was initialized to receive random
noise as the input and to generate synthetic spectral data. It was trained to make this fake
data increasingly realistic to fool the discriminator. Simultaneously, the discriminator was
presented with a mix of real spectra from the ground truth data and artificial samples
from the generator and were optimized to distinguish between the two accurately. The
classification error of the discriminator was used to update the parameters of both networks
through backpropagation, and reducing the error signaled improvements in the generator’s
ability to mimic real data. Through this joint optimization of the adversary networks, the
generator was trained to produce high-quality simulated data matching the distribution of
real spectra.

2.4.4. Postprocessing for FM Detection

During the inferencing using the test set, the discriminator of the GAN model was
trained to predict the classification loss (error) of the input data, whose values were floating-
point numbers. It is essential to mention that the trained generator was not utilized during
inferencing as it was no longer required for this stage. The class labels (normal or FM) at
the pixel, object, and image levels were determined through additional processing steps
described next. Firstly, the predicted losses in a vector were reshaped into a loss map
(called a prediction error image). The two-channel GAN models predicted their loss maps
independently. Secondly, each loss map was binarized with global thresholding, producing
a detection map with two values (0: normal and 1: FM). The global threshold value was
selected by a histogram analysis based on the values in the loss maps. Then, a cumulative
distribution function (CDF) was estimated from the obtained histogram. The maximum
loss value for the normal meat samples in the training set was obtained when the CDF
value became 1. The global threshold value was selected as the maximum loss value × 1.1
(a 10% increase from the maximum loss value for normal samples), such that the false
positive rate (falsely classified as FM) was minimized at the expense of potentially missing
FMs (increased false negatives), whose loss values were similar to the maximum loss value
of the normal samples. Thirdly, 3 × 3 median filtering was applied to two detection maps
to remove noise. Two denoised detection maps were then fused with a logical operator.
After the logical OR and AND operators were compared, the AND operator was selected.
Figure 5 shows the schematic of two-channel detection map prediction and fusion.
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Figure 5. Example of inferencing to generate loss maps using GAN models at two clustering channels,
thresholding the loss map in each channel, predicting detection images, and fusing two detection
maps into a single detection map, starting from a single hyperspectral image.

The spatial location and size of the predicted FM pixels in the fused detection map were
analyzed at the object level by aggregating the predicted FM pixels into individual regions
(called blobs) by using the 8-neighborhood system. The performance of the FM object
detection was evaluated against the ground-truth FM ROIs in the test set. The final decision
about the presence and absence of FMs was made per image by checking the prediction
errors at the image level. In practice, the proposed hyperspectral imaging technique
requires the automatic imaging of both sides of a fillet. The mechanized automatic flipping
is feasible with an appropriate product flipper commonly used during manufacturing,
which is out of the scope of this study.

2.5. Performance Evaluation
2.5.1. Evaluation of GAN-Generated Spectral Data Quality

The quality of the GAN-generated data was evaluated with the Fréchet inception
distance (FID) [46] and a mean spectral data analysis. The FID score is a widely adopted
quantitative metric for assessing the performance of GAN models. It measures the similarity
between the generated samples and real data, with a lower FID score indicating a higher
quality and diversity of the simulated outputs. A low FID score implies that the generator
has been effectively optimized to produce synthetic hyperspectral signatures that closely
resemble the characteristics of the real fillet’s spectral data. The FID score was obtained to
measure the distance between the generated and true spectral responses in the training set
by using the following formula:

FID =
∥∥∥µ f − µg

∥∥∥2

2
+ Tr

(
Σ f + Σg − 2

(
Σ f Σg

) 1
2
)

(3)

where ||·||22 denotes the Euclidean norm, Tr(·) denotes the trace of a matrix, and µ and
Σ are the mean and covariance of the generated (f ) and ground-truth (g) feature vectors,
respectively. The feature vectors were obtained from the pretrained inception network. A
lower FID score indicates the better performance of the generative model. In the best-case
scenario, when the FID score is 0, the synthetic data are an exact match to the real data.



