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Abstract: Plant virus nanoparticles (PVNPs) have garnered considerable interest as a promising
nanotechnology approach to combat cancer. Owing to their biocompatibility, stability, and adjustable
surface functionality, PVNPs hold tremendous potential for both therapeutic and imaging appli-
cations. The versatility of PVNPs is evident from their ability to be tailored to transport a range
of therapeutic agents, including chemotherapy drugs, siRNA, and immunomodulators, thereby
facilitating targeted delivery to the tumor microenvironment (TME). Furthermore, PVNPs may be
customized with targeting ligands to selectively bind to cancer cell receptors, reducing off-target
effects. Additionally, PVNPs possess immunogenic properties and can be engineered to exhibit
tumor-associated antigens, thereby stimulating anti-tumor immune responses. In conclusion, the
potential of PVNPs as a versatile platform for fighting cancer is immense, and further research is
required to fully explore their potential and translate them into clinical applications.
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1. Introduction

Nanomedicine, a burgeoning area of multidisciplinary research, has exhibited enor-
mous potential for transformation into a highly innovative development [1]. Despite the
existence of numerous products in clinical trials and on pharmacy shelves worldwide, us-
age remains limited due to the rather prohibitive price tags of these innovative products [2].
It is noteworthy to state that although significant advancements have been suggested in
terms of the anticipated efficacy of nanomedicines, opinions tend to differ regarding the
stage of critical cost–benefit analysis for the accessibility of nanomedicines in the treatment
of cancer and other maladies.

Nanomedicines encompass a broad range of nanomaterials, showcasing a particle size
that spans from 1 nm to more than 400 nm, and represent a highly diversified array of
materials. These materials may consist entirely of metal, as exemplified by gold and silver
nanoparticles [3], or may be composed of a blend of liquids or a ternary system that is
constituted by a combination of various compatible materials, resulting in a multifunctional
entity, which often exhibits stimuli-responsive attributes that enable it to react to minute
changes in factors such as pH and temperature variations [4]. Furthermore, nanoparticles
can be fabricated using simple polymeric materials, including cellulose and chitosan.
Recently, proteinaceous nanoparticles made from bacteriophage, plant, and mammalian
viruses due to their capacity for immunomodulation, also offer special advantages [5].

Plant VNPs have been examined as an exclusive category of nanocarriers for biomed-
ical applications, as documented in previous research [6]. In addition to their facile pro-
duction and continuous quality control maintenance, plant virus VNPs provide a rational
substitute for synthetic nanoparticles due to their economical nature, non-toxicity, and
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biodegradability. Moreover, plant VNPs have been enhanced to improve their performance
with regard to stimuli-responsivity, as evidenced by recent developments [7].

Plant VNPs exhibit either a rod shape (tobacco mosaic virus (TMV) and potato virus X
(PVX)) or an icosahedral shape (cowpea mosaic virus (CPMV)). These differing shapes elicit
distinct nanoparticle responses in vivo. Tobacco mosaic virus is capable of assembling into
VLPs without necessitating drug payload conjugation on the nanoparticle surface or within
its inner channel, albeit to a limited degree. In contrast, potato virus X requires its RNA
genome for self-assembly and can only carry a payload on its outer surface. Cowpea mosaic
virus, on the other hand, can self-assemble into empty virus-like particles in the absence of
its RNA genome and can therefore contain a payload both internally and externally within
its protein shell.

Despite being non-infectious in humans, the multivalent, repetitive coat protein assem-
blies of the VNPs and VLPs function as pathogen-associated molecular patterns (PAMPs),
serving as danger signals to the immune system [8]. VNPs administered through intramus-
cular and subcutaneous routes drain effectively into lymph nodes and stimulate immune
cells following recognition by the cellular pattern recognition receptors. VNP-derived vac-
cines also enable antigen cross-presentation which is vital for the major histocompatibility
complex class I (MHC-I)-mediated presentation of extracellular antigens to elicit a potent
cytotoxic T-cell response.

For instance, TMV, PVX, and papaya mosaic virus VNPs are capable of eliciting robust
cellular immune responses against fused antigenic epitopes [9]. The potent immunostimula-
tory characteristics of the VNPs have been shown for a CPMV vaccine that was remarkably
efficient in reducing tumors such as glioma, melanoma, ovarian, colon, and breast cancers
in animal models [10–14]. In these studies, the CPMV VNPs were directly administered
into the tumor to activate the innate immune cells present within the tumor microenviron-
ment which prime killing of the tumor cells as well as antigen processing which leads to
the development of systemic antitumor immunity. Also, as against oncolytic viral tumor
therapy, the occurrence of pre-existing immunity does not compromise the efficiency of the
immune response elicited by the plant VNPs [15]. Rather, antibody recognition augments
the opsonization of CPMV, resulting in the improvement of viral recognition by innate
immune cells.

Hence, VNPs function as exemplary epitope delivery vehicles for antigens and ad-
juvants of great applicability in vaccine and immunotherapeutic formulations [16]. The
present preclinical advancement pipeline for these VNP-based vaccines includes autoim-
mune diseases, substance abuse, and cardiovascular and infectious diseases [15]. Further-
more, plant VNP platforms hold great promise as epidemic or pandemic vaccines [17] due
to their increased thermal stability and therefore would not be subject to the requirements
of cold chain and can be easily produced through molecular farming.

In this review, we present a multitude of examples to analyze the manner in which
the structural composition of plant viruses contributes to their efficacious utilization in
the realm of cancer diagnostics and therapy. Furthermore, we delve into the origins of the
implementation of plant virus architecture as nanoparticles in medical applications, along
with the prospects of their propitious employment as pioneering cancer immunotherapies.

