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Predicting Immunological Risk for Stage 1 and Stage 2
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Abstract

Background: Predicting the risk for type 1 diabetes (T1D) is a significant challenge. We use a 1-week
continuous glucose monitoring (CGM) home test to characterize differences in glycemia in at-risk healthy
individuals based on autoantibody presence and develop a machine-learning technology for CGM-based islet
autoantibody classification.
Methods: Sixty healthy relatives of people with T1D with mean – standard deviation age of 23.7 – 10.7 years,
HbA1c of 5.3% – 0.3%, and body mass index of 23.8 – 5.6 kg/m2 with zero (n = 21), one (n = 18), and ‡2 (n = 21)
autoantibodies were enrolled in an National Institutes of Health TrialNet ancillary study. Participants wore a
CGM for a week and consumed three standardized liquid mixed meals (SLMM) instead of three breakfasts.
Glycemic outcomes were computed from weekly, overnight (12:00–06:00), and post-SLMM CGM traces,
compared across groups, and used in four supervised machine-learning autoantibody status classifiers. Clas-
sifiers were evaluated through 10-fold cross-validation using the receiver operating characteristic area under the
curve (AUC-ROC) to select the best classification model.
Results: Among all computed glycemia metrics, only three were different across the autoantibodies groups:
percent time >180 mg/dL (T180) weekly (P = 0.04), overnight CGM incremental AUC (P = 0.005), and T180 for
75 min post-SLMM CGM traces (P = 0.004). Once overnight and post-SLMM features are incorporated in
machine-learning classifiers, a linear support vector machine model achieved the best performance of classi-
fying autoantibody positive versus autoantibody negative participants with AUC-ROC ‡0.81.
Conclusion: A new technology combining machine learning with a potentially self-administered 1-week CGM
home test can help improve T1D risk detection without the need to visit a hospital or use a medical laboratory.
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Introduction

The progression toward clinical type 1 diabetes (T1D)
can be categorized into three stages: the first stage is

characterized by the presence of ‡2 islet autoantibodies with
normoglycemia, the second stage progresses to dysglycemia
(i.e., at-risk), and finally the third stage is defined by the onset
of symptomatic (i.e., clinical) T1D.1 Therefore, the presence
of autoantibodies is related to the immunological risk of
developing diabetes in the future, and is a key biomarker of
the pathogenic processes leading to clinical diagnosis.2 This,
and also other, biomarkers could be used to screen a much
broader population besides individuals at increased genetic
risk of T1D (e.g., first-degree relatives).3

Early identification and screening of individuals at in-
creased T1D risk can reduce the rates of diabetic ketoacidosis
(DKA) at diagnosis,4–6 improve the quality of glycemic
control,7,8 reduce other future poor health outcomes,6–9 and
complications.10 Overall, as monitoring of high-risk indi-
viduals in natural history studies markedly reduces DKA
rates at diagnosis, research participation in these studies is
critical to finding means of preventing or delaying T1D11 and
justifies the development of efficient screening methods to
identify individuals at high T1D risk, which appears influ-
enced by immunological and genetic factors.

Screening for genetic T1D risk can be performed as a self-
administered at-home test, but this test does not directly
account for the immunological risk (i.e., presence of auto-
antibodies). Screening individuals for genetic risk, followed
by autoantibody testing may improve the predictive power of
a positive autoantibody test but will still miss many indi-
viduals that will develop T1D in the future.12 Although
*90% of those who develop T1D have no family history of
the disease, this genetic predisposition puts individuals with
first-degree relatives at a 20-fold higher risk of developing
T1D.13 The current approach for T1D risk detection includes
testing for presence of autoantibodies with the presence of
multiple autoantibodies being more predictive of future T1D
than a single autoantibody.14

Recently, several studies employed continuous glucose
monitoring (CGM) devices not only in people with diabetes15

but also in obese individuals16 and in individuals at different
stages of prediabetes.17 Studies have suggested that CGM
devices can be used for detecting early hyperglycemia in
children with multiple autoantibodies,18 and for predicting
progression to diabetes in autoantibody positive (Ab+) chil-
dren.19,20 Steck et al.20 suggested that ‘‘CGM should be in-
cluded in the ongoing monitoring of high-risk children
(Ab+),’’ where they used home-based CGM wear without
any additional metabolic testing (e.g., mixed meal tolerance
test [MMTT]).