Sensors 2023, 23, 7014 12 of 23

2.5.2. Pixel-Level FM-Detection Evaluation

The performance metrics used for the spectral pixel-level evaluation of the FM-
detection models were the precision, recall, F1 score, and balanced accuracy (BACC) [47].
For the evaluation, the abnormal (FM or contaminated) pixel prediction was considered a
positive outcome, whereas the normal (clean or uncontaminated) pixel was considered a
negative outcome. All the predicted pixels in the test set were tallied for the number of true
negatives (TN)—the number of correctly predicted normal pixels; true positives (TP)—the
number of correctly predicted FM pixels; false negatives (FN)—the number of missed
FM pixels (misclassified as normal); and false positives (FP)—the number of incorrectly
predicted normal pixels (misclassified as FM). Given the TP, FP, and FN, the F1 score was
calculated along with the precision and recall, as described below:

Precision =
TP

TP + FP
=

TP
# o f all positives

(4)

Recall =
TP

TP + FN
=

TP
# o f all true FM pixels

= TPR (5)

F1 score = 2·precision× recall
precision + recall

(6)

The precision is the ratio of the number of correct FM predictions to the number of all
pixels predicted as FM (correct or not). The recall, also called the sensitivity or true positive
rate (TPR), is the ratio of the number of correct FM predictions to the number of all true FM
pixels. The F1 score ranged from 0 (worst) to 1 (best)(equivalently, 0–100%). Note that the
F1 score was calculated without the TN. Because the TN >> TP, there was a class imbalance
problem in the dataset. The BACC accounted for this imbalance in two classes (# of meat
pixels >> # of FM pixels) and was calculated according to the equation below:

BACC =
Sensitivity(= TPR) + Specificity(= TNR)

2
=

TPR + TNR
2

(7)

where specificity was defined as the true negative rate
(

TNR = TN
TN+FP

)
. The BACC values

ranged from 0 (worst) to 1 (best) (equivalently, 0–100%).

2.5.3. Object-Level FM-Detection Evaluation

The object-level evaluation started with image segmentation, where pixels predicted
as FMs were spatially connected on 8-neighbors and the connected pixels were merged into
individual segments called blobs or regions. Then, the intersection over union (IoU) [48] at
each predicted FM object with an arbitrary shape was calculated as follows:

IoU =
Area of Overlap
Area of Union

(8)

where the overlap and union areas were computed between the prediction blob and ground-
truth ROI. If the predicted blob did not intersect with the ground-truth ROI, the IoU was 0,
whereas if they were completely matched, the IoU was 1. Given the IoU values from all the
prediction blobs in the test set, the average IoU (AIoU) was obtained by averaging all the
IoU values per model or FM group, whichever was appropriate. The AIoU was used to
evaluate the performance of the FM detection according to the models and FM groups.

Given the IoU values computed for all the detected regions, a threshold T (e.g., 0.5)
was applied such that a blob with an IoU ≥ T was considered a positive prediction and a
blob with an IoU < T was considered a negative prediction. Then, the Jaccard Index (JI)
and Overall Detection Accuracy (ODACC) were calculated with the following:

Jaccard Index =
TPb

TPb + FPb + FNb
(9)
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ODACC =
Number of correctly detected blobs

Number of ground-truth blobs
=

TPb
TPb + FNb

(10)

where TPb is the number of positive predictions, FPb is the number of negative predictions,
and FNb is the number of missed ground-truth blobs. The IoU threshold value ranged
from 0 to 1 with a step size of 0.1 [48]. The ODACC is the ratio between the number of
ground-truth ROIs and the number of correctly predicted FM blobs, similar to the recall (or
TPR) at the pixel level.