2. Tobacco Mosaic Virus (TMV)

For over a century, the history of the tobacco mosaic virus (TMV) has been significant
and noteworthy. It all started when Beijerinck identified the mosaic disease of tobacco as
a fluid that is capable of spreading, which was later referred to as a “virus” in modern
language [18]. TMV got its name from one of the first plants where it was discovered in the
1800s. However, it can infect over 350 diverse plant species. TMV usually infects tobacco,
solanaceous crops such as pepper and tomato, vine vegetables like cucumber, melon, and
squash, and various ornamental plants like begonia, coleus, geranium, impatiens, million
bells, and petunia [19]. TMV is the first identified virus and has significantly contributed to
answering essential queries about the general nature of viruses [20].
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TMV represents the Tobamovirus genus and is part of the alphavirus-like supergroup.
The virions of TMV are rod-shaped, measuring 300 × 18 nm, and have a hollow center that
contains 95% capsid protein (CP) and 5% RNA. The capsid protein (CP) subunits interact
with 3 nts in a helical pattern around the RNA. The virions remain stable for many decades
and their ability to infect sap remains unchanged even after being heated to 90 ◦C [21].

TMV’s application as a prototype system has been driving the field of virology research
even in modern times. TMV was the first virus to go through chemical purification [22],
detection in an analytical ultracentrifuge and electrophoresis device [23], as well as visual-
ization under an electron microscope [24]. Additionally, TMV RNA was essential in the
initial conclusive experiments that established the genetic information carried by nucleic
acids and their sufficiency without any other component for viral infectivity [25]. The TMV
coat protein (CP) was the initial virus protein to undergo sequencing [26], and the structure
of TMV particles was one of the first to be revealed in atomic detail [27].

The genome of TMV, consisting of a single positive-sense RNA molecule, spans
6395 nucleotides (nts) and encompasses four open reading frames (ORF) [28]. The
5′-terminus of the TMV genomic RNA is capped with 7-methyl guanosine [29]. The
5′-proximal ORFs, encoding the overlapping 126 and 183 kDa replication proteins, initiate
at nt 69 and terminate with amber and ochre stop codons at nt 3417–3419 and nt 4917–4919,
respectively. Both proteins are directly translated from the genomic RNA, which ends with
a terminal tRNA-like structure that specifically aminoacylates with histidine. The 5′-NTR
serves as a strong translational enhancer [30]. Both the 5′- and 3′-NTRs contain cis-acting
elements essential for replication [31].

TMV is presently being employed extensively as a tool for biological research and
biotechnology applications [32]. Various host factors that interact with diverse TMV gene
products have been identified, in addition to the cloning and characterization of one of
the classic plant genes conferring resistance. TMV is currently being utilized as a medium
to deliver and express foreign sequences in plants and as a model system to scrutinize
virus–host interactions. Further innovations are being devised to explicate the other facets
of TMV [33].

3. Potato Virus X

PVX is a plant virus that belongs to the Potexvirus genus of the Alphaflexiviridae
family. It is regarded as the type member and is one of the oldest known viruses to infect
potato plants, with scientific publications dating back to [32]. This virus causes a mild
mosaic disease in solanaceous plants such as tomatoes, tobacco, and potato. It is important
to note that many viruses within the Potexvirus genus, which comprises 48 species, can
cause severe diseases in their hosts [34]. PVX is prevalent worldwide and is usually
transmitted through pollen or true seeds, contaminated farming equipment, or contact
between healthy and infected foliage and roots [34]. It is worth noting that there is no
evidence to suggest that PVX has an invertebrate vector.

PVX is a type of plant virus whose virions are made up of flexuous filaments that
measure about 460–480 nm in length, 13 nm in diameter, and with a helical pitch of 3.4 nm.
The genome of PVX is around 6.4 kb long and has both a 5′ cap and a 3′ poly(A) terminus.
It consists of five open reading frames, with four considered essential for cell-to-cell and
systemic movement, including one that encodes the viral replicase. Infected cells tend to
have X-bodies, or cellular inclusions located near the nucleus, commonly observed in their
vicinity [29].

PVX is recognized as one of the top 10 plant viruses in molecular plant pathology
due to its significant contributions as a model for studying plant–virus interactions. It has
played a crucial role in advancing plant biology, including the development of antiviral
gene silencing mechanisms, creating viral vectors for foreign gene expression, using green
fluorescent protein (GFP) to track plant virus infection, discovering the function of viral
movement proteins in transport through plasmodesmata, and cloning the Rx gene in potato
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through map-based cloning. The Rx gene is considered the first antiviral R gene isolated
from potato [35–37].

PVX has greatly contributed to the initial characterization of the homology-dependent
post-transcriptional gene silencing (PTGS) pathway, which is responsible for destroying
viral RNAs. The PTGS mechanism targets highly structured regions of viral genomes or
replication intermediates that can be cleaved by plant-specific Dicer enzymes, resulting in
the formation of siRNAs (small interfering RNAs). These studies were crucial and involved
using PVX as an expression vector carrying cDNAs that encode foreign sequences such as
green fluorescent protein (GFP), enabling the monitoring of siRNA production and mRNA
turnover [38,39].

Improved PVX-based vectors are considered suitable for expressing any desired gene
in PVX host plants. These vectors are favorable for protein overexpression, investigation of
protein functions in plants, or utilization in virus-induced gene silencing mechanisms [40].

4. Cowpea Mosaic Virus (CPMV)

The CPMV belongs to the Comovirus genus and is the representative member of this
group. The Comovirus genus features a total of 13 other members that are part of the larger
Comoviridae family [41]. The family Comoviridae encompasses three different types of
viruses: Comovirus, Fabavirus, and Nepovirus, all of which are roughly 30 nanometers (nm)
in diameter and possess an isometric shape. Their genetic material consists of two single-
stranded RNAs that are each located in a separate yet identical virus particle. Additionally,
some virus particles may not contain any RNA at all. Furthermore, the protein shell for
each virus particle comprises one, two, or three variations of protein subunits [42].

