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In Brief
We applied our Microdroplet
Processing in One pot for Trace
Samples (microPOTS) TMT
platform to study the pancreatic
islet microenvironment in the
human pancreas. We were able
to quantify over 6000 proteins
from seven different regions
within the same patient. Here we
describe enhancements to
existing computational
approaches to extract functional
hypotheses from this first-of-its-
kind dataset. In addition to
recapitulating known functions
of the islet, we can identify
specific immune and RNA
processing activities with spatial
heterogeneity in expression.
Highlights

• microPOTS enables deep proteome imaging of pancreatic islets and their microenvironment.

• We identified and quantified over 6000 proteins from ~50,000 μm2 tissue area samples.

• Differential expression and network analyses identified pathways uniquely active in islets.

• Rank-based statistics enable the characterization of gradients across individual tissue images.
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Proteome Mapping of the Human Pancreatic
Islet Microenvironment Reveals Endocrine–
Exocrine Signaling Sphere of Influence
Sara J. C. Gosline1 , Marija Veličković1, James C. Pino1, Le Z. Day1, Isaac K. Attah1,
Adam C. Swensen1, Vincent Danna1, Camilo Posso1, Karin D. Rodland1 , Jing Chen2,
Clayton E. Matthews2, Martha Campbell-Thompson2, Julia Laskin3,
Kristin Burnum-Johnson1, Ying Zhu1, and Paul D. Piehowski1,*
The need for a clinically accessible method with the ability
to match protein activity within heterogeneous tissues is
currently unmet by existing technologies. Our proteomics
sample preparation platform, named microPOTS (Micro-
droplet Processing in One pot for Trace Samples), can be
used to measure relative protein abundance in micron-
scale samples alongside the spatial location of each
measurement, thereby tying biologically interesting pro-
teins and pathways to distinct regions. However, given the
smaller pixel/voxel number and amount of tissue
measured, standard mass spectrometric analysis pipe-
lines have proven inadequate. Here we describe how
existing computational approaches can be adapted to
focus on the specific biological questions asked in spatial
proteomics experiments. We apply this approach to pre-
sent an unbiased characterization of the human islet
microenvironment comprising the entire complex array of
cell types involved while maintaining spatial information
and the degree of the islet’s sphere of influence. We
identify specific functional activity unique to the pancre-
atic islet cells and demonstrate how far their signature can
be detected in the adjacent tissue. Our results show that
we can distinguish pancreatic islet cells from the neigh-
boring exocrine tissue environment, recapitulate known
biological functions of islet cells, and identify a spatial
gradient in the expression of RNA processing proteins
within the islet microenvironment.

The islets of Langerhans are endocrine micro-organs
embedded within a mostly exocrine pancreas, comprising
roughly 2% of the pancreas by mass (1). Islets have been
studied for decades, primarily because of their involvement in
diseases such as diabetes and obesity (2, 3). Until recently, in-
depth protein profiling of pure islets has been very difficult,
partly due to their diminutive size and limited compositional
make up. Recent cutting-edge technologies have greatly
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enhanced our understanding of the islet proteome by isolating
islets from their surrounding tissues allowing them to be
studied down to near single-cell spatial resolution (4–6). In-
depth proteomic studies of acinar cell tissues from the
exocrine pancreas have also been demonstrated in the past
(7, 8). However, despite their encapsulated nature, islets do
not act entirely independently and rely on the surrounding
exocrine microenvironment for feedback signaling and
crosstalk (9, 10). A characterized islet-acinar portal system
directly facilitates islet hormone dispersion in nearby acinar
cells. For example, acinar cells are known to contain islet-
hormone-specific receptors that regulate acinar function and
under the right conditions saturate with locally high concen-
trations of insulin and somatostatin (11). In addition to insulin
and somatostatin, other humoral factors including pan-
creastatin and ghrelin and several neurotransmitters (nitric
oxide, peptide YY, substance P, and galanin) have been
shown to be involved in this islet-acinar connection, regulating
the functions of each tissue type (12). Through causes we do
not yet understand, people with type 1 diabetes and their first-
degree relatives have also been shown to have overall
reduced pancreatic volume compared to matched controls
and some evidence supports exocrine pancreas atrophy and
exocrine insufficiency in people with long-term T1D (13–15).
The more we learn about this endocrine–exocrine/islet–acinar
connection, the greater its importance appears to be in un-
derstanding diseases involving the pancreas. However, until
now no unbiased spatially resolved method has been available
for deep proteomic investigations of the islet microenviron-
ment encompassing all the cell/tissue types involved this
complex system.
Large bulk samples of pancreatic tissues quickly dilute and