2.5.4. Image-Level FM-Detection Evaluation

The performance at the image level was evaluated with the false positive rate, which
measured how much the clean fillets were predicted incorrectly as the contaminated fillets.
The detection performance at the image level was important because it measured how
often clean fillets would be further processed due to a false positive error. For example,
when only a single pixel is predicted as an FM from each clean fillet image, the pixel-level
and object-level performance may show high F1 scores and IoU values, which are good.
However, in this example, the false positive rate at the image level becomes 1, and all fillets
will be declared to have FMs. Thus, in this study, the image-level false positive rate (IFPR)
was calculated by counting how many images were predicted to have FMs (even a single
pixel) incorrectly among all the clean fillet images.

2.5.5. Summary of the Evaluated Models

The FM-detection models were evaluated and compared based on three main com-
ponents (the input data type, spectral data clustering method, and GAN’s discriminator
type) as described next. The input data types tested included (1) SWIR spectral data
(1000–2500 nm); (2) NIR spectral data (1000–1700 nm); and (3) data obtained from the top-
three PC scores in the PCA domain, denoted as SWIR, NIR, and 3PC. The 3PCs explained
98% of the variance in the SWIR data. The input spectral data clustering methods tested
included (1) no clustering and (2) a Gaussian mixture model (GMM). When employing the
GMM, two 1D spectral clusters were created, namely “FatCh” and “MusCh”, representing
the fatty and muscle tissue channels, respectively. When specifying whether it pertained
to the fatty tissue or muscle tissue, GMM(FatCh) or GMM(MusCh) was used to indicate
the relevant clustering channel, respectively. The notation “GMM” alone denoted the
proposed DL model using the GMM. Lastly, the discriminator types employed in the GAN
were (1) UnetD representing a 1D U-Net discriminator and (2) EncD representing a 1D
encoder-only discriminator. Various FM-detection models were evaluated by combining
the aforementioned components with hyphens, such as NIR-GMM-GAN-UNetD.

The development and evaluation of these models were conducted on a Windows 11
machine with AMD Ryzen 9 5900HS and Nvidia RTX 3060 GPU (6 GB RAM). The software
used was Python 3.10.10 and TensorFlow 2.12.0.

3. Results and Discussion
3.1. Generative Performance of GAN Models

The GAN models synthesized spectral data by using their generators during model
training. The quality of the synthetically generated data was evaluated with mean spectral
and FID score analyses.

First, the comparison of the mean spectral data revealed the overall spectral differences
between the muscle tissue and the fatty tissue, as depicted in Figure 6. This qualitative ob-
servation highlighted the spectral heterogeneity between these two tissue types, supporting
the use of spectral clustering.
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Figure 6. Synthetically generated spectra by GAN models for (a) muscle class channel and (b) fat
class channel.

Second, Figure 6 shows the mean SWIR spectra generated by two GAN models with
different discriminators (UnetD and EncD), each trained with clustered muscle (Figure 6a)
and fat (Figure 6b) spectral groups. The synthetically generated data were compared
with the ground-truth spectra. For the muscle spectral group, both the UnetD-based and
EncD-based GAN models showed similar mean spectral responses to the ground truth
from 1000 nm until approximately 1700 nm, with slight deviations in reflectivity compared
to the ground truth mean spectrum between 1700 and 2500 nm. In the case of the fat
spectral group, the UnetD-based GAN model outperformed the EncD-based model as it
better captured the peaks and troughs at key wavelengths such as 1800, 1200, 1280, and
1414 nm. It is worth noting that the key NIR wavelengths at 1080 nm and 1414 nm are
related to the water present in the meat samples, and 1200 nm and 1280 nm correspond to
the C-H stretching modes from the lipid molecules within the meat samples. Compared to
the muscle spectral clustering group, the quality of the generated spectra for the fat spectral
sample clustering group was lower due to (1) the imbalance in the number of spectra
between the muscle (high) and fat (low) groups and (2) the large spectral heterogeneity in
the reflectivity of the fat class samples used for the clustering and GAN model training. It is
also worth mentioning that, in the case of the fat data channel, the UnetD was more sensitive
to variations across the bands compared to the EncD, which is why it forced the generator
to better generalize the data, resulting in samples with less noise and more prominent
peaks and troughs. The addition of the U-net decoding portion and local detection likely
contributed to this improved smoothness shown in Figure 6b. In summary, the UnetD-
based GAN model produced smoother and more accurate mean spectra compared to the
EncD-based GAN model. The generated data at key wavebands also showed a closer
similarity to the ground truth when NIR data were utilized.