CPMV is responsible for causing one of the most commonly reported virus diseases in
cowpea plants, resulting in chlorotic spots with indistinct borders on primary leaves and a
yellow or light green mosaic pattern on trifoliate leaves, especially in younger ones. Its host
range is limited mostly to plants belonging to Leguminosae, and it was first discovered in
Nigeria in 1959 in an infected cowpea plant. Since then, it has been found in several other
countries, including Kenya, Japan, Tanzania, Surinam, and Cuba. Although its natural host
is cowpea, it can also infect other legumes, and Nicotiana benthamiana has proved to be an
important experimental host. The virus is transmitted by various beetles that have biting
mouthparts, and it has been reported in Africa, the Philippines, and Iran, but not in North
and South America [42].

CPMV has a bipartite genome consisting of two separate RNA strands, RNA-1 and
RNA-2, which are encapsulated separately. The virus possesses an icosahedral capsid
structure with a diameter of approximately 30 nm, composed of 60 copies each of small
(S) and large (L) coat proteins. These coat proteins are generated from a VP60 precursor
polyprotein encoded by RNA-2, through action of the 24K viral proteinase found in RNA-
1. Both RNA segments are required for successful viral infection and capsid assembly
within a host plant cell [43]. Purified virus preparations contain three distinct components:
empty protein shells lacking RNA (T), as well as two nucleoprotein components (M and B)
containing 24% and 34% RNA, respectively. The heat-stable icosahedral particles have a
diameter of 28 nm and are made up of 60 copies of the two coat proteins [44].

CPMV is a plant virus that has gained significant attention in research. Initially, studies
were focused on understanding the virus’s genetic makeup and structure. However, current
research has shifted towards exploring the potential of CPMV for biotechnology purposes.
One such application involves using CPMV as a platform to present antigenic epitopes from
various sources, including infectious agents and tumors, to develop vaccines [45]. This
research has led to the creation of replicating virus vectors and a highly efficient protein
expression system that does not rely on viral replication. Additionally, CPMV has been
developed as an expression and presentation system for peptides derived from vaccine
targets [44].
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5. Multifunctional Plant Virus Nanoparticles (PVNPs) in Cancer

Plant viruses consist of a genome encapsulated in a capsid formed from multiple
copies of coat proteins (CPs) [46,47]. CPs can self-assemble into closed-caged structures
without a genome as virus-like particles (VLP) [48]. Plant viruses (virions) and plant
VLPs are considered plant virus nanoparticles (PVNPs) within various sizes (10–500 nm)
and shapes (icosahedrons, rods, filaments) [49,50]. They are uniform, monodispersed,
biocompatible, biodegradable, and noninfectious, and unlike viruses, they do not reproduce
in animals, which makes them safe for theragnostic applications [48,51]. Importantly,
molecular farming facilitated the large-scale production of plant viruses with high yields
and reproducibility that overcome the limitations attributed to producing virus-based
delivery systems [48]. Moreover, genetic and protein engineering of plant viruses allows
for the fabrication of nanomaterials with a wide range of desirable properties through
manipulations of coat protein (CP) subunits.

PVNPs have proven to be highly adaptable and flexible when it comes to integrating
and transporting different types of materials. The important parameters for the design of
PVNPs are structural properties such as charge, shape, surface addressable groups, and
genomes [51]. These properties can be used for loading and targeting cargo via genetic engi-
neering, bioconjugation, infusion, biomineralization, and self-assembly strategies (reviewed
in [46]). The internal cavities of these nanoparticles can be used to encapsulate a wide range
of cargo using techniques such as self-assembly or infusion. This means that PVNPs are
capable of incorporating and delivering various payloads due to the empty spaces within
their structure [46,51]. Cargo loading during self-assembly is achieved by changing the
buffer conditions. For example, cowpea chlorotic mottle virus (CCMV) disassembles under
normal pH or high ionic strength and reassembles under buffer exchange, low pH and low
ionic strength to encapsulate CpG oligodeoxynucleotides (ODNs) as an immunotherapy
agent [52]. During infusion, cargo loading can be achieved via the spongy property of
the genome and surface pores of the capsid. For example, changing conformations under
environmental conditions allows the infusion of doxorubicin (DOX) and the lanthanides
(Gd3+, Tb3+) into the capsid’s cavity of red clover necrotic mosaic virus (RCNMV) and
CPMV, respectively, via changing “open” conformation to “closed” conformation of surface
pores and affinity of particles to RNA [53,54]. The process of incorporating mitoxantrone
(MTO) into the inner cavity of CPMV (CPMV-MTO) was achieved by means of diffusion
through the pores of CPMV [55].

Loading payloads is also possible via the methods of bioconjugation chemistries due
to functional addressable groups on interior and exterior surfaces of PVNPs [46,48]. Cou-
pling reactions based on NHS esters, carbodiimides, maleimides, and click chemistries are
common protocols for covalent link cargos on these addressable groups. For example, DOX
can conjugate via activated carboxylic acid groups on CPMV and Physalis mottle virus
(PhMV) [56,57]. The conjugation of immunoglobulin (IgG) isotypes and Trastuzumab to
CPMV and the lysine mutant of TMV (TMV-lys) using a strain-promoted azide−alkyne cy-
cloaddition method demonstrated that antibody–VNP conjugates are a stable and functional
platform. Trastuzumab-displaying VNPs target HER2-positive SKOV-3 human ovarian
cancer cells [58]. A significant development in covalent loading payloads on PVNPs is
genetic manipulation. Cargo can be fused to the encoding gene of capsid protein in a
single or separate vector expressed by heterogeneous expression systems, simultaneously
or separately [46,51].

