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Abstract

Objective. Patients with metastatic disease are followed throughout treatment with medical imaging,
and accurately assessing changes of individual lesions is critical to properly inform clinical decisions.
The goal of this work was to assess the performance of an automated lesion-matching algorithm in
comparison to inter-reader variability (IRV) of matching lesions between scans of metastatic cancer
patients. Approach. Forty pairs of longitudinal PET /CT and CT scans were collected and organized
into four cohorts: lung cancers, head and neck cancers, lymphomas, and advanced cancers. Cases were
also divided by cancer burden: low-burden (<10 lesions), intermediate-burden (10-29), and high-
burden (30+). Two nuclear medicine physicians conducted independent reviews of each scan-pair
and manually matched lesions. Matching differences between readers were assessed to quantify the
IRV of lesion matching. The two readers met to form a consensus, which was considered a gold
standard and compared against the output of an automated lesion-matching algorithm. IRV and
performance of the automated method were quantified using precision, recall, F1-score, and the
number of differences. Main results. The performance of the automated method did not differ
significantly from IRV for any metric in any cohort (p > 0.05, Wilcoxon paired test). In high-burden
cases, the F1-score (median [range]) was 0.89 [0.63, 1.00] between the automated method and reader
consensus and 0.93 [0.72, 1.00] between readers. In low-burden cases, F1-scores were 1.00 [0.40, 1.00]
and 1.00 [0.40, 1.00], for the automated method and IRV, respectively. Automated matching was
significantly more efficient than either reader (p < 0.001). In high-burden cases, median matching
time for the readers was 60 and 30 min, respectively, while automated matching took a median of

3.9 min Significance. The automated lesion-matching algorithm was successful in performing lesion
matching, meeting the benchmark of IRV. Automated lesion matching can significantly expedite and
improve the consistency of longitudinal lesion-matching.

1. Introduction

Patients with metastatic cancers are often imaged longitudinally throughout the course of their disease for
diagnosis, staging, and response assessment with a variety of modalities including computed tomography (CT),
magnetic resonance imaging (MRI), or positron emission tomography (PET). Images are interpreted by
clinicians to judge therapy efficacy and to make decisions about a patient’s treatment pathway. Central to the
interpretation of longitudinal radiological images is the assessment of changes in lesions from one timepoint to
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the next. This includes the appearance of new lesions, the disappearance of lesions responding to treatment, and
changes in the size or appearance of persistent lesions.

When treated systemically, metastatic cancers often exhibit lesion-wise heterogeneity in response, where
some lesions disappear or shrink, some lesions remain stable, some lesions grow, and new lesions appear despite
the ongoing treatment. This response pattern has been termed ‘dissociated response’, ‘mixed response’, and
‘heterogeneous response’, and has been observed in 21%—48% of solid cancers treated with chemotherapies and
targeted therapies (Humbert and Chardin 2020). The response of individual lesions has been shown to drive
progression. In particular, the appearance of new lesions can negatively impact patient outcomes (Harmon et al
2017). Thus, matching lesions between longitudinal images is critical to ensure that heterogeneous response
patterns can be identified, and imaging data can be best utilized to inform treatment decisions.

Matching multiple lesions between longitudinal scans is a difficult task for clinicians to perform. Lesions
may be numerous and densely packed within a single organ or tissue. For example, metastatic prostate cancer
patients with high disease burden can exhibit over 100 lesions (Wangand Shen 2012). Additionally, lesions may
grow, shrink, split, or merge over time. Patients may be imaged in different positions (e.g. with arms up or down,
prone or supine, with knees bent or straight), and patient anatomy may change between images (e.g. weight loss
due to treatment, surgical changes). Finally, patients may be imaged with different modalities (e.g. CT, PET/CT,
MRI), they may be imaged on different scanners, and their images may be interpreted by different clinicians at
each imaging timepoint. Inter-reader effects, such as differences in clinician experience, practice patterns, and
reporting preferences, may result in inconsistencies in how changes in patient disease between imaging
timepoints are captured and acted upon.

The result of these difficulties is that commonly used response criteria, such as the Response Evaluation
Criteriain Solid Tumors (RECIST) (Eisenhauer et al 2009), consider only five target lesions to determine patient
response. Matching of all lesions in a scan of a high-burden metastatic cancer patient is not performed as part of
standard clinical practice, due to the amount of time and effort it would require, particularly when lesions
respond heterogeneously. Without automated software tools, comprehensive lesion matching is not currently
feasible for clinicians to perform for metastic cancer patients.