Third, Table 1 shows the FID scores of the GAN-generated data compared to the
ground-truth data in the SWIR, NIR, and PCA data spaces in the training set. The FID scores
were calculated separately for the muscle- and fat-clustering-channel output groups, for the
models trained without spectral clustering, and for the different GAN discriminators UnetD
and EncD. Both the UnetD and EncD GAN discriminators trained with the muscle-channel
SWIR spectral data achieved a higher similarity (lower FID scores: 2.31 for UnetD and 2.49
for EncD) when compared to the models trained without spectral clustering (2.57 for UnetD
and 3.73 for EncD) and with the fat-channel output data (3.73 for UnetD and 3.10 for EncD).
When reducing the data dimensionality from SWIR (1000–2500 nm) to NIR (1000–1700 nm),
the similarity between the generated spectral responses and the ground truth improved
from the average FID of 2.99 ((2.87 + 3.11)/2) for SWIR to 2.27 ((2.38 + 2.16)/2) for NIR.
The PCA reduced the data distribution’s complexity and led to the best FID scores. It is
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important to note that while a low FID score could indicate a good generative performance,
it did not necessarily imply the good detection performance of the 3PC GAN model.

Table 1. Comparison of FID scores of synthetically generated spectra from various GAN models
based on two discriminator types (U-Net: UnetD vs. encoder-only: EncD) and three wavelength
ranges (SWIR, NIR, and 3PC) compared to the ground-truth SWIR, NIR, and 3PC data. The evaluation
of the GAN models’ generative power by using FID scores was based on the spectral clusters of all
normal breast pixels (no clustering), only muscle tissue pixels (muscle channel), and only fatty tissue
pixels (fat channel).

Clustering
GAN-UnetD GAN-EncD

SWIR NIR 3PC Average SWIR NIR 3PC Average

No clustering 2.57 2.14 1.30 2.00 3.73 2.32 1.54 2.53
Muscle channel 2.31 1.32 1.11 1.58 2.49 1.40 1.28 1.72

Fat channel 3.73 3.67 1.70 3.03 3.10 2.76 1.63 2.50
Average 2.87 2.38 1.37 3.11 2.16 1.48

The findings from the mean spectral analysis and FID scores suggest that the 1D U-Net
discriminator would outperform the 1D encoder-only discriminator at FM detection and the
NIR wavelength range would be more effective for the FM-detection model compared to
the SWIR wavelength range. The results underscore the GAN model’s ability to effectively
produce synthetic spectra that closely resemble real data, indicating its capability to enhance
training datasets and facilitate improved performances in various applications. This study’s
outcome aligns with previous research [49–52], highlighting the robustness and versatility
of the GAN-UnetD approach at generating realistic spectral data for diverse hyperspectral
analysis tasks.

3.2. Pixel-Level Detection Performance

The precision and recall measured at the pixel level were dependent on the choice of
the thresholding value during the prediction of a binary detection map from a loss map.
In order to determine suitable threshold values for the NIR, SWIR, and 3PC models, the
cumulative distribution function (CDF) of the training sample loss values was analyzed
(as shown in Figure 7). The maximum training loss values corresponding to 100% CDF
were determined to be 12 for NIR, 10 for SWIR, and 3 for 3PC. Based on these findings, the
threshold values selected for the respective models were 13.2 for NIR, 11 for SWIR, and 3.3
for 3PC.
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Table 2 presents the results of the pixel-level detection performance. The pixel-level
performance of the FM-detection models was evaluated based on the type of discriminator
used (UnetD and EncD), input data type (SWIR, NIR, and 3PC), and clustering approach
(GMM and no clustering).

