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Abstract 
Aging is the most significant risk factor for neurodegenerative disorders such as Alzheimer’s disease (AD) associated with profound socio-
economic and personal costs. Consequently, there is an urgent need for animal models that recapitulate the age-related spatial and temporal 
complexity and patterns of pathology identical to human AD. Our research in aging nonhuman primate models involving rhesus macaques 
has revealed naturally occurring amyloid and tau pathology, including the formation of amyloid plaques and neurofibrillary tangles comprising 
hyperphosphorylated tau. Moreover, rhesus macaques exhibit synaptic dysfunction in association cortices and cognitive impairments with 
advancing age, and thus can be used to interrogate the etiological mechanisms that generate neuropathological cascades in sporadic AD. 
Particularly, unique molecular mechanisms (eg, feedforward cyclic adenosine 3ʹ,5ʹ-monophosphate [cAMP]-Protein kinase A (PKA)-calcium 
signaling) in the newly evolved primate dorsolateral prefrontal cortex are critical for persistent firing required for subserving higher-order 
cognition. For example, dendritic spines in primate dorsolateral prefrontal cortex contain a specialized repertoire of proteins to magnify 
feedforward cAMP-PKA-calcium signaling such as N-methyl-d-aspartic acid receptors and calcium channels on the smooth endoplasmic retic-
ulum (eg, ryanodine receptors). This process is constrained by phosphodiesterases (eg, PDE4) that hydrolyze cAMP and calcium-buffering 
proteins (eg, calbindin) in the cytosol. However, genetic predispositions and age-related insults exacerbate feedforward cAMP-Protein kinase 
A-calcium signaling pathways that induce a myriad of downstream effects, including the opening of K+ channels to weaken network connec-
tivity, calcium-mediated dysregulation of mitochondria, and activation of inflammatory cascades to eliminate synapses, thereby increasing 
susceptibility to atrophy. Therefore, aging rhesus macaques provide an invaluable model to explore novel therapeutic strategies in sporadic 
AD.
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Aging represents the primary risk factor for neurodegenerative 
disorders such as Alzheimer’s disease (AD). Epidemiological 
studies have revealed that ~10% of individuals over the age 
of 65 develop AD, and the prevalence increases significantly 
with advancing age and is associated with cognitive impair-
ment. The rising prevalence of AD is compounded by a rapidly  
aging population and is predicted to impose a huge financial 
burden on healthcare systems globally. As a result, there is 
an urgent need to develop effective preventative therapeutic 
strategies to ameliorate cognitive decline with advancing age 
to augment health span and quality of life.

The neuropathological hallmarks of AD include extracel-
lular deposits of amyloid Aβ plaques and intracellular neu-
rofibrillary tangles (NFTs) comprising hyperphosphorylated 
tau. Current hypotheses postulate that these pathological 
phenomena are interconnected, as Aβ oligomers can drive tau 
phosphorylation (1–3), and accumulations of phosphorylated 
tau may increase the production of Aβ (4,5), thus establishing 
vicious cycles that lead to the hallmark toxic phenotypes and 
the destruction of synapses that mediate memory and cogni-
tion. Human AD studies have revealed that cognitive deficits 

correlate with NFTs, but not Aβ plaques (6), suggesting that 
understanding the etiology of tau phosphorylation and how it 
emerges in the aging association cortex is particularly critical 
in elucidating the pathogenesis of AD. Tau normally serves to 
assemble and stabilize microtubules (7,8), but with increasing 
phosphorylation, tau detaches from microtubules and aggre-
gates, and with hyperphosphorylation, fibrillates within den-
dritic shafts to form NFTs that then proceed to invade the cell 
soma. The neuron eventually dies from autophagic degenera-
tion, leaving a “ghost tangle” (reviewed in (5)).

Classic neuroanatomical studies have revealed that tau 
pathology in AD shows a stereotypic progression across the 
cortical hierarchy. Tau pathology preferentially affects glu-
tamatergic neurons in the limbic and association cortices, 
beginning in the perirhinal and entorhinal limbic cortices, and 
proceeding to the neocortical association areas with advanced 
age, but only afflicting neurons in the primary sensory cor-
tex at end-stage disease (9–12). A growing body of literature 
supports the notion that phosphorylated tau in AD and other 
tauopathies can traffic between neurons to propagate along 
anatomically connected cortical networks via excitatory 
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synapses (13–22). Understanding the selective vulnerability of 
these highly interconnected glutamatergic neurons remains an 
ongoing area of investigation in the field and might provide 
critical signs regarding cell-type specificity of neuropathology 
in AD.