Inter-reader variability (IRV), also called inter-observer variability, is a well-established measure of
reliability of medical image interpretation and analyses. A large portion of IRV studies in medical imaging have
centred on image segmentation problems, such as delineation of prostate tumours on MRI (Steenbergen et al
2015), delineation of lung tumours on cone-beam CT (Sweeney et al 2012), and delineation of organs-at-risk for
external beam radiation therapy of head and neck tumours on CT (Feng et al 2010). IRV has also been assessed in
classification contexts including breast tumour feature analysis using the Breast Imaging Reporting and Data
System (BIRADs) (Lee et al 2008) and target lesion identification and measurement according to the Response
Evaluation Criteria in Solid Tumours (RECIST) (Muenzel e al 2012, Yoon et al 2016). Interventions designed to
reduce IRV and increase consistency in image analysis and interpretation is an ongoing area of research (Vinod
etal 2016, Tizhoosh eral 2021).

Inter-reader variability has been used as a benchmark for the evaluation of automated image analysis tasks.
For example, the performance of an automated method for detecting lymphoma lesions on '*F-FDG PET/CT
was benchmarked against the variability between two clinicians performing the same task (Weisman et al 2020).
Turing tests, where users are asked to distinguish automated outputs from expert outputs, have been used to
benchmark organ contouring performance (Gooding et al 2018). The rationale for using IRV as a performance
benchmark is that IRV captures the variability plausibly present in any reference standard dataset against which
the automated method is tested.

The objective of this study was to compare the performance of an automated lesion-matching method
against the reference standard of IRV in the task of matching lesions between longitudinal PET/CT and CT
scans. We hypothesized that the performance of the developed automated lesion-matching would be
comparable to the IRV. The main contributions of this manuscript are: (1) the first head-to-head comparison of
automated lesion matching with a reader-produced reference standard, and (2) the first reporting of IRV in the
task of lesion matching.

2.Methods

2.1. Study population

Scan-pairs in four disease cohorts (lung, head and neck, lymphoma, and other advanced cancers) were collected
for analysis. All data were collected either from public sources or obtained by AIQ Solutions, a biotechnology
company that is developing a clinical decision support software for oncologists to manage late stage cancer
patients, as part of research collaborations with academic medical centres. These cohorts were selected for their
range of disease burden, and differences in spatial distributions of lesions. For some datasets, lesion contours
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were provided from the dataset source. For scans where contours were not provided, lesions were identified and
segmented by author SC. All provided lesion contours were reviewed for accuracy by two nuclear medicine
physician with 15 and 11 years’ experience (authors SC and MC) prior to completion of the lesion matching task.
Lesions on each scan were assigned unique integer indices via connected component analysis.

2.1.1. Non-small cell lung cancer
Ten subjects with metastatic non-small cell lung cancer (NSCLC) imaged with '*F-FDG PET/CT were
randomly selected from a public dataset (ACRIN-NSCLC-FDG-PET: ACRIN 6668) (Kinahan et al 2019).

2.1.2. Head and neck cancers

Ten subjects with head and neck cancers (squamous cell carcinomas) imaged with p_FDG PET/CT were
randomly selected (N =5 each) from two public datasets (QIN-HEADNECK (Beichel et al 2015), and HNSCC
(Grossberg et al 2020)).

2.1.3. Diffuse large B cell lymphoma
Ten subjects with diffuse large B-cell lymphoma (DLBCL) imaged with '*F-FDG PET/CT were randomly
selected from a public dataset (CALGB-50503) (Bartlett et al 2020).

2.1.4. Advanced cancers

Ten subjects with other advanced malignancies (metastatic neuroendocrine, prostate, breast, melanoma, and
lung cancers) imaged with a variety of imaging modalities (PET/CT or CT) were collected for analysis. Patients
were selected from a variety of internal and collaborator-provided sources specifically for having advanced
disease to assess lesion matching IRV and performance in difficult cases.

Cases were also divided by the number of lesions into three disease-burden cohorts: low burden (<10
lesions), intermediate burden (10-29 lesions), and high burden (30+ lesions). The number of lesions was taken
as the sum of the number of lesions on both scans.

Imaging data in the non-small cell lung cancer, heand and neck cancers, and diffuse large B cell ymphoma
were all obtained from publiclly available datasets hosted by The Cancer Imaging Archive. Imaging data in the
Advanced Cancers cohort were obtained from various AIQ collaborators, was anonymized prior to receipt by
AIQ Solutions, and was shared with explicit permission for use in research projects. AIQ’s access to the
retrospective imaging data followed all professional standards applicable to research including compliance for
access to data including the protection of patient privacy.