drown out the contribution of the islet signature. To gain a
deeper understanding of the biological signaling and
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Spatial Proteomics Analysis of the Human Pancreas
interactions that underlie this endocrine–exocrine connection,
it is critical to study the tissues within their original spatial
context intact (i.e., in vivo) (16, 17). Currently, few technologies
are available to study the heterogeneity of biological signaling
across a tissue sample. Although there are several powerful
techniques for measuring transcripts with high depth and
spatial resolution, transcripts often do not correlate well with
protein expression (18). Existing technologies for spatially
resolved protein measurements mainly rely on the use of
tagged antibodies, such as Immunohistochemistry (19),
CyTOF (20), and CODEX (21, 22). While these technologies are
highly effective and can provide a single-cell level or better
spatial resolution, protein coverage is limited by the availability
of reliable antibodies and the multiplexing limit of the labels.
Imaging mass spectrometry (MALDI, Laser Ablation) is also a
powerful tool for protein mapping that does not depend on
antibody recognition; but due to the direct coupling to the
mass spectrometer, these techniques are limited in their dy-
namic range and accuracy of quantitation, particularly in
clinical samples (23–27).
Over the last decade, improvements in sensitivity and

sample handling for LC-MS proteomics have enabled spatially
resolved measurements (28–34) and have extended to more
difficult-to-analyze samples such as formalin-fixed paraffin-
embedded (FFPE) tissue (29, 34, 35). More recently,
additional advances have enabled single-cell resolution
including capillary micro-sampling LC-MS (36), and capillary
electrophoreses-based mass spectrometry (37–41) have
enabled the measurement of proteins in very small samples.
These approaches are particularly attractive as they offer a
comprehensive, quantitative protein profile without a priori
knowledge of the proteins of interest. In our lab, we have
successfully combined laser capture microdissection and the
nanoPOTS approach (42, 43), to enable spatially resolved
proteome profiling. This initial effort resulted in a platform
capable of quantifying >2000 proteins at 100 μm spatial res-
olution without the use of antibodies or labels (44). To further
improve the depth of protein coverage, we next incorporated
tandem mass tags (TMT) and nanoflow fractionation and
concatenation (nanoFAC (45)) to our proteome profiling
workflow. To collect and process enough protein material to
facilitate robust fractionation, we scaled up the platform to the
microliter scale (46, 47), and incorporated a TMT carrier
channel (48, 49) into the image plexes. These changes
increased protein coverage to >5000 proteins while main-
taining high-quality quantitative information, thus enabling
spatially resolved, unbiased interrogation of biological
signaling.
Robust computational analysis tools for the analysis of data

from these evolving technologies are less established. Tech-
nologies such as CyTOF and CODEX have proprietary soft-
ware packages that are sold with their technology (22), though
there are many open-source tools that leverage these data
to characterize cells by their protein expression via flow
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cytometry (50–52). There are also computational packages
designed for spatially resolved transcriptomics data that can
be leveraged for proteomic analysis, including those that
enable mapping and analysis of imaging data (53, 54) as well
as those that link the two data modalities to improve protein
identification and clustering (55). Existing tools, however, are
limited to the study of preformatted image data based on the
established platform (e.g. Visium (56)) and therefore are not
easily applied to microPOTS data.
In this work, we demonstrate the potential utility for micro-