Nonhuman primates (NHPs) have provided an invaluable 
model system to probe the neurobiology underlying amyloid 
and tau pathology in AD. Particularly, aging NHPs provide 
an opportunity to examine the generation of tau pathology 
in its native course in sporadic AD in the absence of familial, 
autosomal dominant mutations. There are striking differences 
in the magnitude of AD-related neuropathology across NHP 
species (eg, marmosets, vervets, rhesus macaques, chimpan-
zees) along the evolutionary lineage, and it is intriguing to 
note that the extent of pathology correlates with the expan-
sion of the association cortex across species reaching a pin-
nacle in humans (4,12,23–27). Extensive research has been 
conducted in rhesus macaques, which provide an indispens-
able model to illuminate the early etiological mechanisms 
mediating amyloid and tau pathology. For example, aging 
rhesus monkeys naturally develop Aβ plaques (28,29) and 
NFTs (28) resulting in age-related cognitive deficits (30) with-
out having to introduce the mutations that cause autosomal 
dominant disease, and thus are ideal for studying the changes 
in aging association cortex that lead to early-stage pathology. 
In addition to amyloid and tau pathology, aged macaques 
also show additional signs of AD-like degeneration and 
age-related phenotypes, including large autophagic vacuoles 
in dendrites, mitochondrial dysfunction, activation of inflam-
matory cascades and microglial engulfment, synapse loss, 
argyrophilia, profound aggregation of late-phase lysosomes, 
and dystrophic neurites (28). These questions require NHPs, 
as rodents have a rudimentary association cortex and require 
transgenic mutations to induce neuropathology with limited 
tau pathology. Furthermore, rodents are limited in their abil-
ity to perform complex cognitive operations that are unique 
to primates. The use of perfusion-fixed tissue, not possible 
in humans, also provides remarkable clarity for observing 
phosphorylated proteins in their native location and interac-
tion with subcellular organelles with nanometer resolution, 
including multiple key epitopes of phosphorylated tau. This 
article will review research in rhesus macaques conducted by 
multiple research groups and provide evidence of how aging 
monkeys can be leveraged to explore the pathophysiology 
of AD, various cellular and molecular phenotypes of aging, 
and age-related cognitive decline to enhance our discovery of 
novel therapeutic targets. Rhesus macaques have also been 
invaluable in elucidating the contribution of multiple factors 
(eg, dietary factors, sexual dimorphism, nutrition, exercise, 
immune activation) in impacting trajectories with advancing 
age, although these topics have been extensively reviewed 
by other groups and are beyond the purview of the Review 
(31–34).

Aging Rhesus Monkeys Recapitulate Amyloid 
and Tau Pathology in AD
Histological examination of postmortem human AD brain has 
revealed how cortical tau pathology in AD originates in layer 
pre-α of the perirhinal cortex and the layer pre-α (Layer II) 
cell islands of the entorhinal cortex (ERC; (9,12,36). Cortical 
tau pathology then emerges in pyramidal cells in deeper layers 
of the ERC, in the hippocampus, and in the association cortex, 

with pyramidal cells in the primary sensory and motor cor-
tex only impacted in terminal stages of the illness (11,12,35). 
Rhesus monkeys with advanced age intrinsically recapitulate 
AD-like early-stage cortical tau pathology with the same 
qualitative pattern and sequence observed in human AD 
patients, with neuropathology emerging in the ERC Layer II 
cell islands (4). Similar to humans, tau pathology later devel-
ops in pyramidal cells in the association cortices, whereas the 
primary visual cortex (V1) remains unaffected until the end 
stages of the disease (4,23). With significantly advanced age, 
rhesus macaques exhibit classic NFTs in the ERC and dor-
solateral prefrontal cortex (dlPFC; [4]), comprising paired 
helical filaments with periodicity and blunt ends identical to 
those in human AD patients, and which are labeled by the 
AT8 antibody used to clinically diagnose AD. Similar patterns 
of tau pathology with advancing age have also been seen 
in marmosets (25), vervet monkeys (27), baboons (36), and 
chimpanzees (26), where the degree of pathology corresponds 
with the extent of evolutionary expansion of the association 
cortex. Furthermore, the tremendous elaboration of gluta-
matergic synapses across evolutionary phylogeny could be a 
critical factor in mediating the generation of tau pathology 
to ultimately manifest in degenerative cascades in humans 
(37,38). NHPs also naturally develop amyloid plaques with 
advancing age, which are qualitatively identical to human AD 
patients (4,26,29,39–41). However, current hypotheses in the 
field purport that tau phosphorylation is a critical precipitat-
ing factor in the etiology of AD as longstanding neuroanatom-
ical studies across human life span show that tau pathology 
begins about a decade before the formation of Aβ (42) and 
tau pathology, but not Aβ, correlates with progressive gray 
matter loss (43) and cognitive impairment (44). Furthermore, 
the recent case study of an AD patient with a rare, combined 
PS1 and Christchurch ApoE3 mutation, who did not develop 
dementia in spite of the extensive formation of Aβ, but very 
restricted tau pathology, supports the prevailing idea that 
aberrant tau is a key disease-inducing mechanism (45).