2.2.Lesion matches as graphs

An undirected bipartite graph G(N;, N, E) was used to describe lesion matches between a pair of scans, where
nodes N represent lesions and edges E represent matches. For a scan pair, one group of nodes Ny = {#n; 1,1 5, ...,
ny ;} represents lesions on the first scan and a second group of nodes N, = {1, 1, 155, ..., 1, ;} represents lesions
on the second scan. Edges E between a node in the first scan and a node in the second scan represent a match. For
example, iflesion 2 on the first scan matches to lesion 6 on the second scan, the edge e = {#; », 11, 5} isadded to
the graph.

One extra node was added to each group to account for lesions which do not match (e.g. lesions which
disappear or are new on the second scan). Lesions that disappear (present on the first scan but not the second) are
accounted for with an edge e connecting the node for that lesion in the first scan to the added ‘disappeared’ node
in the second scan e = {11 j, 11, gisappeared } - Lesions that are new on the second scan are accounted for with an
edge connecting the node for that lesion in the second scan to the added ‘new’ node in the first scan e = {11} pews
My}

While our analyses in this study were limited to exactly 2 scans per subject, the lesion graph is generalizable to
any number of scans. A series of k scans can be represented by a k-partite graph.

2.3. Automated lesion matching algorithm
An automated, registration-based lesion matching method was developed by our research group and has been
reported in a previous publication (Santoro-Fernandes et al 2021). Briefly, the method consists of four steps: (1)
image registration using 3D deformable registration of CT images (Rueckert 1999), (2) lesion dilation to account
for registration uncertainties, (3) lesion clustering to account for lesions merging or splitting between scans, and
(4) lesion matching via the Munkres assignment algorithm (Munkres 1957), which maximizes lesion
intersection volume between scans.

The registration step (1) reported in Santoro-Fernandes et al (2021) has undergone additional refinement
since the publication of Santoro-Fernandes et al (2021). First, bones and organs are contoured on the CT images
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using a previously trained convolutional neural network (Weisman et al 2022a, 2022b). Next, initial alignment
of the two scans is performed via a rigid (translation only) registration of the organ and bone masks. Finally, a
deformable registration is performed using a free-form deformation based on B-splines. All registration was
performed using SimpleElastix software (Marstal et al 2016). The dilation step (2) utilized a fixed dilation
magnitude of 25 mm, as was determined to be optimal for lesion matching in our previous study (Santoro-
Fernandes et al 2021).

The automated lesion matching method was used to match lesions for all scan pairs. Matches produced by
the automated method were compared against the reader consensus. Automated lesion matching was run twice
for each scan pair to evaluate the reproducibility of automated lesion matching. The amount of time taken by the
automated method was also recorded. Automated lesion matching was performed on a desktop workstation
with an 8 core/16 thread CPU and 16 GB of RAM.

2.4. Multi-reader lesion matching study
Two nuclear medicine physicians with 15 and 11 years experience (authors SC and MC) performed the lesion
matching task. For each scan pair, each reader was provided with images (PET/CT or CT) and lesion contours
where each lesion was labeled with a unique integer index. Matching review was completed using 3D Slicer, an
open-source platform for medical image viewing and analysis (Kikinis et al 2014). Readers were also provided
with a spreadsheet workbook to record their matching results. For each scan pair readers filled two columns,
where the first column listed lesion indices present in the first scan, and the second column listed lesion indices
present in the second scan. Each row thus described lesion correspondence between the two scans. Lesions
matched between scans were recorded by putting the corresponding lesion indices in both columns. Lesions
present in only one scan (not matched) were noted by a zero (0) in the column corresponding to the scan on
which the lesion was not present. Readers also recorded the amount of time they took to review and match each
scan-pair.

Following independent review of all cases, the two readers met to discuss all cases and reach a single expert
consensus. The expert consensus was used as a reference standard against which the performance of the
automated lesion matching method was compared.