Table 2. Summary of FM-detection performance at the pixel level for GAN models using two different
discriminators, (a) UnetD and (b) EncD, over three different spectral ranges (SWIR, NIR, and 3PC)
and with and without GMM-based spectral clustering.

(a)
GMM-GAN-EncD No Clustering-GAN-UnetD Overall

SWIR NIR 3PC Average SWIR NIR 3PC Average Average

Precision 0.990 1 1 0.997 0.983 1 1 0.994 0.996
Recall 0.939 0.939 0.678 0.852 0.792 0.808 0.678 0.759 0.806

F1 score 0.964 0.968 0.808 0.913 0.877 0.894 0.808 0.860 0.887
BACC 0.970 0.969 0.839 0.926 0.896 0.904 0.839 0.880 0.903

(b)
GMM-GAN-EncD No Clustering-GAN-EncD Overall

SWIR NIR 3PC Average SWIR NIR 3PC Average Average

Precision 0.992 1 1 0.997 0.989 0.782 1 0.924 0.961
Recall 0.852 0.823 0.620 0.765 0.739 0.637 0.573 0.650 0.707

F1 score 0.917 0.903 0.765 0.862 0.846 0.702 0.729 0.759 0.810
BACC 0.926 0.911 0.810 0.882 0.870 0.815 0.787 0.824 0.853

First, the comparison between the UnetD- and EncD-based GAN models showed
that UnetD outperformed EncD, achieving better recall, F1-score, and BACC values, as
predicted by the mean spectral data and FID score analyses. The GMM-GAN-UnetD
models achieved the highest precision (99.7%), recall (85.2%), F1 score (91.3%), and BACC
(92.6%). Notably, the NIR-based GMM-GAN-UnetD model showed an impressive 96.8%
F1 score and 96.9% BACC. The UnetD models outperformed the EncD models significantly
across all metrics, with UnetD achieving a 19.5% higher average recall, a 7.7% higher
F1 score, and a 4.9% higher BACC compared to EncD. These findings underscore the
effectiveness and superiority of the GMM-GAN-UnetD models, particularly when based
on NIR spectral data, and demonstrate the substantial advantage of UnetD at achieving a
superior FM-detection performance.

Second, the GMM-GAN-UnetD model trained with NIR data performed better than
the models trained with SWIR and 3PC data, achieving the highest F1 score of 96.8% and
BACC of 96.9%. The models trained with the SWIR data were the only ones presenting
false positives (precision < 100%). When comparing the input types, the NIR-based UnetD
models achieved a 7.3% higher recall and a 6.8% higher F1 score compared to the SWIR
models. The 3PC models were the lowest, with an 80.8% F1 score for GMM-GAN-UnetD.

Furthermore, the GMM-GAN models showed a superior performance compared to
the models trained without clustering. The GMM-GAN-UnetD models achieved an average
F1 score of 91.3% and BACC of 92.6%, while the GAN-UnetD models without clustering
achieved an average F1 score of 88.7% and BACC of 90.3%. The enhanced performance
of the GMM compared to no clustering suggests that spectral clustering played a crucial
role in reducing the interclass variability, specifically addressing the spectral heterogeneity
hypothesis between the muscle and fatty tissues. By effectively grouping similar spectral
signatures and separating different tissue types, the GMM aided with enhancing the
GAN model’s ability to accurately distinguish and detect distinct components within the
hyperspectral data. This reduction in interclass variability significantly contributed to the
overall improvement in the FM-detection performance.

These results support this study’s hypotheses, including the hypotheses predicting
that a semisupervised FM-detection model is feasible, the performance of the FM-detection
model is affected by the spectral heterogeneity between the muscle tissue and fatty tissue,
a 1D U-Net discriminator enhances the model’s performance, and the optimal wavelength
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range exists. The feasibility of semisupervised learning was successfully demonstrated
by enhancing the previous supervised sensor fusion technique [7]. This was achieved by
reducing two imaging modalities into a single imaging modality, substituting supervised
learning with semisupervised learning, and exploring deep learning. The superior per-
formance of the NIR-based model over the SWIR-based model implies that the data and
system complexities can be reduced with an improved model performance. The 1D U-Net
discriminator significantly improved the model’s performance over the traditional encoder-
only discriminator. The results also provide strong evidence in favor of the proposed
approach, highlighting the advantages of incorporating the 1D U-Net discriminator and
leveraging the NIR wavelength range for enhanced FM detection in hyperspectral images.