A tremendous advantage of research involving NHPs is 
the prospect of interrogating neuropathology using per-
fusion-fixed brains with negligible postmortem interval, 
which allows the detection of early-stage tau phosphoryla-
tion that is often lost in human brains due to rapid dephos-
phorylation by phosphatases and membrane degradation 
postmortem (46). Perfusion fixation allows ultrastructural 
visualization of early-stage, soluble phosphorylated tau 
epitopes that are lost in postmortem human tissue, as well 
as more advanced, fibrillated tau species. We have taken 
advantage of this opportunity to implement high-spa-
tial-resolution immunoelectron microscopy (immunoEM) 
to examine the earliest stages of tau pathology in situ, 
and to investigate the molecular and cellular mechanisms 
in aging association cortex that mediate tau hyperphos-
phorylation. For example, we have visualized early-stage 
phosphorylated pS214-tau aggregating on microtubules, 
within glutamate synapses, and on the calcium-containing 
smooth endoplasmic reticulum (SER), beginning in middle 
age in ERC, and at later ages in dlPFC (23,28,47). Protein 
kinase A (PKA)-mediated phosphorylation of tau at S214 is 
a particularly important step in the cascade of tau pathol-
ogy in AD, as it causes tau to detach from microtubules 
and aggregate in dendrites (4,23,48), and primes tau for 
hyperphosphorylation by GSK3β (49,50). ImmunoEM 
has been particularly instrumental in revealing pS214-tau 
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trafficking between neurons within omega bodies in ERC 
layer II in middle-aged macaques and in layer III dlPFC in 
aged macaques (28). pS214-tau trafficking was only seen 
near excitatory (28), but not inhibitory synapses, consis-
tent with the notion of tau spreading, uptake, and aggre-
gation occurring in highly interconnected glutamatergic 
circuits, leading to tau-induced toxicity (15,17,18,51–53). 
Our ongoing studies suggest that rhesus macaques can be 
used to examine the emergence of tau phosphorylated at 
threonine 217 (pT217-tau) in aging association cortex 
(38,47). pT217-tau is a particularly important phosphory-
lation epitope on tau as it is emerging as a promising new 
in vivo biomarker for AD in cerebrospinal fluid (CSF) and 
plasma, superior to pT181-tau in correlations with PET 
measures of tau and Aβ (54–58), correlating with disease 
stage and progression (59), and allowing early identifi-
cation of at-risk presymptomatic individuals (54,59–61). 
In the oldest monkeys, we find AT8-labeled fibrils in den-
drites, which eventually invade the perisomatic compart-
ment, paralleling the degenerative process in humans (28). 
Intriguingly, across the primate lineage, rhesus macaques 
express both 3R and 4R isoforms in the brain (62), identi-
cal to human AD, but markedly different from rodents and 
even marmosets, and therefore provide an ideal opportu-
nity to understand the contribution of 3R and 4R tau iso-
forms in the generation of neurofibrillary tangle pathology.

Cellular and Molecular Mechanisms 
Underlying Tau Phosphorylation in AD
A critical question that is central to understanding the patho-
physiology of AD lies in elucidating why tau pathology 
preferentially afflicts glutamatergic neurons in association 
cortices. Based on a large body of work, we have hypothe-
sized that glutamatergic neurons in association cortices have 
unique molecular features that allow these cells to partake in 
higher-order cognition, yet predispose these cells to neurode-
generation with advanced age (63). Our aging research has 
focused on the rhesus macaque dlPFC, which mediates top-
down regulation of higher-order cognition, including working 
memory, executive function, abstract thought, and regula-
tion of emotion. The seminal work from Goldman-Rakic, 
Arnsten, Fuster, and colleagues has revealed how neurons in 
the rhesus macaque dlPFC represent position in visual space 
across the delay period of a working memory task, maintain-
ing neuronal firing without bottom-up sensory stimulation 
(64). These “Delay cells” are spatially tuned and are involved 
in persistent firing for their preferred spatial position (65). 
This persistent firing arises from extensive, recurrent excit-
atory circuits in deep layer III of the dlPFC with NMDAR 
synapses on dendritic spines, with lateral inhibition to sculpt 
the information held in working memory stores (66–70). The 
dendrites of dlPFC layer III pyramidal cells greatly expand 
during primate evolution, including significant increases in 
dendritic spine density for integration of excitatory inputs 
(71,72) and these cortical circuits are particularly vulnerable 
with advancing age showing profound atrophy of dendritic 
spines and dendrites (73–75), which is associated with cogni-
tive decline (76).