Non-covalent loading can be achieved via electrostatic interactions between charged
cargos and charged addressable groups on the surface of PVNPs. For example, Phenan-
thriplatin and MTO, a topoisomerase II inhibitor encapsulated by charge-driven drug
loading strategies, have been delivered in vivo in a mouse model which demonstrated the
superior efficacy of TMV drug vs. free drug [57,59].
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6. PVNPs as Delivery Nanosystem

Biological barriers reduce the efficacy of therapeutic/diagnostic agents in the body
and may lead to severe side effects. PVNP formulations can overcome these limitations by
loading into their interior and exterior surfaces and improving their efficacy and safety [46].
Like synthetic nanoparticles, the size, shape, and surface properties affect the therapeutic
performances of PVNPs in vivo. For example, the extravasation of elongated PVNPs
from the blood vessel is more facile than with spherical PVNPs. Furthermore, it has been
observed that PEGylated filamentous PVX is taken up more by human tumor xenografts in
comparison to the spherical CPMV [60]. PVNPs can act as a conduit for delivery in passive
and active targeting formats (Figure 1).
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Figure 1. (A) The variety of nanoparticle formulations based on plant viruses, (B) These formulations
of plant virus-based nanoparticles (PVNPs) have the ability to concentrate drug and imaging agents
through passive-targeting delivery reliant on the enhanced permeability and retention (EPR) outcome
in tumors, (C) Active targeting can be achieved by attaching ligands specific to the biomarkers present
on cancer cells to the surface of PVNPs, allowing for the specific targeting of cancer cells [61].

Structurally, PVNP formulations that are not specifically targeted can achieve the
concentration of drug and imaging agents in tumors through passive-targeting delivery by
relying on the EPR effect [46,48]. For example, loading cisplatin (cisPt2+) within the interior
channel of TMV-based protein nanotubes led to increased cisPt accumulation within tumors
versus free cisPt administration, followed by reduced tumor burden, and increased survival
of ovarian cancer-bearing mice [62]. Non-targeted PVNPs face a significant obstacle in
the form of phagocyte-based clearance, even when PEGylated, due to the presence of
anti-PEG antibodies [63]. To counteract this issue, a potential solution is the conjugation of
serum albumin (SA) to plant virus-based nanocarriers. In a study conducted on Balb/C
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mice, it was observed that SA-conjugated TMV, which was “camouflaged” using SA,
showed reduced antibody recognition and improved pharmacokinetics [6]. In addition,
displaying specific ligands on the surface of PVNPs with high affinity to the target can
address these limitations. The ligands of cancer cell-specific biomarkers can conjugate
to the PVNP surface via nano-engineering, by targeting PVNP formulations specifically
to cancer cells [61]. Several examples of conjugation for targeted delivery of therapeutic
agents have been reported in the literature. GE11, a small peptide containing 12 amino
acids, has been conjugated to PVX. Similarly, folate has been conjugated to Johnson grass
chlorotic stripe mosaic virus (JgCSMV) and pepper mild mottle virus (PMMoV), while
Herclon, a monoclonal antibody (mAb) against the inside cell domain of the receptor,
HER2, has been conjugated to Sesbania mosaic virus (SeMV)-based VLPs. In addition,
PVX-based targeted TNF-related apoptosis-inducing ligand (TRAIL) and peptide F3 on
CCMV have been shown to selectively target cancer cells (refer to Figure 2 for more details).
The bioconjugation process involving the coupling of epidermal growth factor-like domain
7 (EGFL7), (a protein that is known to be expressed solely in endothelial cells), to CPMV
resulted in a modified protein that has the ability to specifically target tumor-associated
neovasculature with a high degree of specificity [64]. Recently, a peptide-guided tomato
bushy stunt virus (TBSV)-based nanocarrier platform loaded with DOX has been applied
for the delivery to specific cells. Marchetti et al. (2023) used TBSV-based VNPs with
CooP peptide, a homing peptide to target medulloblastoma tumors. Encapsulating DOX
within TBSV-CooP improved cell death and proliferation, demonstrating their efficacy in
targeting brain tumors [65]. The internalization of the TBSV-based nanocarrier platform
targeted with the C-terminal C-end rule (CendR) peptide, RPARPAR (RPAR) (TBSV-RPAR)
loaded with DOX showed selective cytotoxicity towards receptor neuropilin-1 (NRP-1)-
expressing cells [66]. Another study demonstrates the use of iRGD peptides to target tumor
neovasculature on PhMV-like nanoparticles, resulting in rapid uptake and increased tumor
homing. This approach offers a promising platform for targeted molecular cargo delivery
to tumors [67].
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Increasingly, bionanoparticles are being explored for their capability to act as nanocar-
riers. When compared with synthetic nanoparticles, bionanoparticles are biocompatible
and exhibit high target specificity within the host cells, while being non-pathogenic to
humans. Antibodies have emerged as important therapeutic molecules and are presently
being used for combating several diseases such as autoimmune disorders, cancer, etc.
Since antibodies cannot traverse the cellular membrane barrier, intracellular delivery of
antibodies is a major challenge.

The coat protein of the icosahedral SeMV was genetically engineered [68] to fuse
with the Staphylococcus aureus protein A (SpA) B domain in the region of the βH-βI
loop, to synthesize the SeMV loop B (SLB) that self-assembled into VLPs having 43 times
greater affinity towards antibodies (~80–90 antibodies/VLP) when compared to SpA alone
showing that the chimeric VLPs contained multiple accessible and functional B domains.
These VLPs were capable of being internalized into several types of mammalian cells such
as B16-F10, BT-474, HeLa, HMECs, and KBs. SLB has demonstrated remarkable proficiency
and efficacy in the delivery of three unique mAbs, specifically anti-α-tubulin (designed
to target intracellular tubulin), Herclon (designed to counteract the HER2 receptor), and
D6F10 (designed to target abrin), directly into the cells. This impressive feat highlights
the tremendous potential of SLB to function as a universal nanocarrier for the purpose of
intracellular transport of antibodies. Esfandiari et al., 2015, demonstrated the enhancement
of antibody cytotoxicity enabled by potato virus X VNPs that were chemically conjugated
to Herceptin [69].