3.3. Blob-Level Detection Performance

The rationale behind the blob-detection analysis is that even if every pixel of an FM is
not accurately identified, detecting a significant portion of the FM can still enable flagging
it as an FM. The performance of the blob detection is summarized in Table 3.

Table 3. Summary of FM blob detection.

Discriminator
Model

Performance
Metric

Material
Type

GMM-GAN No Clustering GAN

SWIR NIR 3PC SWIR NIR 3PC

UnetD

JI All 0.839 0.965 0.628 0.846 0.861 0.538
ODACC All 0.938 0.965 0.628 0.867 0.861 0.538

AIoU Wood 0.899 0.929 0.596 0.865 0.887 0.553
AIoU Polymer 0.860 1.000 0.801 0.713 0.750 0.751
AIoU Metal 0.921 0.934 0.537 0.931 0.869 0.512

EncD

JI All 0.772 0.922 0.551 0.850 0.756 0.598
ODACC All 0.905 0.922 0.551 0.835 0.822 0.598

AIoU Wood 0.918 0.875 0.583 0.828 0.751 0.549
AIoU Polymer 0.879 0.915 0.734 0.669 0.924 0.869
AIoU Metal 0.907 0.961 0.489 0.867 0.570 0.519

Most models exhibited similar scores for both the JI and ODACC due to the absence
of false positives. A similar pattern observed at the pixel level was also observed at the
blob level, where the models trained with GMM-GAN exhibited a superior performance
compared to the models without clustering, and the UnetD models outperformed the EncD
models. Upon analyzing the metrics aggregated over all the materials, UnetD achieved im-
pressive JI scores ranging from 0.839 to 0.965, outperforming the EncD model with JI scores
ranging from 0.551 to 0.922. These results indicate the superiority of UnetD at accurately
segmenting and detecting different materials in the hyperspectral data, showcasing its
effectiveness at achieving higher intersection-over-union values for the various materials
considered in the evaluation.

However, it is important to highlight the distinctively poor performance of the 3PC
models. When compared to the TPR of the NIR-GMM-GAN-UnetD model at the pixel level,
the corresponding NIR model at the blob level demonstrated a performance improvement
of over 2.6% in the ODACC (the TPR or recall at the blob level). Table 3 further demonstrates
this discrepancy through the AIoU metric, indicating the poorer performance of the 3PC
models. Despite blob detection being designed to enhance detection by classifying partially
detected FM objects as detected objects, the 3PC models exhibited a significant number of
false negatives in the wood and metal categories, resulting in the complete omission of
many FM objects.

As mentioned above, the high generative performance of 3PC did not directly correlate
to high FM detection. This low performance can be attributed to the possible intraclass
variability between certain types of FM and clean training samples. Further, dimensionality-
reduction algorithms, such as PCA, are typically linear techniques that cannot capture the
complex nonlinear relationships present in high-dimensional data [53]. As a result, these
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techniques are often unable to preserve the essential features of the data, leading to a loss
of information and performance degradation.