In addition, in type 2 diabetes (T2D), CGM was able to
detect impaired glycemia in certain categories of partici-
pants,21 earlier than other standard biomarkers used for the
diagnosis and classification of diabetes.22 Recently, a 1 week

CGM test has been investigated for its ability to be used for
identifying individuals at higher risk for rapid progression to
Stage 3 T1D, including in those with a normal oral glucose
tolerance test (OGTT).23 This study has identified several
CGM-derived metrics of hyperglycemia associated with
progression to Stage 3 disease.

Machine-learning techniques have been utilized in the
field of diabetes, especially in applications using CGM data
to develop predictive models that could help clinicians im-
prove screening and treatment. A logistic regression (LR)
model with glycemic variability features extracted from
CGM signals was used to classify individuals with and
without diabetes.24 Several established machine-learning
models for binary classification were used to classify the
quality of overnight glycemic control in T1D.25 The proposed
machine-learning methodology in this study for using CGM-
based glycemic features to predict if a healthy individual is
autoantibody positive or autoantibody negative (Ab+ or Ab–)
as an alternative to the standard test for islet autoantibodies
has not been explored.

At-home testing for disease risk could help address many
of the challenges regarding whom to screen for T1D risk
using autoantibody testing. The objective of this study is to
characterize the CGM traces in healthy individuals with
different number of islet autoantibodies and use CGM-based
metrics to develop a (pre)screening technology to classify
participants autoantibody status (Ab+ vs. Ab–). The new
technology uses a dedicated machine-learning methodology
and a, potentially self-administered, 1-week CGM home test
that includes up to three standardized liquid mixed meals
(SLMM) challenges.

Materials and Methods

Study design and data overview

The National Institutes of Health (NIH)-funded TrialNet
ancillary study (ClinicalTrials.gov registration no. NCT
02663661) was conducted 2015–2019 at the University of
Virginia (Institutional Review Board protocol ID #18568).
The study enrolled healthy relatives of people with T1D with
different numbers of islet autoantibodies, zero, one, or two or
more recruited from participants with known autoantibody
status in the TrialNet Pathway to Prevention study (https://
www.trialnet.org/our-research/risk-screening). Major inclu-
sion criteria included individuals 12–45 years old who had a
brother, sister, child, or parent with T1D, or individuals 12–
20 years old who had a cousin, aunt, uncle, niece, nephew,
half-brother, half-sister, or grandparent with T1D.

Among the major exclusion criteria were diagnosis of di-
abetes (i.e., T1D or T2D), a relevant medical condition (e.g.,
gastroparesis), or being treated with medications that might
interfere with the study. All participants signed an informed
consent. Participants were asked to come to the Clinical
Research Unit (CRU) at the University of Virginia for a 10-h
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inpatient visit (a single 10-h clinical test consisting of an
MMTT followed by insulin-induced hypoglycemia).

At the end of the hospital visit, the participants were given
a blinded Dexcom G4 Platinum CGM, which they wore for
the next 7 days at home. They were asked to calibrate their
CGMs according to the manufacturer’s instructions. During
this period, they consumed SLMM (Boost, Nestlé, Switzer-
land) over 1–5 min on three occasions to replace their
breakfasts (6 mL/kg body weight to a maximum of 360 mL)
and recorded its timing to link the start of the SLMMs with
the CGM profiles. In this study, we focus solely on the CGM
home study.

CGM-based glycemia metrics and group comparison

The CGM-based metrics and characterization of glycemia
in the different autoantibodies groups was performed under
three different scenarios: OVERALL (based on all 7 days),
OVERNIGHT (based on all 7 days overnight periods), and
PostSLMM (based only on the post-SLMM CGM traces) as
described hereunder.

OVERALL. CGM data from the participants were col-
lected and glycemic features/metrics were extracted and
computed, including mean glucose (MG), percent time of
glucose >180 mg/dL (T180), >160 mg/dL (T160), >140 mg/dL
(T140), <70 mg/dL (T70), <54 mg/dL (T54), coefficient of
variation (CV), standard deviation (SD), range, low blood
glucose index (LBGI, measures the frequency and magnitude
of hypoglycemia), high blood glucose index (HBGI, measures
the frequency and magnitude of hyperglycemia), and the av-
erage daily risk range (ADRR, the sum of the daily peak risks
for hypo- and hyperglycemia) [see Kovatchev,26 Table 1].