What confers heightened vulnerability of dlPFC microcir-
cuits to neurodegeneration with advancing age? Decades of 
in vivo physiology and cell-type-specific molecular charac-
terization from Arnsten and colleagues in rhesus macaques 

have revealed how glutamatergic synapses on dendritic 
spines in deep layer III dlPFC exhibit evidence of magni-
fied intracellular calcium release (38,77,78), where cyclic 
adenosine 3ʹ,5ʹ-monophosphate [cAMP] signaling increases 
calcium release from the SER (called the spine apparatus 
when it elaborates in the dendritic spine) into the cytosol 
(23). Calcium is released from the SER through multi-
ple calcium channels such as IP3 receptors and ryanodine 
receptors (eg, RyR2). The data support the idea that dlPFC 
dendritic spines, particularly in layer III, contain the molec-
ular machinery for cAMP-PKA signaling to enhance the 
release of calcium from the SER, which in turn can increase 
cAMP production, creating feedforward signaling (reviewed 
in [77]). At a functional level, the local generation of intra-
cellular calcium release near the glutamatergic synapse may 
help to maintain the PSD in a depolarized state needed for 
NMDAR-dependent persistent firing. However, exacerbated 
levels of cAMP-calcium signaling induce detrimental effects, 
opening nearby potassium channels (eg, HCN, KCNQ) to 
reduce firing (79–81). This constraining mechanism might 
provide necessary negative feedback in a recurrent excitatory 
circuit to suppress the generation of seizures, to dynamically 
gate network inputs, and to take the PFC “offline” during 
uncontrollable stress when elevated levels of stress-induced 
catecholamines significantly increase cAMP-calcium signal-
ing (80,82,83).

There is a multitude of regulatory mechanisms that can 
control feedforward cAMP-calcium signaling in aging asso-
ciation cortices. For example, phosphodiesterases (PDE4s) 
hydrolyze cAMP once it is generated, and calbindin binds 
cytosolic calcium released within the cell, or when cal-
cium undergoes influx through NMDAR2B-containing 
dendritic spines (23,79,84). Moreover, noradrenergic 
alpha-2AR and mGluR3 are positioned in postsynaptic 
compartments on the plasma membrane of dendritic spines 
to inhibit cAMP production (23,79,84). Intriguingly, there 
are molecular gradients in several of these calcium-regula-
tory components (eg, PDE4D, mGluR3, calbindin) show-
ing increases in transcript and protein expression across 
cortical hierarchy and during primate evolution (85,86). 
With advanced age, we have discovered that a decrement 
in expression or inhibition of these calcium-regulatory 
mechanisms (87) and/or induced by inflammation (77) 
manifests in dysregulated cAMP-calcium signaling in the 
aging association cortex (23,87–89) (Figure 1). This drives 
calcium “leak” from PKA-phosphorylated RyR2 (pRyR2) 
from the SER into the cytosol described in AD (4,91), 
which causes calcium dysregulation (92,93). Furthermore, 
we have observed reduced calcium binding in the cytosol as 
the calcium-binding protein, calbindin, which is lost with 
age from pyramidal cells and associated with increased 
NFT pathology in AD (88,89) (Figure 1). We have also 
observed cell-type-specific and subcompartment-specific 
alterations with aging, as PDE4D immunoreactivity was 
absent in dendritic spines and shafts of pyramidal cells 
in aged macaque dlPFC but preserved in astroglial cells 
(47,94). Protracted calcium dysregulation within the cyto-
sol leads to the activation of the calcium-dependent pro-
tease calpain, which disinhibits a critical kinase, GSK3β, 
normally suppressed by PKA (95,96) to induce hyper-
phosphorylation of tau and mediate autophagic neurode-
generation (97). Loss of proteostasis and impairments in 
the autophagy-lysosomal and ubiquitination pathway in 
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aging and AD would further compound the aggregation of 
hyperphosphorylated tau (98,99).