Moreover, the proposed UnetD model offers an advantage over EncD by allowing
for more precise decision making through its decoding path, enabling the classification
of each spectral band individually. Figure 8 showcases the network’s classification of
a spectral response of a clean meat sample, along with the intermediate layer features.
Additionally, Figure 9 illustrates the network’s detection of a fabricated spectral response,
which combines portions of a clean meat pixel’s spectral response with the spectral response
of an FM. This fabricated example demonstrates the network’s performance under the
challenging mixed-pixel effect. The spectral response was fabricated by alternating a clean
spectral response with the spectral response of a semitransparent polymer FM.
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Figure 8. Localized detection power and layers of NIR-UnetD. (a) Input: a normal pixel’s spectrum;
(b) output of UnetD’s expansive path in the decoder: localized prediction across the NIR wavelength
range (0: clean, 1: FM); and (c) visual representation of intermediate layers. Note that the band-
wise localized predictions were combined with the global prediction of the contracting path at the
bottleneck in the last layer of the discriminator to predict the final loss value.
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Figure 9. Localized detection power and layers of NIR-UnetD. (a) Input: a fabricated spectrum mixed
with clean and FM spectrum responses; (b) output of UnetD’s expansive path: localized prediction
across the NIR wavelength range (0: clean, 1: FM); and (c) visual representation of intermediate
layers. Note that the bandwise localized predictions were combined with the global prediction of the
contracting path at the bottleneck in the last layer of the discriminator to predict the final loss value.

The encoder portion of the discriminator classified the fabricated input as normal.
However, the UnetD model provided a more detailed prediction after expanding the
features through the decoding path. Notably, distinct detection patterns are observed
among the four quadrants, with the most significant change occurring in the central portion.
The first quadrant corresponded to the original clean spectral response, yet the prediction
gradually shifted toward the FMs. This behavior can be attributed to the rolling convolution
window, which utilizes neighboring bands for its calculations. In addition to outperforming
a standard encoder EncD architecture, the proposed UnetD model exhibited robustness
against the mixed-pixel effect, successfully detecting 100% of the polymer blobs present in
the fabricated spectral response.

Moreover, Table 4 provides further evidence supporting the notion that GMM cluster-
ing helped reduce intraclass variability. The fusion of FatCh and MusCh detection yielded
an increased performance. Specifically, SWIR and NIR FatCh demonstrated a relatively low
detection performance of 0.514 AIoU for metallic materials, whereas NIR MusCh achieved
a significantly higher detection performance of 0.881 AIoU for the same materials. How-
ever, when combining both detections, the final AIoU score improved by more than 5%.
Similar effects were observed for wood, with an improvement of nearly 3%, while polymers
exhibited the most significant improvement of 8.7%. The SWIR-GMM model demonstrated
an average improvement of 6.86%, with wood achieving the highest improvement at 12.5%.
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Table 4. Detection performance of individual cluster channels and combined detection for blob
detection on GAN-UnetD.

Performance
Metric

Material
Type

SWIR NIR

GMM
(FatCh)

GMM
(MusCh)

GMM
(Proposed)

GMM
(FatCh)

GMM
(MusCh)

GMM
(Proposed)

JI All 0.680 0.786 0.839 0.588 0.876 0.965
ODACC All 0.771 0.851 0.938 0.588 0.876 0.965

AIoU Wood 0.897 0.886 0.899 0.868 0.901 0.929
AIoU Polymer 0.735 0.716 0.860 0.913 0.800 1.000
AIoU Metal 0.511 0.842 0.921 0.524 0.881 0.934

The results strongly support this study’s hypotheses, which align with the pixel-level
results. The results demonstrate the feasibility of using the semisupervised GAN model for
hyperspectral image-based FM detection. The findings also highlight the effectiveness of
GMM clustering at enhancing the overall detection performance, particularly in scenarios
where different classes of materials exhibit distinct characteristics. The substantial perfor-
mance gains when fusing the FatCh and MusCh outputs indicate that the GMM clustering
successfully reduced the intraclass variability, enabling more consistent material detection.
If high variability remained within each class, combining the independent channels would
not be expected to improve detection to this degree. It is important to highlight that the
NIR-GMM-GAN-UnetD model showed superior performance compared to the previous
study [11], which employed the fusion of SWIR and VNIR modalities for FM detection,
achieving a remarkable improvement of 8.1% in terms of the JI, even when only the NIR
spectral data were used.