POTS spatial proteomics to be employed in a clinical setting
through the study of multiple pancreas regions within a single
patient. While our technical advancements have been
described previously (57), here we describe how we enhance
existing computational tools to show how these measure-
ments can be used to robustly measure activity across
disparate regions within a single pancreas and to make bio-
logically functional hypotheses from these data. In addition to
showing the increased insulin signaling activity we know to be
present within the islet cells, we also identify specific immune-
related processes and RNA processing activities that could
not be captured at the transcriptomic level and can be studied
further in disease settings such as pancreatic cancer or
diabetes.
EXPERIMENTAL PROCEDURES

Pancreatic Tissue Section

Human pancreas tissue for microPOTS profiling was obtained from
a 17-year-old male donor. The donor was selected based on our
eligibility criteria established by the HuBMAP consortium, under
IRB201600029 (https://www.protocols.io/view/donor-eligibility-criteria-
and-pancreas-recovery-f-b7nfrmbn), and following the ethical stan-
dards of the Declaration of Helsinki. Organ recovery and tissue
processing were performed at the University of Florida per
standard protocol (https://www.protocols.io/view/human-pancreas-
processing-b7gxrjxn). To ensure tissue integrity for proteomics mea-
surements ischemia times were tightly controlled during collection
with warm ischemia time <60 min and cold ischemia time <18 h, which
are sufficient to preserve the global proteome.

Experimental Design

Our overall analysis pipeline is depicted in Figure 1 and described
below. Seven proteome images were created from seven different
regions of a pancreas tissue section taken from a healthy human
donor. Images consist of nine tissue “voxels” created by dissecting a
3 × 3 grid from the tissue collected directly into corresponding wells in
a microPOTS chip (supplemental Fig. S1). Imaging areas were created
from regions containing a singular group of islet cells to interrogate the
islets and their unique microenvironment. Grids were sized to capture
the islet within a single voxel consisting almost entirely of islet cells.
Below we describe how we captured the data to identify islet-specific
signaling activity.

Tissue Collection and Coupling to Chip

Tissue Section Preparation–Samples were washed with a gradient
of ethanol solutions (70%, 96%, and 100% ethanol, respectively) to
dehydrate the tissue sections and to remove embedding material.

https://www.protocols.io/view/donor-eligibility-criteria-and-pancreas-recovery-f-b7nfrmbn
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FIG. 1. Overview of our experimental procedures. top: Tissue collection and coupling to chip requires laser capture microdissection of flash
frozen pancreatic samples enables dissection of each “voxel” into each microwell for sample preparation. Middle: each well is individually
prepared for TMT labeling and MS/MS. To measure relative protein abundance for each voxel. Bottom: Individual voxels are annotated to carry
out pathway enrichment and network analysis.

Spatial Proteomics Analysis of the Human Pancreas
Briefly, the pancreas was sliced into 0.5-cm-thick tissue segments,
subdivided, and immediately frozen in Carboxymethylcellulose (CMC,
prepared in Cryotray molds that were prechilled on dry ice/isopentane
slurry) (https://www.protocols.io/view/freezing-and-formalin-fixation-
of-tissue-br4fm8tn). Frozen CMC tissue blocks were stored at −80
◦C until sectioning. CMC embedded human pancreas tissue was cut
to 10-μm-thick slices using a cryostat and collected on PEN mem-
brane slides. Serial sections were shipped on dry ice to PNNL for
further microPOTS profiling.

Laser Capture Microdissection–Sample dissection and “voxel”
collection were completed using a PALM Microbeam system (Carl
Zeiss MicroImaging) which contains a RoboStage for high-precision
laser micromanipulation in the micrometer range and a PALM Robo-
Mover that collects voxel samples directly into the wells of the
microPOTS chip. Microwells were preloaded with 3 μl of dimethyl
sulfoxide (DMSO) that served as a capturing medium for excised
voxels.