In more detail, ADRR is a variability metric based on ‘‘risk’’
values obtained from glucose levels that are mathematically
transformed to give equal weight to hyperglycemic and hy-
poglycemic excursions. LBGI and HBGI are based on the same
normalizing transformation as the ADRR but are designed to
be sensitive to hypoglycemia or hyperglycemia, respectively.
These metrics were used to characterize the glycemic re-
sponses of participants in different autoantibody classes.

OVERNIGHT. Twelve glycemic features were extracted
and computed from the overnight (12:00–06:00) CGM traces.
These features include MG, T180, T160, T140, T70, T54,
CV, SD, range, LBGI, HBGI, and the AUC above the base-
line value at midnight (the overnight CGM incremental area

under the curve [IAUC]), to characterize the glycemic re-
sponses in the different autoantibodies’ groups.

PostSLMM. We investigated the length of 0–2 h post-
SLMM to get a significant difference post-SLMM excursion
between the different autoantibodies groups by using nine
glycemic features: CV, T140, T160, T180, the AUC above
the baseline value at t ¼ 0 (IAUC), glucose level at t min
post-SLMM (Gt), maximal glucose amplitude (Gmax), time
to Gmax (Tmax), and slope of glucose 0-t min (S). These
features capture the dynamic characteristics of the post-
SLMM CGM data set for each participant in the three dif-
ferent autoantibodies groups.

Statistical procedures

All statistical analyses were performed using R Statistical
Software 4.0.2 (R Foundation for Statistical Computing). The
Shapiro–Wilk test was used to check if glycemic features
follow a normal distribution. For normally distributed con-
tinuous variables, a one-way analysis of variance (ANOVA)
was used to compare the means between autoantibodies
groups. For non-normally distributed variables, a Wilcoxon
signed-rank test and Kruskal–Wallis test were used to de-
termine whether there are statistically significant differences
between the glycemic features in different autoantibodies
groups. Bonferroni correction was used for multiple com-
parisons correction to reduce the chances of obtaining
false-positive (FP) results. A P-value <0.05 was considered
significant. Pearson’s correlation matrix between the glycemic
features was computed, to assess the collinearity between
glycemic features.

Autoantibodies classification

The extracted glycemic features from the three different
scenarios were used to define different classifier models based
on the autoantibodies class. Then, these features were ag-
gregated per participant and each feature was mean-centered
and scaled before entering the classification procedure.

We merged 1 autoantibody with ‡2 autoantibodies in one
class as an autoantibody positive ‘‘Ab+’’ class versus the au-
toantibodies negative class ‘‘Ab–.’’ Two different options for
using glycemic features in the classifiers models were inves-
tigated; either using the significant features only (i.e., glycemic
features that are statistically significant differences between
the autoantibodies groups) or using all the glycemic features in
the three different scenarios based on the autoantibodies class.

Table 1. Clinical and Demographic Characteristics of 60 Participants in the Three Different Classes

of Islet Autoantibodies (Ab) Used for Analysis

Characteristic Negative (zero Ab) 1 Ab 2 or more Ab

Number of subjects (n) 21 18 21
Gender, % female 66.7 50.0 57.1
Age (years) 27.0 (9.9) 23.5 (11.9) 20.7 (10.2)
Race, % White/Caucasian 100 100 100
HbA1c (%) 5.3 (0.3) 5.3 (0.3) 5.3 (0.3)
BMI (kg/m2) 23.7 (5.3) 25.3 (6.5) 22.8 (5.1)

Statistics presented as n, mean (SD), or (%).
Ab, autoantibody; BMI, body mass index; SD, standard deviation.
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Classification models. Four different classification mod-
els were used to develop an autoantibodies classifier and define
the best classifier model: linear discriminant analysis (LDA),
linear support vector machine (SVM), LR, and K-nearest
neighbors.27,28

Classification strategy. A 10-fold cross-validation tech-
nique was implemented. The entire data set of glycemic fea-
tures from all participants is aggregated per participant and is
randomly shuffled. Then, it was subdivided into 10 approxi-
mately equal-sized folds/sections. One of the 10-folds was used
as a test set to evaluate classification performance, whereas the
remaining ninefolds were used to train the classifier models.
The procedure was repeated 10 times (iterations) to estimate
the mean performance of the different classifier models. This
procedure guarantees that data from each participant appears
either in the training or in the test set (but not both), avoid-
ing overfitting and improving the generalizability of the
results.