7. Therapeutic Agent Delivery

Various therapeutic molecules including small molecules (chemotherapy drugs, flu-
orescent dyes), nucleic acids, peptides, proteins, and nanoparticles can be loaded into
PVNPs [46,51]. PVNPs can protect these cargoes from degradation and deliver them,
which is conducive to their continued role. PVNPs can load small molecule drugs such as
MTO [55], phenanthriplatin [59,70], gemcitabine [71] and cisPt [72], increase their accumu-
lation within the tumor tissue, and induce tumor cytotoxicity. For example, loading DOX
by CPMV [56], RCNMV [53], JgCSMV [73], or the prodrug DOX by PhMV-based VLPs [74]
significantly improved antitumor efficacy in vitro and in vivo.

TMV disks loaded with DOX were capable of elevating the survival rates of mice
harboring intracranial glioblastoma [75]. When cisplatin was loaded onto TMV VNPs
by modification of the externally located surface mannose and lactose moieties, this en-
abled the recognition of the loaded VNPs by the asialoglycoprotein receptor occurring
on cell membranes which led to increased cytotoxicity in cancer cell lines [76]. A fluo-
rous molecular ponytail was added at specific sites in the TMV CP [77] that led to the
self-assembly of the TMV CP molecules into spherical VNPs. These VNPs, when bound to
cisplatin by metal-ligated coordination, showed augmented stability. Also, TMV loaded
with phenanthriplatin and cisplatin through charge-based reaction or by means of stable
covalent adduct formation could augment absorption by cancer cells which enhanced
the cytotoxicity [78]. Valine–citrulline monomethyl auristatin E, an antimitotic drug was
loaded onto the external surface of TMV VNPs which resulted in efficacious targeting and
improved cytotoxicity in the Karpas 299 non-Hodgkin’s lymphoma cell line in addition to
facilitating the entry of the modified VNPs into the endolysosomal compartments followed
by the protease-encoded release of the antimitotic drug [79]. Enhanced antitumor effects
were observed in murine models upon administration with TMV VNPs loaded with MTO
through a charge-driven mechanism [80].

Yin et al., 2012, conjugated the poorly immunogenic tumor-associated Tn carbohydrate
antigen (GalNAc-α-O-Ser/Thr) to the Tyr 139 amino acid residue of TMV, which elicited
robust immune reactions [81]. In another study, TMV particles were fused with the trans-
acting activation transduction (TAT) peptide on their external surface and these TAT-tagged
VNPs were efficiently internalized and enabled RNA silencing in nude mice harboring
hepatocellular carcinoma tumors following intratumoral and intravenous delivery [82].
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PVNPs can improve poor cell uptake, nuclease-related instabilities, and ineffective
delivery limitations of nucleic acids through encapsulating heterologous RNA, siRNAs,
mRNA, and CpG-ODNs [61]. For example, brome mosaic virus (BMV) and CCMV can
be loaded with the antitumor siRNA Akt1 (siAkt1) for internalization by tumor cells [83].
CCMV, when formulated with siRNAs that target FOXA1, a transcription factor of the
forkhead box (FOX) protein family, enables gene silencing in the MCF-7 breast cancer cell
line [84]. PVNPs can supply a platform for reducing and improving low stability, and short
half-life of amino acid polymer-based therapeutics [61]. They have been used to conjugate
and deliver mAb such as Herceptin (Trastuzumab) [85], vascular endothelial growth factor
receptor-1 (VEGFR-1) [86], and TRAIL [87].

The use of photothermal therapy (PTT) and photodynamic therapy (PDT) for tu-
mor treatment results in localized shrinkage of the tumor. PVNP-based PTT/PDT agents
with adsorption photons can generate heat or reactive oxygen species (ROS) for the ab-
lation of cancer cells [88–90]. For example, coating TMV with photothermal biopoly-
mer polydopamine (PDA) and irradiation with near-infrared laser combined with im-
munotherapy and multimodal magnetic resonance/photoacoustic imaging offers a promis-
ing combination and theranostic approach for in vivo cancer models [89,90]. Loading of the
porphyrin-based photosensitizer drug, Zn-Por, into TMV and tobacco mild green mosaic
virus, TMGMV, has been demonstrated to result in a significant increase in cell-killing
efficacy. Specifically, there was a five-fold increase in efficacy observed when compared to
the free drug [88].

8. Diagnostic Agent Delivery

Nanoengineering of PVNPs offers various opportunities for loading and modifying
contrast agents [57]. PVNP-based dyes, known as guanidinium agents are commonly
used in preclinical diagnostic imaging. PVNP-based contrast agents have the potential
to be developed to accomplish prolonged circulation, specific targeting ability, and effec-
tive delivery to tumors in vivo. For instance, one approach involves loading PhMV-like
nanoparticles with the fluorescent dye Cy5.5 and paramagnetic Gd(III) complexes, while
PEGylated particles can be conjugated with targeting peptides for the purpose of moni-
toring a human prostate tumor model through near-infrared fluorescence and magnetic
resonance imaging [13]. PVNPs can be decorated with bombesin peptides, polyethylene
glycol (PEG), and near-infrared fluorescent dyes [91]. By loading Dy3+ and Cy7.5 into
TMV nanoparticles and conjugating them with a Dy3+ dye and near-infrared fluorescence
(NIRF) dye, high transverse relaxation of targeted PC-3 prostate cancer cells and tumors
was achieved in vitro and in vivo in ultra-high-strength magnetic fields [92].