For proteomics imaging experiments, we first stained a 10-μm thick
adjacent human pancreas section using Periodic Acid-Schiff (PAS)
staining kit following the manufacturer’s protocol. The staining for the
confident determination of islet and acinar tissue regions when
observed using brightfield microscopy. Informed by the islet locali-
zation from the serial PAS-stained section, a 3 × 3 grid was created
over an islet and the surrounding acinar tissue. The grid was arranged
to capture the whole islet in a single pixel of approximately 200 μm ×
300 μm dimensions while the surrounding eight pixels contained
exclusively acinar tissue. Voxels were dissected using the grid mode
and collected directly into corresponding microwells of the chip. A
Mol Cell Proteomics (2023) 22(8) 100592 3
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Spatial Proteomics Analysis of the Human Pancreas
carrier sample was also collected from the same patient tissue sec-
tion. The carrier sample contained a similar-sized islet and surround-
ing acinar tissue as the total image area, with a total area equivalent to
the entire grid size (~500,000 μm2). This resulted in a 10× carrier to
sample ratio.

Proteomics Sample Processing in a Microdroplet–All sample
handling steps, from extraction through to TMT labeling, were carried
out on-chip by manual pipetting. Evaporation during preparation was
minimized by cooling during dispensing of reagents, using a humidi-
fied chamber for incubation steps, and sealing the chip with a con-
tactless cover and wrapping in aluminum foil. Tissue voxels were
incubated at 75 ◦C for 1 h to remove DMSO solvent. Next, 2 μl of
extraction buffer containing 0.1% DDM, 0.5× PBS, 38 mM TEAB, and
1 mM TCEP was dispensed to each well of the chip, followed by in-
cubation at 75 ◦C for 1 h. We then added 0.5 μl of 10 mM IAA solution
in 100 mM TEAB to reach a final concentration of 2 mM IAA followed
by incubation at room temperature for 30 min. Samples were subse-
quently digested by dispensing 0.5 μl of an enzyme mixture (10 ng of
Lys-C and 40 ng of trypsin in 100 mM TEAB) and incubated at 37 ◦C
for 10 h. TMT-11 plex reagents were resuspended in anhydrous
acetonitrile at a concentration of 6.4 μg/μl. 1 μl of each TMT tag was
used to label voxel samples. Following our experimental design, each
plex represented a single image, created by leaving the 130N channel
empty and using the 131N channel for the carrier sample, 128N
channel was used for the islet voxel and the other eight channels for
the acinar tissue voxels. The peptide–TMT mixtures were incubated
for 1 h at room temperature, and the labeling reaction was quenched
by adding 1 μl of 5% HA in 100 mM TEAB and incubating 15 min at
room temperature. All samples were then pooled together, brought up
to the final 1% FA, then centrifuged at 10,000 rpm for 5 min at 25 ◦C.
Finally, the pooled sample was transferred to an autosampler vial and
dried in a speed vac.

Reagents and Chemicals–Microwell chips with a 2.2 mm well
diameter were manufactured on polypropylene substrates by Proto-
labs. LC-MS grade water, formic acid (FA), iodoacetamide (IAA),
Triethylammonium bicarbonate (TEAB), TMT-10plex and TMT11 to
131C reagents, Anhydrous acetonitrile, Tris(2-carboxyethyl)phosphine
hydrochloride (TCEP-HCl), and 50% Hydroxylamine (HA) were all
purchased from Thermo Fisher Scientific. N-Dodecyl β-d-maltose
(DDM), DMSO (HPLC grade), and Phosphate-Buffered Saline (PBS)
and PAS staining kit were purchased from Sigma-Aldrich. Both Lys-C
and trypsin were purchased from Promega. Ethanol was purchased
from Decon Labs, Inc.