2.5. Metrics for assessing lesion-matching algorithm performance and IRV

Inter-reader variability was assessed by comparing matches produced by reader A against matches produced
independently by reader B. The matches of each reader were described as a graph G(Ny, N,, E). Each reader
produced one graph per subject. Graphs from two readers have identical nodes N; and N, but different sets of
edges (E4 versus Eg). IRV was thus assessed by comparing the set of edges E,4 from the lesion matching

graph produced by reader A G4(IN;, Ny, E,) against the set of edges E from the lesion graph produced by reader
B Gy(N, N, Ep). Matching analyses were limited to lesions above a volume threshold of 0.1 cm”. This cutoff was
chosen following discussion with the study readers (authors SC and MC). Readers were not confident in the
reliability of lesion contours, or in their ability to reliably match lesions below a volume of 0.1 cm”.

Performance of the automated lesion matching method was assessed similarly, comparing the set of edges in
the graph produced by the automated method G,1o(IN1, N2, Eauto) against the set of edges in the graph produced
by the reader consensus Gons(N1, N2, Econs)- Both IRV and automated matching performance were quantified
using the metrics outlined as follows.

Precision—the proportion of matches present in reader A’s matches that were also present in reader B’s
matches. This is also called positive predictive value (PPV):

P(EA) EB) =

Recall—the proportion of matches present in reader B’s matches that were also present in reader A’s
matches. Also called sensitivity:

EsNE
R(E4, Ep) = BN 5| .
|Eg|
F1 score—the harmonic mean of precision and recall:
P(Es, Eg)R(Ey, Eg) 2|Ex N Eg|

F(Ey, Ep) = 2

P(Es, Eg) + R(Ea, Es)  2|Ex Eg| + |Ea/Es| + |Es/Eal’

Number of differences Ny—the number of edges present in one graph and not the other. This is equivalent
to the cardinality of the symmetric difference between the sets of edges E, and Ep
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Lymphoma
NSCLC (N=10) Head and neck (N = 10) (N=10) Advanced cancers (N =10)

Sex—n (%)
Male 6(60%) 6(60%) 6(60%) 8(80%)
Female 1(10%) 4(40%) 4(40%) 2(20%)
Not provided 3(30%) 0(0%) 0(0%) 0(0%)
Age—year
Median 61(47,69) 58 (48, 66) 51(36,74) 67 (48,77)

(range)
Disease stage
1 0 0 1 0
2 1 2 1 0
3 6 2 1 2
4 0 6 7 8
Not provided 3 0 0 0
Treatment Platinum-based chemor- Chemoradiotherapies, Rituximab plus Various (Lu-radiopharmaceutical

adiotherapy without various chemotherapies therapies, hormonal therapy,
surgery immunotherapies,
chemotherapies)

Time between

scans—days
Median 162(82,210) 172.5(102,312) 115 (44, 156) 95(0,912)

(range)

Ny(E4, Eg) = |Ea/Eg| + |Es/Eal.

For assessing the performance of the automated lesion matching method versus the reference standard
reader consensus, we set Ey = E,,;, and Eg = Eop,s, where E, o, and E,,s were the sets of edges produced by the
automated matching method and the reader consensus, respectively. For the assessment of IRV, we adopted the
convention for precision and recall that reader B’s matches were the reference standard against which reader A’s
matches were being evaluated. This choice was arbitrary, and if it were to be reversed, the effect would be that the
reported values for IRV precision and recall would be reversed. The F1 score and the number of differences Ny
would be equivalent if the order of readers A and B were reversed (e.g. F(E4, Eg) = F(Eg, E,)).

2.6. Statistical analysis

Differences between IRV and performance of the automated method and differences in matching time were
assessed with paired Wilcoxon tests. Correlation between lesion matching metrics, the time for readers to
perform matching, and the number of lesions in each scan-pair were assessed with Spearman correlation.

3. Results

3.1. Automated lesion matching

Clinical characteristics of the dataset are reported in table 1. Automated matching performance by disease-
cohort is shown in table 2. Automated lesion matching performance was not significantly different from IRV for
any assessed metric, for any disease-cohort (Wilcoxon paired test, p > 0.05). However, when all N = 40 cases
were considered, a significant difference in Recall between IRV and automated matching performance was
observed (IRV: median recall of 1.00, automated: median recall of 0.92, p = 0.05). A similar difference in the
number of differences was verging on significance at the av = 0.05 level (IRV: median Ny of 0, automated: median
Ny of2,p=0.06). In the Advanced Cancers disease cohort (41.6 & 43.0 lesions per scan), at least one difference
in matching between the automated method and reader consensus was observed in 8,/10 (80%) of cases.