Class imbalance. Class imbalance refers to a classifica-
tion predictive modeling problem when the class distribution
is not equal or close to equal in the training data set (i.e., a
significantly larger proportion of Ab+ than Ab–) and is in-
stead biased or skewed. This can result in biased predictions
and misleading accuracies. We address the class imbalance
(i.e., unbalanced samples) by using up-sampling of the mi-
nority class (oversampling) only in the training data set. In
our experiments, oversampling was performed within rather
than before the 10-fold cross-validation technique to ensure
no participant will be in both the training and test sets, and
thereby avoid the overestimation of the model performance.

Classification performance assessment. To assess the
performances of classifier models, a confusion matrix was
used to report the four possible outcomes of the comparison
between the true and the predicted class, that is, true nega-
tive (TN), false negative (FN), true positive (TP), and FP.
The receiver operating characteristic area-under-the-curve
(AUC-ROC) was used to select the best-performing classi-
fier models. AUC-ROC is a numerical index that depicts
the trade-off between the Sensitivity (i.e., TP rate) and
(1-Specificity) (i.e., FP rate) across a series of different cutoff
points, which are given by

Sensitivity¼ TP

TPþFNð Þ

1� Specificity¼ FP

FPþ TNð Þ :

The closer to 1 the AUC-ROC, the better the classifier
model at distinguishing between Ab+ and Ab– participants.

Results

Seventy-three participants were recruited for this study,
and stratified into three groups with zero (n = 25), one
(n = 21), and ‡2 (n = 27) autoantibodies. One participant was
diagnosed with diabetes, five failed screening, and seven
withdrew from the study (the screen failures/withdrawers
were not related to the CGM study. Sixty participants
completed the CGM study and were included in the analy-
sis. Of these participants, 21, 18, and 21 had zero, one, and
more than one autoantibody, respectively. They had
mean – SD age of 23.7 – 10.7 years (range 12–42 years),
HbA1c of 5.3% – 0.3%, and body mass index of 23.8 – 5.6
(kg/m2) (Table 1). There were no statistically signifi-
cant differences between the three groups regarding these
characteristics.

Overall CGM-based glycemia dynamics

The average CGM in the three different scenarios were not
significantly different between the three groups, which il-
lustrates the difficulties of using those profiles to charac-
terize the glycemic responses of participants in different
groups of autoantibodies, as the single ambulatory glucose
profile visual display in the three different scenarios are not
apparently distinct (Fig. 1), except panel c (post-SLMM) is
actually distinct-appearing for the 2 or more Ab group. It
appears the height of the peak, as well as the distribution of
CGM traces is different from the other two groups (i.e.,
negative and 1 Ab).

Characterization of glycemia of the three
autoantibodies groups based on the complete 7-day
CGM data

Twelve glycemic features were extracted and computed as
described in Materials and Methods section (OVERALL).
T140, T160, T180, SD, Range, and HBGI were highly cor-
related (r ‡ 0.83). There are no statistically significant dif-
ferences between these 12 glycemic features in the 3 groups
except for T180 with P = 0.040 (i.e., negative vs. 1 auto-
antibodies with P = 0.352, negative vs. ‡2 autoantibodies,

‰

FIG. 1. Represents three different panels of CGM traces aggregated to create a single AGP as a visual display in different
autoantibodies (Ab) groups (i.e., negative, 1 Ab, and 2 ‡ Ab). (a) CGM traces of the entire 7 days for 60 participants in the
three different groups of Ab. (b) CGM traces of the overnight periods (i.e., 12:00–06:00) for 60 participants in the three
different groups of Ab (blow-up of the first 6 h plotted in [a]). (c) CGM traces of the 2 h-post-MMTT for 53 participants in
the three different groups of Ab. The solid line in each Ab group in the three different scenarios is the median or 50% line;
half of all CGM values are above and half are below this value. The 25th and 75th percentile curves shaded in dark
blue/red/black represent the interquartile range or 50% of all CGM values. The dashed outer lines (the 5th to 95th percentile
curves) indicate that only 5% of CGM readings were above or below these values in the three different scenarios. Ab,
autoantibody; AGP, ambulatory glucose profile; CGM, continuous glucose monitoring; MMTT, mixed meal tolerance test;
N, represents the number of participants in each group.
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with P = 0.012, and 1 autoantibodies vs. ‡2 autoantibodies,
with P = 0.144), as shown in Figure 2a. Therefore, weekly
CGM traces revealed different glycemic patterns among
autoantibodies groups only through T180.