Proteomic Measurement and Data Acquisition

Nanoflow LC-Fractionation–Prior to injection, samples were
resuspended in 62 μl of 0.1% formic acid. High pH fractionation
was performed offline by loading 50 μl of the sample onto a
precolumn (150 μm i.d., 5 cm length) using 0.1% formic acid at a
flow rate of 9 μl/min for 9 min. The sample is then pushed onto
the LC column (75 μm i.d., 60-cm length) using the separation
gradient. Precolumn and column were packed inhouse with 5-μm
and 3-μm Jupiter C18 packing material (300-Å pore size) (Phe-
nomenex, Terrence, USA), respectively. An Ultimate 3000
RSLCnano system (Thermo Scientific) was used to deliver gradient
flow to the LC column at a nanoflow rate of 300 nl/min. 10 mM
ammonium formate (pH 9.5) was used as mobile phase A and
acetonitrile as mobile phase B. Eluted fractions were collected
using a HTX PAL collect system into autosampler vials preloaded
with 25 μl 0.1% formic acid and 0.01% (m/v) DDM. The PAL
autosampler allows concatenation on-the-fly by robotically moving
the dispensing capillary among 12 collection vials. A total of 96
fractions were concatenated into 12 fractions. Vials were stored
at −20 ◦C until the following low-pH LC-MS/MS analysis.
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LC-MS/MS Peptide Analyses–LC-MS/MS analysis was carried out
using the Ultimate 3000 RSLCnano system (Thermo Scientific),
coupled to a Q Exactive HF-X (Thermo Scientific) mass spectrometer.
Full MS1 scans were acquired across scan range of 300 to 1800 m/z
at a mass resolution of 60,000, combined with a maximum injection
time (IT) of 20 ms and automatic gain control (AGC) target value of
3e6. Data dependent MS2 scans were collected using a top 12
method with a resolving power of 45,000, a maximum injection time of
100 ms, and AGC target value of 1e5, with the isolation window was
set to 0.7 m/z and dynamic exclusion time was set to 45 s to reduce
repeated selection of precursor ions.

Data Analysis– Instrument RAW files were first processed using
MSConvert to correct mass errors (58). Corrected spectra were
searched with MS-GF + v9881 (59, 60) against the Uniprot human
database downloaded in March of 2021 (20,371 proteins) and a list of
common contaminants (e.g., trypsin, keratin). A partially tryptic search
setting was used and a ±20 parts per million (ppm) parent ion mass
tolerance. The minimum peptide length was set to 6, and the
maximum to 50 amino acids. A reversed sequence decoy database
approach was used to control the false discovery rate. Carbamido-
methylation (+57.0215 Da) on Cys residues, and TMT modification
(+229.1629 Da) on N terminus and Lys residues were considered as
static modifications. Oxidation (+15.9949 Da) of Met residues was set
as a dynamic modification. Identifications were first filtered to a 1%
false discovery rate (FDR) at the unique peptide level, and a sequence
coverage minimum of six per 1000 amino acids was used to maintain
a 1% FDR at the protein level after assembly by parsimonious infer-
ence. Total protein and peptide counts are in supplemental Tables S1
and S2 respectively.

TMT 11 reporter ions area under the curve (AUC) intensities were
extracted using MASIC software (61). Extracted intensities were linked
to peptide-to-spectrum matches (PSMs) passing the FDR thresholds
described above. Intensities were median centered across channels
within individual images. Log2 intensities are used for downstream
analysis.

Image Annotation–We collected seven distinct samples from a
single human pancreas and dissected each sample into a 3 × 3 grid
creating nine “voxels” for each image (supplemental Fig. S1).
Employing our TMT microPOTS pipeline, we were able to quantify
6693 unique proteins across the 63 individual voxels (supplemental
Table S1). Each voxel was labeled by its proximity to the known
islet cell. As such, one voxel in each image was labeled “Islet,” the five
voxels immediately adjacent to the islet were labeled “proximal,” and
the three remaining islets were labeled as “distal.”