The performance of the automated lesion matching method was dependent on disease burden. In high-
burden cases (30+ lesions, N =9 cases), median F1-score was 0.89, and one or more differences in matching was
observed in 8/9 (89%) cases. In low-burden cases (<10 lesions, N = 14), the median F1-score was 1.00, and one
or more differences in matching was observed in 2/14 (14%) cases. Performance of the automated matching
method by disease burden is summarized in table 3. Automated lesion matching performance was not
significantly different from IRV for any assessed metric, for any burden-cohort (Wilcoxon paired test, p > 0.05).

We investigated correlation between automated lesion matching metrics and the number of lesions per
scan-pair. As the number of lesions increased, the performance of the automated matching decreased for all
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Table 2. Inter-reader variability of lesion matching versus the performance of the automated lesion matching method (auto) by disease
cohorts. Data are reported as median (range). P-values are tests for significant differences between IRV and automated matching
performance (Wilcoxon paired tests).

Precision Recall F1 score Ny
NSCLC(N=10)
IRV 0.97 (0.67, 1.00) 1.00(0.50, 1.00) 0.98(0.57, 1.00) 0.5(0,4)
Auto 0.92(0.80, 1.00) 0.89(0.71, 1.00) 0.91(0.75, 1.00) 2.5(0,8)
p 0.74 0.26 0.40 0.18
Head and neck (N =10)
IRV 1.00(1.00, 1.00) 1.00 (1.00, 1.00) 1.00(1.00, 1.00) 0(0,0)
Auto 1.00 (0.50, 1.00) 1.00(0.33, 1.00) 1.00 (0.40, 1.00) 0(0,3)
p 0.11 0.11 0.11 0.08
Lymphoma (N = 10)
IRV 1.00 (0.25, 1.00) 1.00(1.00, 1.00) 1.00 (0.40, 1.00) 0(0,3)
Auto 1.00(0.92, 1.00) 1.00(0.80, 1.00) 1.00 (0.86, 1.00) 0(0,4)
p 1.00 0.18 1.00 0.41
Advanced Cancers (N = 10)
IRV 0.92 (0.69, 1.00) 0.86(0.74,0.96) 0.89(0.72,0.96) 5.5(2,58)
Auto 0.88(0.59, 1.00) 0.86 (0.60, 1.00) 0.87(0.63, 1.00) 15.5(0,59)
p 0.24 0.95 0.86 0.53
ALL (N =40)
IRV 1.00(0.25, 1.00) 1.00(0.50, 1.00) 1.00 (0.40, 1.00) 0(0,58)
Auto 0.97 (0.50, 1.00) 0.92(0.33, 1.00) 0.94 (0.40, 1.00) 2(0,59)
P 0.14 0.05 0.12 0.06

Table 3. Inter-reader variability of lesion matching versus the performance of the automated lesion matching method (auto) by disease
burden. Cases were divided into three disease-burden cohorts: low-(<10 lesions), intermediate- (1029 lesions) and high- (30 or more
lesions) burden. Data are reported as median (range). P-values are tests for significant differences between IRV and automated matching

performance (Wilcoxon paired tests).

Precision Recall F1 score Ny
Lowburden (N = 14)
IRV 1.00 (0.25, 1.00) 1.00(0.50, 1.00) 1.00(0.40, 1.00) 0(0,3)
Auto 1.00 (0.50, 1.00) 1.00(0.33, 1.00) 1.00(0.40, 1.00) 0(0,3)
P 0.85 0.41 1.00 1.00
Intermediate burden (N =17)
IRV 1.00 (0.80, 1.00) 1.00(0.77, 1.00) 1.00(0.79, 1.00) 0(0,7)
Auto 0.92 (0.59, 1.00) 0.91(0.71, 1.00) 0.91 (0.65, 1.00) 2(0,14)
p 0.17 0.27 0.17 0.11
High burden (N=9)
IRV 0.95 (0.69, 1.00) 0.91 (0.74, 1.00) 0.93 (0.72, 1.00) 5(0,58)
Auto 0.91(0.66, 1.00) 0.86 (0.60, 1.00) 0.89(0.63, 1.00) 17(0,59)
p 0.12 0.26 0.26 0.18

metrics (Spearman correlation, p < 0.05). Automated lesion matching metrics as a function of number of lesions

are shown in figure 1.

3.2. Multi-reader lesion matching study

Both readers completed independent review of all N = 40 scan-pairs and recorded matching results. An example
of the inter-reader lesion matching analysis for a subject in the NSCLC cohort is shown in figure 2. A full
summary of inter-reader variaibility by disease-cohort is shown in table 2. In the Advanced Cancers disease
cohort, at least one difference in matching between readers was observed in 10,/10 (100%) cases.