3.4. Image-Level Detection Performance

Table 5 presents an overview of the false positive rate (FPR) performance. The FPR
was utilized to measure the extent to which clean fillets were incorrectly predicted as
contaminated. Achieving an FPR of 0, as observed in every NIR and 3PC model, indicates
a high level of accuracy in FM detection at the image level. It is worth noting that while
the NIR-GAN-EncD model resulted in the addition of false positive pixels, it still achieved
an FPR score of 0 since these misclassified pixels were only present in the contaminated
samples. With the exception of SWIR, all the other models also achieved an IFPR (incor-
rect fillet positive rate) score of 0, thereby supporting the effectiveness of the threshold
selection method at reducing false positives. Additionally, the results suggest that the
proposed method can be applied to various fillet images with different contamination
levels, indicating its potential for generalizability.

Table 5. Summary of image-level FM-detection performance measured by using image-level false
positive rate (IFPR) for various GAN models including GMM-GAN-UnetD, GAN-UnetD (no cluster-
ing), GMM-GAN-EncD, and GAN-EncD (no clustering) across three different spectral ranges (SWIR,
NIR, and 3PC). An IFPR of 0 indicates that no false positive errors were observed during the test
phase with all normal breast fillet images in the test set.

GMM No Clustering GMM No Clustering
GAN-UnetD GAN-UnetD GAN-EncD GAN-EncD

SWIR NIR 3PC SWIR NIR 3PC SWIR NIR 3PC SWIR NIR 3PC

0.083 0 0 0.083 0 0 0.167 0 0 0.167 0 0

3.5. Limitations and Future Work

This paper acknowledges some limitations and suggests potential directions for future
work. One limitation is the incomplete implementation of optimized hyperparameter
tuning for the algorithm, which may affect its performance and accuracy across different



Sensors 2023, 23, 7014 21 of 23

scenarios. Therefore, future research should focus on a more systematic and rigorous
approach to hyperparameter tuning to ensure optimal results. Additionally, the proposed
framework was primarily evaluated on chicken breast fillets with FMs on their surface.
This means that its performance on other types of poultry products or in scenarios where
the FMs are located on the bottom surface of the products remains unclear. It would be
necessary to conduct further investigations and evaluations specifically targeting these
scenarios. Furthermore, the analysis excluded transparent materials such as glass, which
could impact the generalizability of the findings. Additionally, the dataset used in this study
was imbalanced, particularly due to the limited number of spectral responses for fat in the
chicken breast samples. This imbalance may affect the accuracy and generalizability of the
results. To address this limitation, a larger and more balanced dataset would be beneficial,
enabling more robust and comprehensive conclusions. For necessary future work, it
would be beneficial to focus on further optimizing the algorithm and exploring parallel
computing techniques. By improving the algorithmic performance and leveraging the
parallel processing capabilities, the real-time detection of FMs can be achieved, expanding
the practicality and applicability of the proposed method.

4. Conclusions

This study demonstrated a novel semisupervised deep learning approach for foreign
material detection in hyperspectral images of poultry meat. The method achieved high
accuracy at detecting diverse foreign material types within the hyperspectral images. The
proposed GAN effectively addressed the challenge of limited FM data. The detection
model optimized only for the NIR wavelengths attained a 96.5% Jaccard Index for blob
detection and a 96.8% F1 score at the pixel level, highlighting its potential for practical
applications in foreign material detection and other food product quality-assessment tasks.
This study set a new paradigm for food contaminant detection by using semisupervised
deep learning. The combined spectral clustering, synthetic spectrum generation, and U-Net
approach maximized the anomaly detection accuracy while minimizing the annotation
requirements. The lightweight GAN discriminator for inferencing unlocks the potential for
real-time hyperspectral inspections. In the future, this methodology can be extended to
a broader array of food products and contaminant types by assembling larger multiclass
datasets. Further optimizations to enhance the computational efficiency would facilitate
progress toward seamless deployment in in-line poultry processes. The findings contribute
significantly to the field of hyperspectral analysis and its applications in safeguarding the
food supply chain.
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