Normalization and Statistical Rationale

Each image was analyzed as a separate TMT plex, and therefore
subject to batch effects across the 6693 proteins measured. We first
looked at missingness in each voxel, depicted in Figure 2A. We found
that the number of missing values varied with a minimum of nine
proteins missing (in Image 0, Grid number 7) and a maximum of 1603
proteins missing (in Image 2, Grid number 9). While Image 2 had the
highest number of missing proteins in that single voxel, Image 3 had
the highest median number of missing values at 86. We imputed the
missing values of each protein with the median expression of that
protein across all voxels.

We then considered the need for median centering across plexes,
which we often do to account for technical differences between the
batches that often confound downstream analysis. We plotted the
distribution of log ratio values (Fig. 2B) and found that they were not
normally distributed as is typically assumed for median centering.
Furthermore, we plotted the values in the first two principal compo-
nents and found that while the samples clustered by image as ex-
pected, (Fig. 2C), there was still clear separation of the islet regions



FIG. 2. Protein value distribution. A, the fraction of missing values for each voxel (x-axis) for each image. B, the distribution of protein log
ratio values across each voxel (Y-axis) of each image/plex (color). C and D, the first two principal components of the complete dataset, colored
by image/plex in (C) and islet annotation in (D).
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(Fig. 2D). Therefore, we decided against centering the data and
decided to include image/plex as a variable in our differential
expression calculations going forward.

Pathway Analysis

To compute differences between the islet containing voxels and
other regions, we used the limma package with all seven image
plexes pooled with individual voxels annotated as described earlier. In
this analysis, we treated both region and image as variables in the
analysis, to account for the batch effects noted earlier. This enabled
each image to be its own biological replicate, particularly important for
the islet cells, which were only measured in one voxel per image.
Thus, by using each image as a separate replicate we calculated
proteins that were differentially expressed between similarly anno-
tated regions (supplemental Table S2). We then compared analysis of
regions using the upsetR (62) tool to compare expression differences
across annotated regions, then employed leapR (63) pathway
enrichment tool to identify specific pathways that were up regulated in
islets across all seven images using the enrichment_in_sets param-
eter with the KEGG, Reactome, and GO Biological Process pathways.
We used the same pathways to do the enrichment_in_order analysis
in our variance-based and distance-based analysis. The network
analysis leveraged the PCSF R tool (64) based on the approach
described previously (65).

RESULTS

Here we describe the capabilities of the analysis pipeline
by which we investigate the proteomics imaging of the
microPOTS framework to enable interpretation in biological
use cases.

Spatial Proteomics Across Multiple images Enables
Quantitation of Proteins at High Spatial Resolution

As described above, we collected seven distinct image
plexes from a single human pancreas and dissected each
region into a 3 × 3 grid resulting in 9 “voxels” for each image
(supplemental Fig. S1). The samples were then labeled with
TMT and fractionated into 12 fractions for subsequent MS
analysis quantifying >6000 distinct proteins (supplemental
Table S3).
We first sought to identify proteins that we knew a priori have

high cell-type specificity. Figure 3A shows the uncentered log
intensity ratios for glucagon and insulin, hormones released in
islet cells, across each of the seven images. Each islet cell is
annotated with a dot as derived from the imaging data. As
expected, both insulin and glucagon are highest in the islet cells
across the seven images. Note that we were unable to resolve
beta cells (insulin) from alpha cells (glucagon) at this level of
spatial resolution, and that insulin is also highly expressed in a
non-islet-containing voxel in image 3, likely due to an islet in
another region that was not measured.
Finally, we assess the variance of each protein in all voxels

to determine if proteins in some pathways are changing more
Mol Cell Proteomics (2023) 22(8) 100592 5



FIG. 3. Assessing protein expression. A, confirmation of islet annotation by plotting the log ratio values of known islet-specific proteins
including glucagon (top row) and insulin (bottom row) across all seven images. Black dot indicates the voxel that contains the islet. B, pathways
significantly (corrected p < 0.05) enriched when sorting proteins by variance across all voxels show the biological activity most represented by
the region.

