Table 3.
Classification models | AUC-ROC Overall CGM (12 features) | AUC-ROC Overnight (12 features) | AUC-ROC SLMM (9 features) | AUC-ROC Overnight and SLMM (21 features) |
---|---|---|---|---|
LDA | 0.679 | 0.679 | 0.804 | 0.693 |
SVM + Linear Kernel | 0.672 | 0.812 | 0.825 | 0.776 |
LR | 0.692 | 0.765 | 0.778 | 0.715 |
KNN | 0.639 | 0.621 | 0.776 | 0.760 |
AUC-ROC, receiver operating characteristic area under the curve; CGM, continuous glucose monitoring; IAUC, incremental area under the curve; KNN, K-nearest neighbors; LDA, linear discriminant analysis; LR, logistic regression; SLMM, standardized liquid mixed meals; SVM, support vector machine. AUC-ROC values in boldface indicate the best performance.