Characterization of glycemia of the three
autoantibodies groups based on 7-day overnight
CGM data

Overnight CGM traces with a 6-h duration from 12:00 to
6:00 am were extracted from 60 participants. A total of 406
overnight CGM traces were extracted, and then a set of 12
glycemic features mentioned earlier were extracted and
computed. Fifty participants had 7 days, six participants had
6 days, and four participants had 5 days of overnight traces.
IAUC was the only statistically significant difference be-
tween the glycemic features in the three different auto-
antibodies groups, with higher IAUC for those with ‡2
autoantibodies (i.e., negative vs. 1 autoantibody with
P = 0.012, negative vs. ‡2 autoantibodies, with P = 0.005, and
1 autoantibodies vs. ‡2 autoantibodies, with P = 0.012), as
shown in Figure 2b.

In addition, T180 and Range with P = 0.060, P = 0.087,
respectively, almost reached significance, as shown in
Figure 2b. Several metrics appear highly correlated. For ex-
ample, the correlation between HBGI and T140, T160, and
T180 was r ‡ 0.89, and the correlation between Range and
SD, and CV was r ‡ 0.93. Notably, the correlation between
IAUC and all other features was weak except with SD
(r = 0.48).

Characterization of glycemia of the three
autoantibodies groups based on post-SLMM data

Post-SLMM CGM traces were extracted from 53 partici-
pants. We excluded seven participants from the analysis
(three participants from negative group, three participants
from 1 autoantibodies group, and one participant from ‡2
autoantibodies group): six of them had breakfast after
SLMM, and one had breakfast 30-min before SLMM. CGM
traces after the SLMM were first processed, and the suitable
length to get a different post-SLMM excursion (i.e., statisti-
cally significant differences) between participants was
t = 75 min. Post-SLMM CGM traces (n = 142) for 75 min (i.e.,
47 CGM traces zero autoantibodies, 40 traces 1 auto-
antibodies, and 55 traces ‡2 Ab) were extracted from 53
participants, where 75.6% of those participants completed all
three SLMM loads, 16.9% only did two sessions, and 7.5%
only completed one session.

Then, a set of nine glycemic features mentioned in Mate-
rials and Methods section (PostSLMM) were computed. The
only statistically significant difference between the glycemic
features in the three different autoantibodies groups was
T180 with P = 0.004 (i.e., negative vs. 1 autoantibody with
P = 1.000, negative vs. ‡2 autoantibodies, with P = 0.012, and
1 autoantibodies vs. ‡2 autoantibodies, with P = 0.018), as
shown in Figure 2c. Besides that, Tmax with P = 0.053 almost
reached significance, with higher Tmax for those with 1 au-
toantibody and ‡2 autoantibodies, as shown in Figure 2c.
T140, T160, IAUC, and Gmax were highly correlated fea-
tures (r ‡ 0.71), whereas the correlation between Tmax and
all other features was very weak, except with the slope S and
G75 (r = 0.53 and r = 0.45, respectively).

Characterization of glycemia of the Ab+ versus Ab-
participants

OVERALL. Sixty observations and 12 glycemic features
are contained in the entire 7 days of CGM traces data set,
including 65% of all participants in the Ab+ class and the
remaining 35% in the Ab– class (39 Ab+ vs. 21 Ab–). T180 of
the 12 glycemic features was the only statistically significant
difference between both classes with P = 0.041 (Fig. 3a).

OVERNIGHT. Sixty observations and 12 glycemic fea-
tures are contained in the overnight CGM traces data set,
including the same portion of participants in both auto-
antibodies classes as in OVERALL. The overnight CGM
IAUC and T180 were statistically significant differences
between Ab+ versus Ab– with P = 0.001 and P = 0.019, re-
spectively (Fig. 3b).

PostSLMM. Fifty-three observations and nine glycemic
features are contained in the post-SLMM CGM traces data
set, including 66% of participants in the Ab+ class and the
remaining 34% in the Ab– class (35 Ab+ vs. 18 Ab–). Tmax
was the only statistically significant difference between both
classes of autoantibodies with P = 0.026 (Fig. 3c).