Similar to the automated method, IRV was highly dependent on disease burden. In high-burden cases (30+
lesions, N =9 cases), the median F1-score between the two readers was 0.93. One or more differences in
matching was observed in 6/9 (67%) cases. In low-burden cases (<10 lesions, N = 14), the median F1-score
between the two readers was 1.00. One or more differences in matching was observed in 2/14 (14%) of low-
burden cases. IRV of lesion matching by disease burden is summarized in table 3.

We assessed correlation between IRV metrics and the number of lesions on each scan-pair (figure 3). Similar
to automated matching performance, the amount of variation between readers increased as the number of
lesions increased (Spearman correlation, p < 0.05) for all metrics.
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Figure 1. Performance of the automated lesion-matching algorithm as a function of the number of lesions in four cohorts. Number of
lesions is defined as the sum of the number of lesions present on the two scans in each case. Each metric is annotated with Spearman
correlation (p) between the metric and the number of lesions. Note the data are presented on a log scale.
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Figure 2. Lesion matching in a female subject with stage [[I NSCLC imaged with '®F-FDG PET/CT before (Scan 1) and after (Scan 2)
platinum-based chemotherapy. PET/CT were acquired 179 d apart. The lesion located in the rectum (orange contour, label 1) is
matched differently between readers. Reader A determines that the lesion disappears after scan 1 and a new lesion in a similar area
appears on scan 2. Reader B determines that these two lesions are homologous and should be matched between scans.




I0OP Publishing Phys. Med. Biol. 68 (2023) 175031 DT Huffetal

Precision Recall
1.0{e cco eitsseme o 1.0 o coe Sas==e =
® @
% %, e ° o
0.8 oo 0.81 e =
)
Y @
0.6 1 0.6 4
o
0.4 0.4 4
@
0.2 1 0.2 14
0.0 T T 0.0 T T
10t 102 1ot 102 e Advanced Cancers
Number of lesions Number of lesions e NSCLC
F1 score Number of differences e Lymphoma
1.0{e e oo dussen © 60 ® e Head and Neck
% ° o
5 o| 50
0.8 ® e
o 40 '
0.6 1 4
30 4
0.4 =
204 M
0.2 10+ p
e | ®20 8-
0.0 01e-eee =4=e& -]
' 10! 102 10! 102
Number of lesions Number of lesions
Figure 3. Matching IRV metrics as a function of the number of lesions in four cohorts. Number of lesions is defined as the sum of the
number of lesions present on the two scans in each case. Each metric is annotated with Spearman correlation (p) between the metric
and the number of lesions. Note the data are presented on alog scale.

Table 4. Disease burden and time for readers and the automated method (Auto) to perform manual matching. Data are reported as median

(range).
Number of lesions— Number of lesions— Time reader Time reader Time
Scan 1 Scan 2 A (min) B (min) auto (min)
NSCLC (N=10) 8.5(1,28) 8.5(1,19) 10(1,20) 11.5(4,25) 1.1(0.7,1.7)
Head and neck (N =10) 3(2,6) 3(1,7) 3(2,5) 3(2,6) 0.9(0.5,1.5)
Lymphoma (N = 10) 8(2,30) 3(1,8) 4(2,5) 4(3,16) 1.0(0.8,1.6)
Advanced can- 21.5(3,63) 33.5(7,179) 60 (15, 130) 25(10, 120) 3.9(1.0,10.6)
cers (N=10)
ALL (N = 40) 7(1,63) 6(1,179) 5(1,130) 7(2,120) 1.1(0.5,10.6)

3.3. Time spent on lesion matching

Across all N = 40 cases, manual, individual lesion matching by the two readers took a median of 5 (range: 1, 130)
and 7 (range: 2, 120) minutes, respectively. The automated method took a median of 1.1 (range: 0.5, 10.6)
minutes to match lesions. The automated lesion matching method took significantly less time to match lesions
than either reader (Wilcoxon paired test, p < 0.001). The difference in matching time between readers was not
significant (p = 0.37). Time to perform matching for the readers and automated method is summarized in

table 4.

In high-burden cases (304 lesions, N = 9 cases), the median time to perform matching for the two readers
was 60 and 30 min The automated method performed matching in high-burden cases in a median of 3.9 min In
low-burden cases (<10 lesions, N = 14 cases), the median time to perform matching for the two readers was 3
and 3.5 min, and the corresponding time for the automated method was 0.9 min.