CPMV loaded with NIR dye (Alexa Fluor 647) and PEG, as well as conjugated with
the pan-bombesin analog, [β-Ala11, Phe13, Nle14] bombesin-(7–14) can target the gastrin-
releasing peptide receptor that is over-expressed in human prostate cancers. The phe-
nomenon of tumor homing was observed through the utilization of human prostate tumor
xenografts on the chicken chorioallantoic membrane model, through intravital imaging
techniques [93].

The filamentous PVX can be engineered to display green fluorescent protein (GFP)
or mCherry as probes for optical imaging in human cancer cells and within a preclinical
mouse model [94]. Plant viruses, specifically TMV, can be the basis for MRI contrast
reagents; TMV particles can be loaded with Gd(DOTA) into the interior channel of TMV
and the exterior coated with silica, thereby increasing T1 relaxivities compared to uncoated
Gd-loaded TMV [95]. The presentation of GE11 on PVX and the conjugation of PVX-GE11
filaments with fluorescent labels can be specifically directed toward the epidermal growth
factor receptor (EGFR). The identification and visualization of cells were demonstrated
utilizing cell lines of colorectal adenocarcinoma, human skin epidermoid carcinoma, and
triple-negative breast cancer (A-431, HT-29, MDA-MB-231), all of which exhibited differing
degrees of EGFR upregulation [96].
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9. Theragnostic Agent Delivery

These unique structural and chemical properties of PVNPs make them highly suitable
for combining therapeutic and diagnostic agents’ potentialities for in vivo applications [48].
Metal–phenolic networks (MPNs) based on plant viruses such as TMV, PVX, and CPMV,
have been shown to exhibit favorable optical, cytocompatible, and exceptional cell-killing
performance in photothermal therapy when loaded with complexes of tannic acid (TA),
metal ions (e.g., Fe3+, Zr4+, or Gd3+), or fluorescent dyes (e.g., rhodamine 6G and thiazole
orange) and subjected to 808 nm irradiation [97]. Gd-loaded TMV particles coated with the
mussel-inspired biopolymer polydopamine (PDA) represent biocompatible nanotheranostic
reagents that facilitate multimodal imaging and photothermal therapy (PTT) in PC-3
prostate cancer cells [89]. The capacity of SA-coated tobacco mosaic virus laden with
chelated gadolinium (DOTA) for detection via magnetic resonance imaging and the loading
of DOX would enable the monitoring of disease progression, thus providing information
on the efficacy of the drug delivery strategy [98].

Engineered TMV-MOF (metal–organic framework) hybrid nanoparticles augmented
the retention of these VNPs in murine models [99]. Particles of Cy5-TMV@ZIF were
produced through the process of coating the TMV that was encapsulated with Cy5 with
zeolitic imidazolate framework-8. This resulted in an augmented fluorescence retention
time that was 2.5 times higher compared to that of the Cy5-TMV alone. These Cy5-
TMV@ZIF particles were resistant to harsh conditions, in addition to being non-toxic
and highly stable [99]. Particles of the tobacco mosaic virus (TMV) were impregnated
with a metal-free paramagnetic nitroxide organic radical contrast agent (ORCA), resulting
in the creation of probes for electron paramagnetic resonance and magnetic resonance
imaging for the detection of superoxide. These probes exhibited enhanced in vitro r1 and r2
relaxivities and served as both T1 and T2 contrast agents, thereby illustrating their potential
for preclinical and clinical MRI scanning [100].

In yet another study, TMV VNPs were modified to target VCAM-1, the vascular cell
adhesion molecule, and these particles were loaded with Gd-dodecane tetraacetic acid (Gd-
DOTA). This led to highly sensitive recognition and visualization of atherosclerotic plaques
in ApoE-/- mice, employing low doses of contrast agent and this resulted in enhanced
relaxivity and moderate tumbling of the Gd-DOTA-TMV carrier with improved signal-to-
noise ratio. Moreover, these coupling complexes showed greater imaging sensitivity, thus
affording a 40-fold decrease in Gd dose compared to the standard clinical doses [101].

10. PVNPs Act as Therapeutic or Adjuvant Agent

Recent studies have shown that some PVNPs alone are immunogenic and highly
effective as a monotherapy [49]. Toward this end, several groups have recently demon-
strated that intratumoral injection of PVNPs derived from CPMV [14], papaya mosaic virus
(PapMV) [102], PVX [103], and alfalfa mosaic virus (AMV) [104] can stimulate antitumor-
based immune responses into the tumor microenvironment (TME) as in situ vaccines (ISV).
PVNPs overcome the immunosuppressive TME by activating the local innate immune
system, restarting the cancer-immunity cycle, and leading to the systemic elimination
of cancer cells through the adaptive immune system [12,105]. The antitumor immune
stimulation provided by these PVNPs can arise due to their packaged genomes or by their
multivalent nature [14,102]. PVNPs as PAMPs are identified by innate immune cells’ pat-
tern recognition receptors (PRRs), including toll-like receptors (TLRs) [49,106]. It has been
demonstrated that the antitumor immune stimulation of PapMV depended on RNA [102]
and for the empty(e) CMPV on multivalent coat protein assemblies [14]. It has been found
that TLR2 and TLR4 are responsible for recognizing eCPMV and TLR7 for RNA-containing
CPMV [107]. After binding to surface or endosomal TLRs of antigen-presenting cells
(APC), they induce cytokine/chemokine and interferon secretion, to recruit and activate
antitumor immune cells [61] (Figure 3). Recently, CPMV with two RNA genomes that have
different sizes and unrelated sequences, RNA-1 (6 kb) as the bottom (B) component, and
RNA-2 (3.5 kb) as the middle (M) component, can activate innate immune cells to induce
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the secretion of pro-inflammatory cytokines such as IFNα, IFNγ, IL-6, and IL-12, while
inhibiting immunosuppressive cytokines such as TGF-β and IL-10, with the same efficacy
as native mixed CPMV [108].
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(C) loading and delivery of cancer antigens, therefore active cellular and humoral immune responses
against tumor [61].