Aberrant Mitochondrial Dynamics in Aging 
Association Cortex
Exacerbated cAMP-calcium signaling can produce a myriad 
of deleterious effects, including in organelles such as mito-
chondria (87) (Figure 2). Mitochondria are crucial organ-
elles that sustain neuronal function by controlling energy 
metabolism, cellular respiration, reactive oxygen species 
(ROS) generation and elimination, and modulating calcium 
flux. They are highly dynamic organelles, undergoing fission 
and fusion in an activity-dependent fashion (105). We have 
reported marked changes in mitochondrial morphology in 
dlPFC pyramidal neurons from aged rhesus macaques (106). 
Specifically, immunoEM paired with 3D reconstruction 
from serial sections revealed mitochondria with different 
size profiles characterized by thin segments that intermingle 
with enlarged segments, a phenotype we described as mito-
chondria-on-a-string (MOAS), indicative of impaired mito-
chondrial fission (Figure 2). Identical MOAS phenotypes 
have been demonstrated in the postmortem hippocampus 
of human subjects with AD, and in mice with human auto-
somal dominant genetic mutations (107). Similarly, presyn-
aptic mitochondrial abnormalities in aging macaque dlPFC, 
indicative of pathology, have been shown to contribute to 
synaptic and cognitive impairment (108). Mitochondrial 
dysfunction and pathology have been identified in the dlPFC 

and other brain regions as part of the progression in post-
mortem human AD brains, suggesting compromised mito-
chondrial bioenergetics is a key driver of disease progression 
(109–111).

The morphological alterations in mitochondria indicate 
that MOAS may arise from impairments in mitochondrial 
fission due to dysregulation of the mitochondrial fission 
machinery. Our findings suggest that mitochondrial divi-
sion is initiated, producing constricted segments in the mito-
chondrial body, but that the process of fission is unable to 
proceed to completion, ie, resulting in “unfinished fission” 
(Figure 2). This hypothesis is consistent with the findings that 
“pinched” segments were associated with (a) calcium-associ-
ated SER cisterns, which have been shown to encircle mito-
chondria to initiate constriction and are thought to play an 
active role in defining the positions of mitochondrial division 
sites (112,113) and (b) Drp1, the GTPase that is recruited 
to constriction sites and subsequently cuts the mitochondrial 
membrane, and Fis1, its primary receptor on the outer mito-
chondrial membrane (114–116).

Mitochondrial fission is part of a quality-control mecha-
nism whereby damaged mitochondrial components are seg-
regated from healthy components, followed by mitochondrial 
division and mitophagy (105). A balance between mitochon-
drial fusion versus fission is also necessary for limiting the 
production of toxic ROS and for normal cellular metabolism, 
whereas disruptions in these processes affect the cell and may 
be implicated in neurodegenerative diseases (117–119). In 
vitro studies have also shown that irregular mitochondrial 
fission may be a part of a pathological process that impairs 
mitochondrial membrane permeability (ie, opens mitochon-
drial permeability transition pores), resulting in the release 
of cytochrome c in cytoplasm and activation of caspases 
that, in turn, initiate apoptotic or necrotic cell death path-
ways (120–122). Impairments in mitochondrial dysfunction 

Figure 1. Schematic illustrating how dysregulated cAMP-calcium 
signaling in dorsolateral prefrontal cortex Layer III cortical circuits 
leads to tau phosphorylation with advancing age. Under normal 
conditions, feedforward cAMP-calcium signaling is held in check by 
phosphodiesterases (PDE4s) localized in postsynaptic compartments in 
dendritic spines, which hydrolyze cAMP, and calcium-buffering protein 
calbindin, which sequesters intracellular cytosolic calcium. Calcium 
levels rise through multiple sources, including the calcium conductance 
of N-methyl-d-aspartic acid (NMDAR) channels (specifically composed 
of NR2B subunits) as well as release from internal storage within the 
smooth endoplasmic reticulum (SER), called the spine apparatus once 
it extends into the dendritic spine. However, age-related decrease in 
calcium-regulatory proteins, PDE4, and calbindin, leads to exacerbated 
feedforward cAMP-calcium signaling which induces several downstream 
effects, including opening of K+ channels (90), and tau phosphorylation. 
Protein kinase A (PKA) directly phosphorylates tau at the critical S214 
residue, which causes tau to detach from microtubules and aggregate 
in dendrites (4,23,48). Calcium “leak” from PKA-phosphorylated RyR2 
(pRyR2) from the SER into the cytosol in dendritic spines and shafts 
further drives dysregulated cAMP-calcium signaling and leading to 
activation of calcium-dependent protease calpain which cleaves the 
N-terminus of GSK3β kinase to induce hyperphosphorylation at multiple 
phosphorylation epitopes, including T181, S202/T205 (labeled by AT8), 
and T217.