Defining classifier models based on the Ab+ versus
Ab- groups

As the data sets in the three scenarios earlier were ‘‘im-
balanced’’ according to the autoantibodies class distribution,
we followed the balancing procedure described in Materials
and Methods section before applying any of the classifier
models. The four binary classifier models with a 10-fold
cross-validation technique and oversampling were im-
plemented with the only significant features, and then using

‰

FIG. 2. Characterization of CGM data through different glycemic features in different scenarios. (a) Boxplots for 12
different glycemic features extracted from the entire 7 days of CGM traces for 60 participants in the three different groups
of autoantibodies (Ab). (b) Boxplots for 12 features extracted from overnight (i.e., 12:00–06:00) CGM traces for 60
participants in the three different groups of Ab. (c) Boxplots for 9 features extracted from 75-min post-MMTT CGM traces
for 53 participants in the three different groups of Ab. A significance level of 5% (P-value <0.05) was considered to be
significant to distinguish between the different groups of Ab (P-value highlighted in red). ADRR, average daily risk range;
CV, coefficient of variation; G75, glucose level at 75 min post-SLMM; Gmax, maximal glucose amplitude; HBGI, high
blood glucose index; IAUC, incremental area under the curve (mg/min/dL); LBGI, low blood glucose index; MG, mean
glucose; S, slope of glucose 0–75 min (mg/dL)/min; SD, standard deviation; SLMM, standardized liquid mixed meals;
T140, percent time >140 mg/dL; T160, percent time >160 mg/dL; T180, percent time >180 mg/dL; T54, percent time
<54 mg/dL; T70, percent time <70 mg/dL; Tmax, corresponding time to Gmax (Time [min]).
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all the glycemic features from the three different scenarios, to
classify participants in terms of presence (Ab+) or absence
(Ab–) of autoantibodies.

OVERALL. The linear SVM classifier model outper-
forms the other classifier models with a mean AUC-ROC of
0.67, when using T180 as a significant feature, to classify
those participants in different autoantibodies classes, as
shown in the first column of Table 2. Using the 12 extracted
features in the four binary classifier models did not improve
the classification accuracy, as shown in the first column of
Table 3, where the LR classifier model outperforms the other
classifier models with a mean AUC-ROC of 0.69.

OVERNIGHT. Using IAUC and T180 as significant
features leads to a noticeable improvement as shown in the
second column of Table 2, where the LR classifier model
outperforms the other classifier models with a mean AUC-
ROC of 0.79. Whereas using the extracted 12 features leads
to a notable improvement in classification accuracy, where a
linear SVM classifier model outperforms the other classifier
models with a mean AUC-ROC of 0.81, as shown in the
second column of Table 3.

PostSLMM. Using Tmax only as a significant feature
leads also to a noticeable improvement, as shown in the third
column of Table 2. LR and LDA classifier models outperform
the other classifier models with a mean AUC-ROC of 0.79.
More improvement was achieved when using the nine fea-
tures, where a linear SVM classifier model outperforms the
other classifier models with a mean AUC-ROC of 0.83, as
shown in the third column of Table 3.

In addition, using the significant features from OVER-
NIGHT and PostSLMM together (i.e., T180, IAUC, and
Tmax), improved the classification accuracy, and a linear
SVM classifier model outperforms the other classifier models
with a mean AUC-ROC of 0.81, as shown in the fourth col-
umn of Table 2. However, mixing all the extracted features
from both scenarios did not improve the accuracy of classi-
fication, as shown in the fourth column of Table 3.

Discussion

In this study, we used data from a recent NIH-funded
TrialNet ancillary study using relatives of people with T1D of
12–42 years of age to characterize the extent to which fea-
tures derived from a 1-week CGM home test can stratify
individuals with different number of T1D-specific auto-
antibodies. Whereas standard metrics, such as MG, SD, and
CV, were unable to stratify the different autoantibodies
groups in the overall 7 days or overnight CGM traces, T180
based on the overall 7 days CGM traces distinguishes be-
tween the three autoantibodies groups, which was also the
case for the CGM IAUC based on the overnight CGM traces,
where IAUC was lower in the Ab– group versus Ab+.