Positive correlation between the number of lesions in a scan pair and matching time for both readers
(Spearman p = 0.86, p = 0.89), and for the automated lesion matching method (p = 0.67). Matching time as a
function of number of lesions is shown in figure 4.
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Figure 4. Time to perform manual matching for the two readers and the automated method as a function of the number of lesions in
each matching case. Number of lesions is defined as the sum of the number of lesions present on the two scans in each case. Correlation
between number of lesions and matching time was quantified with Spearman’s r. For all cases, correlation between number of lesions
and matching time was significant (p < 0.001).

3.4. Reproducibility of automated lesion matching

To evaluate the reproducibility of the automated lesion matching algorithm, matching was performed twice for
each scan pair and the matching results from the first run were compared to the results of the second run. No
differences in lesion matching were observed between runs of the automated lesion matching algorithm
(precision, recall, F1 score all =1 and Ng = 0).

4. Discussion

In this study, we assessed performance of an automated approach to lesion matching between longitudinal scans
of patients with various metastatic cancers, and compared the performance of the automated method against
IRV. When comparing the automated lesion matching method to the reader consensus as a reference standard,
the automated lesion matching method performed within IRV. The performance of the automated lesion
matching method was not significantly different from IRV of lesion matching for any assessed metric in any
cohort.

Little IRV oflesion matching was observed in low burden cases (<10 lesions per scan). However, in high-
burden cases (30+ lesions), differences between readers were seen in 67% of cases. In the advanced cancers
disease cohort (up to 179 lesions per scan) selected specifically for matching difficulty, differences between
readers were seen in 100% of cases. This suggests that IRV is of significant concern in patients with high disease
burden imaged longitudinally. Moreover, this study represents only a single step of the image analysis that is
performed for patients with cancer imaged longitudinally. Higher IRV would be observed if all steps in the
analysis were included (i.e. lesion detection, segmentation, and response interpretation).

Across all cases, manual lesion matching took the two readers a median of 5 and 7 min, respectively. This was
significantly longer than automated matching, which took a median of 1.1 min In high-burden cases, the
difference between reader and automated lesion matching speed was most evident. Here, the readers took a
median of 60 and 30 min, respectively, while the automated matching took a median of 3.9 min In current
clinical practice, only a susbet of lesions may be matched between scans to perform a RECIST-based response
assessment (Eisenhauer et al 2009). The high amount of time (up to 130 min) required for the readers in this
study to perform lesion matching highlights why it is not performed in typical clinical practice today. Availablity
of automated methods such as the one described in this study is important to enable access for clinicians to
comprehensive lesion-matching in clinical practice with accurate, more reproducable results.

The readers who participated in the inter-reader study (authors SC and MC) have 15 and 11 years’ relevant
experience and have contributed to the refinement of the automated lesion matching algorithm. They were also
provided with precontoured and numbered lesion labels to perform matching. Due to their specific experience
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and provided lesion labels, they may perform lesion matching faster or more consistently than a typical clinician
with less experience and who is not provided with precontoured lesion labels. This suggests that the estimate of
time cost in our study may underestimate the true time cost of manual lesion matching if it were to be performed
clinically.

For both readers and the automated method, significant correlation was observed between the number of
lesions in the scans and the time to perform matching. While the difference in matching time between readers
and the automated method was smaller for low-burden cases, automated lesion matching still conveys the
inherent advantage of requiring zero reader time, excepting quality assurance. The speed of the automated
method is dependent on the hardware of the computer it is executed on. In this study, we report the timing of the
automated method running on a desktop workstation with an 8 core/16 thread CPU and 16 GB of RAM, which
are reasonable specifications for a desktop workstation at the time of writing. Further speed improvements
could be realized either through optimization of the automated code, or by executing the program on hardware
with improved specifications.

When the automated lesion matching algorithm was run multiple times, no differences in matching results
between runs were observed. This suggests the automated lesion matching algorithm is highly reproducible.
Small differences in deformable image registration can occur between repeated trials, however these were
minimized by using fixed random seeds, and were not substantial enough to result in differences in matching in
our study. Therefore, the advantage of automated lesion matching is not only workflow time-saving, but also
high reproducibility. The strength of matching reproducibilty may be especially relevant when matchingis
performed by less experienced operators. To validate this hypothesis, a multi-reader study using pairs of
operators with a variety of experience levels could be performed.