Figure 2. Schematic illustrating how dysregulated cAMP-calcium 
signaling in dorsolateral prefrontal cortex layer III cortical circuits leads to 
aberrant mitochondrial dynamics. Our data have revealed how calcium 
overload with advanced age leads to mitochondrial dysfunction (eg, 
incomplete fission), resulting in a phenotype called “Mitochondria-
on-a-string” (MOAS). Within the dendritic shafts of glutamatergic-like 
pyramidal neurons of layer III of the dlPFC of aged rhesus macaques, 
we have observed MOAS with pinched constricted regions next to the 
calcium-containing smooth endoplasmic reticulum (SER). Fission is 
initiated by the dynamin-like GTPase, dynamin-related protein 1 (Drp1; 
also known as DLP1; [115]), which translocates from the cytosol into 
the outer mitochondrial membrane (OMM), where it interacts with its 
primary receptor—mitochondrial fission protein 1 (Fis1). Drp1 oligomers 
assemble into rings and spirals around the OMM, leading to the final 
membrane constriction and scission (100–102). The efficacy of Drp1 
in fission is determined by its GTPase activity, which is inhibited by 
elevated PKA signaling with advancing age (103,104).
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are associated with decreased mitochondrial respiration and 
increased oxidative stress along with lipid peroxidation and 
glycolysis (110,111). Rodent and human AD studies show 
that mitochondrial oxidative stress occurs early in the disease 
process in AD (123–125), and mitochondrial oxidative stress 
is associated with increased phosphorylation of tau (126). 
Based on multiple studies, it has been suggested that MOAS 
may arise from excessive calcium flux and bioenergetic stress 
leading to dysregulated mitochondrial fission (127,128). 
Furthermore, calcium overload of mitochondria can indirectly 
initiate the generation of pro-inflammatory cytokines, such as 
activation of the NOD-, LRR-, and pyrin domain-containing 
protein 3 (NLRP3) inflammasome (129,130), ultimately lead-
ing to synaptic loss with advanced age. In sum, these findings 
are consistent with the idea that mitochondrial dysfunction is 
an early signature of pathology in neurodegeneration result-
ing in hypometabolism and cognitive deficits (131).

Activation of Inflammatory Cascades to Induce 
Atrophy of Glutamatergic Synapses in Aging 
Association Cortex
A defining feature of aging involves significant changes to 
both the innate and adaptive immune systems. Recent evi-
dence suggests that activation of inflammatory cascades in 
brain aging contributes significantly to atrophy of cortical cir-
cuits that are critical for higher-order cognition and ensuing 
risk for neurodegeneration. For example, although glial cells 
play an important physiological role in supporting network 
activity, aberrant activation of astrocytes and microglia has 
been shown to induce inappropriate elimination of synapses 
under pathological conditions (132,133).

The molecular mechanisms that drive the activation of 
inflammatory pathways with aging are an important arena 
of discovery. Particularly, the complement cascade signaling 
pathway is an important mechanism that has garnered exten-
sive attention. Complement signaling is one of the key arms 
of the innate immune system, allowing the immune system to 
rapidly recognize and eradicate foreign antigens (134). The 
classical pathway of complement activation is initiated by 
C1q, which leads to the activation of downstream comple-
ment components, importantly C3 and C4, which can recruit 
microglia through their cognate receptors to “tag” vulnera-
ble synaptic elements (135). Rodent and human studies have 
revealed a dramatic upregulation of synapse-associated C1q 
transcript and protein during aging and in AD, which plays a 
role in age-related memory dysfunction (136,137). Aberrant 
reactivation of complement cascade signaling pathways also 
has been implicated in various neurodegenerative disorders 
including Parkinson’s disease (138,139). In mouse models 
of AD, C1q is necessary for soluble β-amyloid oligomers to 
induce synapse elimination prior to plaque formation (140). 
Likewise, prominent accumulation of C1q has been observed 
near the postsynaptic density (PSD) of Tau-P301S mice and 
in postmortem AD brain, changes that are associated with 
the microglial engulfment of synaptic components (141). C3 
and C3a receptors (C3aR1) are also positively correlated 
with cognitive decline and Braak tau staging in human AD 
brains (142). Furthermore, in mouse models of frontotem-
poral dementia caused by progranulin deficiency, there is 
a remarkable upregulation in C1q expression in microglia, 
resulting in concomitant tagging of dysfunctional synapses by 
C3 and phagocytosis (143). On the contrary, the reduction of 

complement cascade signaling pathways using genetic and/or 
antibody-mediated inhibition of C1q leads to rescue of syn-
aptic alterations, neuroinflammation, and degenerative signa-
tures (140–142).