PVNP ISV is a treatment for solid tumors that involves several mechanistic processes.
Firstly, the PVNP is transported into the tumor and assimilated by immune cells. Sec-
ondly, these activated innate immune cells release cytokines and chemokines to attract
more immune cells to combat the tumor. Thirdly, T-lymphocytes become activated and
are lured to the tumor to combat tumor cells with their cognate antigens. This results in
tumor lysis. Finally, the activated T-lymphocytes travel throughout the body attacking
metastatic tumors [105]. For example, the utilization of cowpea mosaic virus (CPMV)
as an ISV leads to the upregulation of several immunostimulatory cytokines, namely IL-
1β, IL-12, interferon (IFN)-γ, chemokine ligand 3, macrophage inflammatory protein-2,
and granulocyte-macrophage colony-stimulating factor [49,109]. Additionally, CPMV-ISV
treatment suppresses IL-10 and transforming growth factor β, consequently generating
changes in intratumoral cytokines through the altered phenotype of intratumoral myeloid
cells. These changes further promote the activation, repolarization, and recruitment of
macrophages, dendritic cells (DCs), and neutrophils, all of which exhibit an effector anti-
tumor phenotype. Furthermore, CPMV-ISV treatment significantly enhances effector and
memory CD4+ and CD8+ T cell responses and promotes systemic tumor-specific cytotoxic
CD8+ T cell activity [110].

In the context of immunotherapy, PVNPs can also act as a nanocarrier for tumor anti-
gens, or immune adjuvants for improving immunotherapeutic efficacy of vaccines [49,105].
In this regard, PVX as an adjuvant can deliver HER2 epitopes to overcome immunological
tolerance against HER2 in a PVNP-based peptide vaccine [111]. As an immunomod-
ulator nanocarrier, PVNPs can also overcome unfavorable pharmacokinetic profiles of
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other immunomodulators. Recently, it has been demonstrated that the incorporation of
oligodeoxynucleotides (ODNs, ODN1826) into the CCMV leads to enhanced internalization
by macrophages within the tumor microenvironment (TME). This phenomenon results
in a deceleration of tumor progression and an extension of survival in murine models of
both melanoma and colon cancer [52]. The following Table 1 presents a few reports of
PVNP-mediated therapeutic strategies conducted in tumor models.

Table 1. Some examples of therapeutic strategies enabled by PVNPs.

Therapeutic
Strategies PVNP Delivery Agent Tumor Modal Outcomes Ref.

Monotherapy

CPMV No agent

B16F10 lung
melanoma,
ovarian, colon,
and breast

Activated
innate and adaptive
immune systems

[14]

TMV No agent Dermal melanoma
Activated
innate and adaptive
immune systems

[12]

AMV No agent Breast
Activated
innate and adaptive
immune systems

[104]

PapMV No agent Melanoma
Activate the innate
immune response in an
IFN-α-dependent manner

[102]

Vaccine delivery

PVX Epitopes CH401 Breast Elevated HER2-specific
antibody titers [112]

CPMV Epitopes CH401 Breast Elevated HER2-specific
antibody titers [112]

PhMV CH401 Breast

The delayed onset of
tumor growth and the
prolonged survival of the
vaccinated vs. naïve
BALB/C mice

[113]

CPMV Ovalbumin B16F10-OVA Improved survival and
slower tumor growth [114]

CPMV testis antigen
NY-ESO-1

NY-ESO-1+
malignancies

CD8+ T cells from
immunized mice exhibited
antigen-specific
proliferation and cancer
cell cytotoxicity

[115]

Adjuvant delivery

CCMV CpG Colon cancer and
melanoma

The efficacy of ODN1826
compared to the free drug,
slowing tumor growth
and prolonging survival

[52]

TMV Toll-like receptor 7
agonist (1V209),

B16F10 dermal
melanoma i

Greater number of
tumor-specific T cells [90]

PhMV CpG-ODN Breast Slowing tumor growth
and prolonging survival [113]

11. Combined Therapies Based on PVNPs

The integration of PVNP-based monotherapy and any therapy that induces tumor
cell lysis and release of tumor-associated antigens (TAAs) might be one of the possible
strategies to overcome complexity and tumor heterogeneity [116]. The combination of
PVNP monotherapy with radiation therapy (RT) [117], chemotherapy [13,90,103], and im-
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munotherapy [118,119] could form the basis for success. For example, immune checkpoint
therapy (ICT) agents and checkpoint-targeting antibodies (e.g., anti-PD-1 antibodies), can
break the immunosuppression of T cell activity [120,121]. Combining ICT with CPMV
induces an antitumor immune response and increases antitumor efficacy [120]. A combina-
tion therapy using CPMV and cyclophosphamide (CPA) has shown remarkable synergistic
efficacy against 4T1 mouse tumors in vivo. CPA induced apoptosis and immunogenic
cell death (ICD) and synergized with type I interferons elicited by CPMV. Thus, this com-
bination therapy may become a potent new strategy for the treatment of the 4T1 mouse
model [13]. It has been suggested that CPMV in combination with RT can turn an im-
munologically “cold” tumor (with a low number of TILs) into an immunologically “hot”
tumor [117]. In PVNP-based combination therapies, PVNP in situ vaccination activates
the innate immune system, leading to the recruitment and activation of phagocytes. Other
therapies such as chemotherapy, PTT, PDT, and ICT target cancer cells, induce cell death,
and boost their capability for cancer cell phagocytosis and in turn, priming the adaptive im-
mune system and leading to potent antitumor immune responses [118]. Loading anticancer
peptides (ACPs) into PVNPs provides the capability of disrupting the cell membrane, in-
ducing apoptosis, preventing angiogenesis, and regulating immunity, which can represent
a novel strategy for enhancing the effectiveness of cancer therapies [122]. Table 2 shows a
list of combination therapies enabled by PVNPs.