Besides, the post-SLMM periods T180 was a statistically
significant difference between the three autoantibodies
groups, and Tmax approached significance. Therefore, the
highest glucose excursions (T180) appear as a metric that
differentiates between the three autoantibodies groups, likely
driven by different meal responses. This is in line with what
was observed previously for children with median age 11.5
years,20 with the caveat in our study, T140 was not as pre-
dictive as T180. In contrast, the ability of overnight IAUC to
distinguish between the different groups suggests the ability
of the participants with a lower number of autoantibodies to
reach their baseline glucose values faster.

The data collected during the home CGM study and the
glycemia metrics/features derived from it allowed the use of
machine-learning methodology to develop an autoantibodies
status classifier. Notably, features based on the complete 7-
day CGM traces were unable to classify with sufficient ac-
curacy the Ab+ versus Ab- participants, but the overnight
and post-SLMM CGM traces were able to better capture the
differences between the groups. Glycemic features extracted
from the overnight and post-SLMM CGM traces were able to
distinguish the Ab+ versus Ab- participants, and predict the
autoantibodies status with only a small number of significant
features such as T180 and IAUC from the overnight traces,
and Tmax from the post-SLMM traces.

The proposed methodology of the autoantibody classifier,
which combines the CGM home test data with a linear SVM-
based classifier, was able to predict with high accuracy (i.e.,
AUC-ROC ‡0.81) the participant’s presence or absence of
autoantibodies. Overall, these results support the notion that
adding the SLMM intervention to the home CGM test im-
proves our ability to use the test to distinguish Ab+ versus
Ab- participants with a small number of features with dif-
ferent but complementary physiological meaning. We also
note that proposed technology allows addressing not only the
question of classifying Ab+ versus Ab–, but also exploring
the option for classifying low-risk (zero and one autoanti-
body) versus high-risk (two and more autoantibodies; Stage 1
and 2).

As mentioned in the introduction, a recent study in indi-
viduals in T1D probands has identified several CGM-derived
metrics of hyperglycemia significantly associated with rapid
progression to Stage 3 disease, including in those with normal
OGTT results.23 These metrics are based on selected percent
time (5% or 8%) with glucose above different glucose level
thresholds (e.g., glucose over 120, 140, and 160 mg/dL).
Even though our technology is not tailored to stratify pro-
gressors to Stage 3 from nonprogressors, it identifies new
metrics derived from the overnight and post-SLMM CGM
periods that can be explored to estimate the imminent risk for
progression to Stage 3 T1D.

The proposed CGM home test can be self-administered
after a carefully designed interactive online teaching session
and would not require a visit to a health care facility or use of

‰

FIG. 3. Characterization of CGM data through different glycemic features in different scenarios. (a) Boxplots for 12
different glycemic features extracted from the entire 7 days of CGM traces for 60 participants in two different groups of
autoantibodies (Ab+/Ab-). (b) Boxplot for 12 features extracted from overnight (i.e., 12:00–06:00) CGM traces for 60
participants in two different groups of Ab. (c) Boxplots for 9 features extracted from 75-min post-SLMM CGM traces for 53
participants in two different groups of Ab. A significance level of 5% (P-value <0.05) was considered significant to
distinguish between the different groups of Ab (P-value highlighted in red).
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a medical laboratory. Therefore, it could be used as an al-
ternative or in addition to current home screening methods
such as the GTT@ home (https://www.digostics.com) and
self-collected capillary blood autoantibodies test currently
employed by TrialNet.29 It can provide additional informa-
tion on the level of dysglycemia that cannot be obtained by a
single-finger stick for autoantibody presence or a genetic test.

Future studies will demonstrate whether it can also com-
plement other T1D risk biomarkers (including genetic), to
estimate the autoantibodies status better, and the overall risk
of developing T1D, and/or separate progressors from non-
progressors in autoantibody-positive individuals. Ultimately,
this could provide insight toward onset of therapy, potentially
avoiding cases of DKA and highlighting individuals who
could benefit from future immune-modulatory interventions
such as teplizumab.30

This study benefited from prospectively collected data
from T1D proband individuals with known autoantibody
status involved in TrialNet studies. Its limitations include the
relatively small number of participants, the fact that 7 out of
60 subjects had breakfast around the time of the SLMM and
were excluded from the analysis (PostSLMM), the small
number of CGM days available for CGM-based character-
ization of glycemia, and lack of more detailed information on
the autoantibodies (type, confirmation, persistence, etc.). As

such, we were not able to perform a meaningful comparison
of Stage 1 versus Stage 2 participants in the ‡2 autoantibodies
group to be consistent with the current understanding of the
pathophysiology of T1D. Using an independent sample in a
future study will be needed to confirm the performance of the
tested machine-learning methods and the predictive power of
the selected features.