Spatial Proteomics Analysis of the Human Pancreas
than others across each of the images. We then used ranked
gene set enrichment (see Experimental Procedures) to identify
if the variance of proteins corresponded to particular path-
ways. The results, depicted in Figure 3B show that most of the
pathways that are highly variable—depicted in red—are
related to insulin or beta cells, suggesting that the assay is
capturing the expected differences between the beta cells and
acinar tissue.

Image Pooling Increases Replicates to Enable Capture of
Islet-Specific Enrichment Patterns

The protein expression signature of islets is substantially
different than the neighboring acinar tissue, though we could
not capture the statistics for proteins that were changing
within each image because only one islet-containing region
was measured. As such, we pooled the images by labeling
each voxel by its relationship to the islet and then deter-
mined the most significant pathways that had either
increased or decreased expression in islets compared to the
neighboring microenvironment. For each image, we anno-
tated the five voxels immediately surrounding the islet as
“proximal” and the remaining three voxels as “distal”
(supplemental Fig. S1). We then grouped the expression of
all voxels by these three annotations. We calculated proteins
6 Mol Cell Proteomics (2023) 22(8) 100592
that were significantly (corrected p < 0.05) differentially
expressed between pairs of regions. The results are shown in
the upset plot in Figure 4A. As expected, we found the
majority of differentially expressed proteins between the islet
and other cells were also differentially expressed between
the islets and the proximal/distal regions when compared
independently. Full differential expression results are depic-
ted in supplemental Table S4.
We then evaluated the pathways that were upregulated in

islet cells compared to the non-islet cells. The results, shown
for Reactome pathways in Figure 4B, depict the most statis-
tically significant terms that were upregulated in the islets.
Confirming the role of the islet cell in insulin signaling (66), we
see regulation of insulin secretion and response to insulin
stimulus as two of the most enriched pathways in the islet
cells. We also observed enrichment in intracellular pH,
something that has been well-studied in islet cells (67), as well
as iron ion transport (68). Full pathway enrichment results are
in supplemental Table S5.

Network Analysis Implicates Related Proteins in Key Islet
Pathways

Given the number of proteins derived from the microPOTs
measurements (~6000 proteins per voxel with inferred values



FIG. 4. Pooled differential expression between discrete image regions. A, the number of differentially (corrected p < 0.05) expressed
proteins identified when comparing different regions. There were no significant protein differences between proximal and distal regions. B, the
GO biological processes that were enriched in regions with Islet cells.

Spatial Proteomics Analysis of the Human Pancreas
for missing data), we explored network inference tools to
determine if we could infer biological signaling pathways
based on the protein expression alone. Specifically, we used
the Prize-collecting Steiner tree algorithm (see Experimental
Procedures) to identify the network implicated by proteins
upregulated in islets (red, supplemental Fig. S2A) and down-
regulated in islets (blue, supplemental Fig. S2B) by using
physical interactions from the STRING database as input (69).
As input to the algorithm, we had 261 upregulated proteins
and 184 downregulated proteins. The resulting networks were
216 and 179 nodes, respectively, as the algorithm removed
proteins that were not connected to others in the interactome
and added proteins that maximized the connection of differ-
entially expressed proteins in the network.
This approach allows us to investigate specific nodes

implicated (i.e., not detected experimentally but added via the
algorithm) in the network (circles in Fig. 5). Specifically, in the
islet network, Figure 5C, we found IDE, an insulin-degrading
Mol Cell Proteomics (2023) 22(8) 100592 7



FIG. 5. Islet-specific subnetworks. Subnetworks resulting from network analysis of proteins that are (A) upregulated in islets compared to
those that are (B) downregulated in islets. Triangles depict differentially expressed proteins; circles indicate those that are integrated through the
OmicsIntegrator network analysis. The color of nodes represents the degree of upregulation (red) or downregulation (blue) in islet cells.
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enzyme. This protein is implicated in the network as an
interactor of many highly expressed proteins including insulin,
glucagon, and islet amyloid peptide. Despite being a clear
regulator of these proteins (66), insulin-degrading enzyme is
somewhat downregulated (but not enough to meet the criteria
for statistical significance) in the islets, is essential for the
regulation of these proteins and therefore belongs in the
signaling network. Similarly, various protein chaperones
including P4HB, PDIA4, and ERO1L to be in a cluster in the
network that is up-regulated in acinar cells (Fig. 5D). This
activity underscores the unique importance of protein folding
in pancreatic acinar cells (70).