We reviewed all cases where the performance of the automated lesion matching method deviated from the
reader consensus matching. The most common reasons for deviations were: inaccurate image registration
placing homologous lesions too far apart for a match to be established, small lesion fragments not being grouped
with a nearby lesion cluster, and spurious matches being assigned between lesions which overlap following
registration but occupy distinct tissues. These boundary conditions are of interest for future refinement of the
automated lesion matching method. Based on these observations, it is likely that deformable image registration
performance is the main factor affecting matching performance. Investigation of factors contributing to patient-
specific registration undertainty, or alternative approaches to registration, such as deep learning-based
registration (Fu et al 2020) should be performed. Beyond registration, further refinement of the method’s
dilation step could be investigated by implementing anatomy-specific dilation magnitudes, as registration
uncertainty in rigid anatomy such as bone is likely lower than uncertainty in soft tissue.

Readers took a maximum of 120 and 130 min to perform manual lesion matching. The highest average
matching time occurred in a subject with metastatic neuroendocrine tumours, where each reader took 120 min
to perform matching, and the automated method took 5.7 min This subject had 59 lesions on scan 1 and 60
lesions on scan 2, which were densely concentrated within the liver. This case was difficult for both the readers
and the automated lesion matching method, resulting in an F1 score of 0.72 between readers and an F1 score of
0.76 between the automated method and reader consensus. Interestingly, while this case took the most reader
time, it was not the case with the most lesions. The case with the most lesions was a subject with bone-metastatic
prostate cancer imaged with CT, with 63 lesions on scan 1 and 179 lesions on scan 2. Readers took 130 and
94 min, respectively, to match this case, while the automated method took 6.5 min.

In this study, we analyzed lesion matches above a volume threshold of 0.1 cm”. This volume threshold was
chosen in discussion with the two study readers, who were not confident in the reliability of lesion contours, or
in their ability to reliably match lesions below a volume of 0.1 cm?®. While such small lesions may represent only a
small fraction of a patient’s overall disease burden, commonly used response criteria such as RECIST 1.1 define a
response of Progressive Disease if any new lesions are noted, regardless of size (Eisenhauer et al 2009). For this
reason, small lesions can impact patient management, and determining whether they are new or match to an
existing lesion is of clinical consequence.

In our study, we used graph structures to describe the lesion matching problem and assess IRV of lesion
matching. Several other published studies have made use of graphs to describe the process of following lesions
over time. In Szeskin et al (2023), the authors use graphs to describe lesion matching, and report precision and
recall of their dilation-based lesion matching approach of (mean =+ sd) 0.86 = 0.18 and 0.90 £ 015, respectively,
which are similar to our results. Their dataset consisted of 50 scan-pairs containing a total of 492 lesions (mean
of 9.8 lesions/subject), which is similar to our low-burden cohort. Their analysis was limited to liver lesions, and
the did not assess IRV of lesion matching. In Yan et al (2018), a distance-based approach to lesion matching is
evaluated in 103 patients imaged with CT. They report area under the precision—recall curve of 0.959, with an
estimated precision and recall of 0.86 and 0.92, respectively. Their dataset contained 1313 lesions (mean of 12.7
lesions/subject), which is most similar to the intermediate-burden cohort in our study. Finally, ‘tumor trees’,
which are graph structures, were used in Kuckertz et al (2022) to describe progression of tumor burden in
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longitudinally imaged cancer patients. The investigators use a spatial overlap criterion to determine matches, but
do not evaluate the accuracy of their method.

Commonly used imaging response criteria such as the Response Evaluation Criteria in Sold Tumours
(RECIST) assign patient response based on changes in a subset of visible lesions (Eisenhauer et al 2009).
RECISTv1.1 assesses up to 5 target lesions to assign a response category. In our study, 14,/40 cases (35%) of
subjects had five or fewer lesions on both scans. Within this subset, 2 /14 (14%) of cases contained one or more
matching differences.

In this study, we assessed lesion matching in a population (N = 40) of patients with NSCLC, head and neck
tumours, DLBCL, and various advanced cancers. These cohorts were selected for their range of disease burden,
and differences in spatial distribution of lesions. Additionally, the data were collected retrospectively, and were
not part of a prospective trial with the express purpose of conducting an inter-reader matching study.

5. Conclusion

The automated lesion-matching method met the benchmark of IRV, while performing the matching task
significantly more efficiently than human readers. Inlow-burden patients, little to no IRV was observed and
time cost for readers to perform lesion matching was acceptable. However, in higher-burden patients,
substantial IRV was observed and time cost became incompatible with clinical workflow, highlighting the
clinical utility of automated lesion matching.
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