In addition, the data used for developing the autoantibodies
classifier originated from a limited population of volunteers
that have relatives with T1D and are of age between 12 and 42
years. Finally, in this study we use data collected with the
Dexcom G4 Platinum CGM, rather than the more advanced
G6 model typically used in recent studies. We cannot assess
objectively the implications of using an older CGM, but we
do not have reasons to expect the outcomes to be sensor-
specific. In contrast, newer sensors have many advantages,
including improved usability and longer duration of use and
are better candidates to be used to provide data for the pro-
posed methodology in this study.

Conclusions

In conclusion, in the early stages of progression to T1D, a
CGM-based test can reveal increasing levels of dysglycemia,
which may be too subtle in the beginning to cause any visible

Table 2. Comparison of Classification Performance of Four Models with Oversampling Technique

in Terms of Receiver Operating Characteristic Area Under the Curve Based on Different Groups

of Autoantibodies (i.e., Ab+ vs. Ab–) in Different Scenarios (i.e., Using Glycemic Features Extracted

from the Entire 7 Days of Continuous Glucose Monitoring [CGM] Traces vs. Features Extracted

from Overnight [i.e., 12:00–06:00] CGM Traces vs. Features Extracted from 75-Min Post-Standardized

Liquid Mixed Meals [SLMM] CGM Traces vs. Mixing Overnight Features and SLMM Features), When We

Defined the Four Models by Using Only the Significant Features for Each Scenario

Classification
models

AUC-ROC Overall
CGM (one feature;

T180)

AUC-ROC Overnight
(two features; IAUC,

T180)

AUC-ROC SLMM
(one feature;

Tmax)

AUC-ROC Overnight and SLMM
(three features; IAUC, T180,

Tmax)

LDA 0.627 0.754 0.789 0.778
SVM + Linear

Kernel
0.671 0.758 0.777 0.811

LR 0.657 0.794 0.789 0.786
KNN 0.627 0.661 0.728 0.777

AUC-ROC, receiver operating characteristic area under the curve; CGM, continuous glucose monitoring; IAUC, incremental area under
the curve; KNN, K-nearest neighbors; LDA, linear discriminant analysis; LR, logistic regression; SLMM, standardized liquid mixed meals;
SVM, support vector machine. AUC-ROC values in boldface indicate the best performance.

Table 3. Comparison of Classification Performance of Four Models with Oversampling Technique

in Terms of Receiver Operating Characteristic Area Under the Curve Based on Different Groups

of Autoantibodies (i.e., Ab+ vs. Ab–) in Different Scenarios, When We Defined the Four Models

by Using All the Features for Each Scenario

Classification
models

AUC-ROC Overall CGM
(12 features)

AUC-ROC Overnight
(12 features)

AUC-ROC SLMM
(9 features)

AUC-ROC Overnight and
SLMM (21 features)

LDA 0.679 0.679 0.804 0.693
SVM + Linear

Kernel
0.672 0.812 0.825 0.776

LR 0.692 0.765 0.778 0.715
KNN 0.639 0.621 0.776 0.760

AUC-ROC, receiver operating characteristic area under the curve; CGM, continuous glucose monitoring; IAUC, incremental area under
the curve; KNN, K-nearest neighbors; LDA, linear discriminant analysis; LR, logistic regression; SLMM, standardized liquid mixed meals;
SVM, support vector machine. AUC-ROC values in boldface indicate the best performance.
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symptoms, but their progression over time could lead to early
diagnosis and avoidance of DKA and hospital admissions. In
the very early stages of the disease, standard glycemia met-
rics derived from a 1-week CGM home test were able to
differentiate between individuals at different autoantibodies
status through different scenarios. Using machine learning
further allowed to develop a method to distinguish CGM
patterns between individuals without versus with T1D anti-
bodies, based on assessment performed at home. If applied
broadly, this approach could help improve T1D risk detec-
tion, potentially alerting individuals for early diagnosis or
prevention.
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