Distance-Based Metric Reveals Pathway-Level Changes as
Distance From Islet Increases

To explore more subtle changes between the voxels beyond
the differential expression analyses highlighted above, we
experimented with an alternate approach that searched for
signals that permeated through the tissue from the voxel con-
taining the islet. To do this, measured the Spearman rank
correlation of the expression of each protein to the distance of
the voxel to the islet cell. We then searched for biological
pathways using the Reactome pathways that were enriched in
proteins with a high positive correlation (more active farther
from the islet) or a highly negative correlation (more active closer
to the islet). Specifically,we computed the results for eachof the
seven images, to ensure that we were getting similar results,
and plotted the z-scores of the test statistic of those terms that
are statistically significant in at least four images in Figure 6A
with the full results described in supplemental Table S6.
We found numerous pathways, such as insulin synthesis

and translation, to be statistically significantly enriched across
multiple images. To probe these further, we selected those
proteins from the pathway whose correlation test statistic was
significant (p < 0.05) and plotted those proteins involved in
insulin signaling (Fig. 6B) and translation (Fig. 6C). These both
8 Mol Cell Proteomics (2023) 22(8) 100592
agree with the findings of these biological pathways using
standard enrichment analysis with image pooling as well as
the network analysis, suggesting that correlation statistics can
also be informative in cases where replicates are scarce.
DISCUSSION

Here we introduce a series of computational tools that show
how the microPOTS spatial proteomics platform can be uti-
lized in a clinical setting to characterize specific biological
pathways that are uniquely expressed in pancreatic islet cells.
We can robustly characterize >6000 proteins in each sample
and identify, within each sample, islet-specific biological
processes. Our computational analysis enhances initial pro-
teomic resolution through network integration and distance
analysis.
These results highlight the distinction between insulin

secretion, an exclusive islet cell activity, and insulin signaling,
which is clearly enriched in the neighboring acinar cells.
Network analysis highlights the role of ER folding proteins that
are upregulated in the acinar tissue, in line with the role of
these cells in protein folding and secretion. Furthermore, we
detect translation-related activity in a gradient that provides a
complementary view of the secretory role of acinar cells
(70, 71). Clearly, these are hypothesis-generating observa-
tions, and substantiation of these hypotheses would require
careful mechanistic experiments, possibly using a spatially
controlled system such as a pancreas-on-a-chip system.
However, by carrying out multiple computational tests and
arriving at similar conclusions we can leverage these software
approaches together with additional microPOTS experiments.
The value of this unbiased spatial proteomic approach is
that it suggests targets for genetic manipulation in future
experiments.
In summary, we believe the technology and analysis pro-

cedures described herein enable a diverse set of applications
of proteomics in the clinical setting. There are many diseases,



FIG. 6. Distance-based analysis identifies biological pathways and proteins correlated with distance from islet cells. A, Z-scores of
biological pathways that are significantly (corrected p < 0.05) correlated with distance in at least four images. B, expression of proteins that are
correlated with distance within the Reactome insulin signaling pathway. C, expression of proteins that are correlated with distance in Reactome
translation pathway.
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such as cancer or type 1 diabetes, in which a small group of
cells can cause a large amount of damage. As such, these
technologies are imperative to enable the study of specific
signaling activities that enable these cells to affect the
neighboring tissue to cause systemic disease. Going forward
we plan to collect additional tissue measurements to confirm
the results we found in a single pancreas across diverse
patients.
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