Table 2. Examples of PVNP-based combination therapies.

PVNP Agent Combination Therapy Tumor Model Ref.

CPMV
Anti-PD-1 antibodies, agonistic
OX40-specific antibodies,
agonistic anti-CD40

Immuno-immunotherapy Ovarian cancer, colon
cancer, and melanoma [120,123]

CPMV Irradiated cancer cells (ICCs) Immuno-immunotherapy Ovarian cancer [124]

CPMV Cyclophosphamide (CPA) Immuno-chemotherapy Triple-negative breast
cancer (TNBC) [13]

CPMV Polydopamine (PDA) Immuno-photothermal therapy B16F10 dermal
melanoma [90]

CPMV Radiation Immuno-radiation therapy Ovarian carcinoma [117]

CPMV Cryo Immuno-Cryoablation Hepatocellular
carcinoma (HCC) [125]

TMV Porphyrin-based
photosensitizer drug (Zn-Por) Immuno-photodynamic therapy Melanoma and cervical

cancer models [88]

TMGMV Porphyrin-based
photosensitizer drug (Zn-Por) Immuno-photodynamic therapy Melanoma and cervical

cancer models [88]

12. Challenges and Future Perspective of PVNPs

When utilizing PVNPs, there are numerous challenges and limitations to consider.
Firstly, in vivo biological barriers such as interactions with serum, immune cells, or anti-
bodies can impact the use of native or functionalized PVNPs in clinical settings. Secondly,
anti-PVNP antibodies can alter the way immune cells interact with PVNPs, potentially
leading to their elimination before reaching the target site. Thirdly, the formation of protein
corona (PC) can impede the development of PVNPs for in vivo applications. Fourthly, since
PVNPs often target non-immune cells or tissues, clearance by the immune system should
be minimized. Fifthly, expressing certain peptides genetically as part of coat proteins may
impair capsid formation, which is necessary for effective infection and PVNP generation
in plants. In the context of in situ vaccinations, there is also concern about viral escape
from the site of injection, which could result in adverse side effects, in addition to the
concern regarding virotherapy and the presence of neutralizing antibodies. Undoubtedly,
the presence of existing circulating antibodies can increase the risk of adverse effects.

Although PVNPs are safe for animals, some regulatory issues need to be considered.
PVNPs require high throughput manufacturing, dedicated facilities, and adaptations to
plant molecular farming. Further research on regulatory pathways, immune system effects,
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and novel administration methods, such as chimeras or semi-synthetic nanoparticles, is
needed. PVNP production processes must adhere to manufacturing standards and quality
control measures to ensure safety and consistency, as determined by regulatory agencies.

PVNPs offer significant potential for various therapeutic applications, including but
not limited to vaccines, imaging agents, cancer therapies, and drug delivery. The ongoing
research endeavors to optimize VNP design, functionalization strategies, and targeting
approaches to enhance their therapeutic efficacy. The capacity to modify viruses is con-
stantly expanding, allowing for new therapeutic strategies. By incorporating bioactivatable
aspects into the design of innovative viral reagents, researchers can create more flexible and
effective treatment options. Directed evolution using mutagenesis strategies can be used to
assemble virus libraries that meet specific objectives. Bioinformatics analysis can align dif-
ferent viral capsid genes/protein sequences or protein structures, leading to the generation
of novel viruses with unique properties. Computer technologies like machine learning and
mathematical modeling can also aid in the development of PVNPs for clinical cancer im-
munotherapy. In addition, collaborative interdisciplinary partnerships and investments in
research infrastructure are crucial in stimulating innovation, expediting scientific progress,
and revealing novel possibilities for VNP utilization. Nanoengineering research on VNPs
is advancing their design, fabrication, and manufacturing, with various formulations and
approaches on the cusp of clinical impact. The structural versatility of VNPs also presents
new clinical opportunities across various dose forms. Given the incremental progress of
VNP technology in the clinic, investigating pharmaceutical formulation technology may
prove instrumental in improving prospects for further translational development. At the
preclinical stage, conducting comprehensive research on the formulation of viral nanoparti-
cles (VNP) in various dosage forms would facilitate the modification of VNP’s shelf life
stability and compatibility with clinically significant routes of administration. This would
in turn enhance the efficacy and safety of the product, while also providing a forecast for
future costs and patient convenience.

13. Conclusions

Conventional cancer treatment involves chemotherapeutic drug delivery through
the circulatory system, causing dispersion and premature drug release before the tumor
site. Drug dosage must be significantly increased to ensure efficacy at the target site. This
approach may cause unwanted damage to cells and tissues. Precision cancer medicine aims
to improve drug efficacy by targeting nanoparticles, demonstrating clinical potential. Plant
VNPs are promising due to their self-assembling architecture and easy production. PVNPs
offer quality control for uniform particle shape and size, unlike synthetic nanomaterials.
Plant VNPs offer biocompatibility, efficacy, low cost, easy manufacturing, and optimal cargo
loading capacity. Plant VNPs offer biodegradability, genetic engineering customization,
and superior modification efficacy over synthetic nanomaterials, which rely on chemical
synthesis and are persistent in the body. The fact that PVNPs can be used as theranostics
for cancer detection and treatment could be a game changer for health outcomes in low-
and middle-income countries. In these parts of the world, health burdens will increase and
strain what little infrastructure is currently available for escalating elderly populations. The
potential of plant VNPs could mitigate future health challenges for populations around the
planet, particularly in the Global South. It is for this reason that plant VLPs must continue
to be under exploration as a plausible solution for future health challenges.
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