We have characterized the expression and subcellular local-
ization of the initiating complement signaling protein, C1q, in 
the aging macaque dlPFC and rat medial PFC (mPFC), with 
a focus on the Layer III circuits known to exhibit age-related 
loss of dendritic spines (144). We found a large increase in the 
expression of C1q with advancing age in the rhesus monkey 
dlPFC, and corroborated this finding in rat mPFC. At the ana-
tomical level, we confirmed dense glial localization of C1q. 
These findings are consistent with previous RNA-sequencing 
and immunohistochemistry studies in rodent and human 
brain (136,145–147), suggesting C1q in glial cells, indicat-
ing that the protein may be inherently synthesized in this 
cell type. In addition, we observed C1q localization within 
pyramidal neurons, particularly in dendritic spines and 
shafts (144). Specifically, C1q was located near the synaptic 
membrane in dendritic spines and near dysmorphic MOAS 
within shafts (Figure 3). These findings support observations 
in hippocampal neurons, where calcium overload of mito-
chondria has been shown to activate inflammatory caspase-3 
actions (148), which may be associated with increased lev-
els of C1q (149,150). Intriguingly, C1q was evident on the 
calcium-storing spine apparatus and near or within gluta-
matergic synapses (144). The subcompartment-specific local-
ization of C1q within neurons might engage other immune 
pathway receptors, such as major histocompatibility complex 
I (151,152). Our findings lend credence to the notion that 
C1q may signal from within pyramidal neurons to initiate 
phagocytosis by reactive glia and that aberrant reactivation 
of inflammatory cascades with aging may lead to neurode-
generation and ensuing cognitive deficits. Glial cells such as 
microglia and astrocytes might be particularly susceptible 
to cellular senescence, which leads to the inhibition of key 
intracellular signaling pathways, further driving the release of 
pro-inflammatory cytokines with aging (153,154). Senescent 
glial cells have been shown to be particularly important in 

Figure 3. Age-related alterations in complement cascade C1q signaling 
in dorsolateral prefrontal cortex Layer III. C1q expression accumulates 
in glia and postsynaptically in dendritic spines and dendritic shafts, 
with a sparser expression in axon terminals. Within dendritic spines, 
C1q aggregates in perisynaptic and extrasynaptic subcompartments in 
association with the spine apparatus of glutamatergic synapses. Within 
dendritic shafts, C1q aggregates in close proximity to dysmorphic 
mitochondria. We hypothesize that the rise in complement C1q 
signaling in the aged dlPFC may be due to age-related dysregulation of 
feedforward cAMP-PKA-calcium signaling but may also cause calcium 
overload of mitochondria and the initiation of inflammatory actions to 
eliminate dysfunctional neuronal elements and synapses by microglia-
mediated phagocytosis (144).
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driving AD pathology by precluding the ability of glial cells to 
encapsulate Aβ plaques, ultimately contributing toward cog-
nitive decline (153). In fact, clearance of senescent glial cells 
with first-generation senolytics has been shown to prevent 
gliosis, hyperphosphorylation of tau, and NFT pathology in a 
tau-transgenic mouse model of AD (155). Genetic risk factors 
for sporadic AD such as ApoE4 can further exacerbate the 
development of neuroinflammation and tau pathology (156), 
suggesting the intersection between inflammatory pathways 
and hyperphosphorylation of tau (157), and these phenotypes 
may be amplified in primates as opposed to rodents (158). 
Rhesus macaques all carry the ApoE4 risk allele and provide 
an invaluable opportunity to dissect the contribution of this 
genetic risk factor in the native course of the illness, and how 
it intersects with amyloid and tau pathology (159).

Role of Stress Signaling in Aggravating 
Feedforward, cAMP-Calcium Signaling with 
Advancing Age
Multiple studies have provided convincing evidence of 
how physiological and psychological stress with advancing 
age can ultimately lead to the loss of synapses on dendritic 
spines and the weakening of higher cognitive abilities. The 
association cortices that mediate higher-order cognition are 
particularly modulated by catecholamines, norepinephrine 
(NE), and dopamine (DA), which can rapidly activate intra-
cellular stress signaling pathways to weaken synaptic connec-
tions and impair cognition (78,82,160). Acute psychological 
stress results in significantly reduced working memory-related 
activity in the dlPFC and less deactivation of the default mode 
network due to supraoptimal levels of catecholamines (161). 
Similarly, chronic stress exposure leads to sustained weaken-
ing of network connections by calcium-cAMP-PKA-K+ signal-
ing, leading to the removal of spines and dendrites (162–165), 
findings validated in humans (166). Both acute and chronic 
stress can potently drive cAMP-calcium signaling via cate-
cholamines acting through NE alpha-1 adrenergic receptors 
(α1-AR) and DA-1 receptors to mediate Gq-IP3R-mediated 
calcium-protein kinase C signaling and Gs-cAMP-PKA sig-
naling, respectively.

Chronic stress signaling pathways also initiate and 
propagate inflammatory cascades. Dysregulated stress 
and inflammation can mediate the release of the enzyme 
glutamate carboxypeptidase II (GCPII), which hydrolyzes 
N-acetylaspartylglutamate (NAAG) to glutamate and 
N-acetylaspartate (NAA), and therefore elevates ambient 
glutamate levels at excitatory synapses (167). GCPII sup-
presses NAAG-induced activation of mGluR3, which is 
located in postsynaptic subcompartments in dlPFC Layer III 
microcircuits, further exacerbating feedforward, cAMP-cal-
cium signaling locally within dendritic spines (84,168,169). 
We have recently shown that systemic administration 
and local infusion of 2-(3-mercaptopropyl) pentanedioic 
acid (2-MPPA), which inhibits GCPII, improved working 
memory performance in aged rats (170). In parallel stud-
ies conducted in rhesus macaques, systemic administration 
of 2-MPPA, significantly improved working memory per-
formance without any toxic side effects, with the greatest 
enhancement in the oldest animals (169). Furthermore, 
inflammation can induce the generation and release of 
kynurenic acid from astrocytes (171), an endogenous 
metabolite that blocks NMDAR (172,173) and impairs PFC 

working memory function (174). In fact, various compo-
nents of the kynurenine pathway are currently under inves-
tigation for therapeutic development in cognitive disorders, 
including aging and neurodegeneration (175). These studies 
highlight how multiple cellular and molecular mechanisms 
interact, converging ultimately in inducing the atrophy of 
dendritic spines and dendrites leading to cognitive impair-
ment with advancing age.

Conclusions and Future Directions 
These findings provide evidence of how NHPs can be used 
to probe the cellular, molecular, and circuit alterations in 
higher-order association cortices that mediate cognition 
and are particularly susceptible to undergoing atrophy with 
aging. Particularly, NHPs such as rhesus macaques provide 
an unprecedented opportunity to elucidate the natural course 
of tau pathology in aging association cortex in the absence 
of autosomal dominant mutations and assess novel dis-
ease-modifying pharmacological strategies to ameliorate cog-
nitive deficits with advancing age. NHPs recapitulate cardinal 
features of AD pathophysiology, including synapse loss, mito-
chondrial dysfunction, and microglial and astrocytic activa-
tion in vulnerable brain regions.

The tremendous advances in molecular and genetic tools 
have paved the way for great strides in future NHP research. 
For example, exogenous injection of Aβ oligomers in adult 
rhesus macaques produces pathological features reminis-
cent of preclinical AD, with synaptic dysfunction, neuroin-
flammation, and even NFT pathology (40,41,176). Recent 
studies highlight the possibility of using genetic delivery of 
mutated tau in a region-specific manner in rhesus macaque 
brain to induce misfolded tau propagation and templating 
and the possibility of testing biomarkers in CSF and blood 
(177). Structural investigations involving cryo-EM and mass 
spectrometry-based proteomics of tau filaments, including 
detailed mapping of posttranslational modifications in AD, 
are revealing how tau fibril structure influences the diver-
sity of tauopathy strains, and these studies will be partic-
ularly important in understanding the 3D architecture of 
tau propagation (178–180). The generation of genetically 
engineered transgenic NHPs, including marmosets and rhe-
sus macaques, offers the possibility of introducing germline 
mutations and exogenous gene expression changes to eval-
uate how genetic risk factors in neurodegenerative diseases 
impact higher-order cortical circuits present in the primate 
brain (181–183). Innovations in optogenetics in NHPs, 
which use genetically coded light-gated ion channels, offer 
the unique opportunity to selectively activate or silence cell 
types and neural pathways to study cognitive operations 
(184,185). Finally, refinement of single-cell transcriptomics 
with RNA-sequencing across the evolutionary lineage in 
primates is offering clues regarding species-specific molec-
ular differences across homologous neuronal, glial, and 
nonneuronal cell types (186–188), particularly relevant to 
illuminating why specific cortical circuits are vulnerable in 
neurological diseases such as AD (189). The undertaking 
and successful implementation of these multidisciplinary 
approaches to elucidate the neurobiology of neurodegener-
ative disorders will require a concerted effort from research 
institutions, funding agencies, and pharmaceutical indus-
tries to advance scientific discovery. These technical and 
conceptual developments might provide unique insight into 
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understanding the underlying cellular and molecular basis 
of devastating disorders like AD, to augment the develop-
ment of intervention strategies.
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