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Abstract
Objective.Patients withmetastatic disease are followed throughout treatment withmedical imaging,
and accurately assessing changes of individual lesions is critical to properly inform clinical decisions.
The goal of this workwas to assess the performance of an automated lesion-matching algorithm in
comparison to inter-reader variability (IRV) ofmatching lesions between scans ofmetastatic cancer
patients.Approach. Forty pairs of longitudinal PET/CT andCT scanswere collected and organized
into four cohorts: lung cancers, head and neck cancers, lymphomas, and advanced cancers. Cases were
also divided by cancer burden: low-burden (<10 lesions), intermediate-burden (10–29), and high-
burden (30+). Twonuclearmedicine physicians conducted independent reviews of each scan-pair
andmanuallymatched lesions.Matching differences between readers were assessed to quantify the
IRVof lesionmatching. The two readersmet to form a consensus, whichwas considered a gold
standard and compared against the output of an automated lesion-matching algorithm. IRV and
performance of the automatedmethodwere quantified using precision, recall, F1-score, and the
number of differences.Main results.The performance of the automatedmethod did not differ
significantly from IRV for anymetric in any cohort (p> 0.05,Wilcoxon paired test). In high-burden
cases, the F1-score (median [range])was 0.89 [0.63, 1.00] between the automatedmethod and reader
consensus and 0.93 [0.72, 1.00] between readers. In low-burden cases, F1-scores were 1.00 [0.40, 1.00]
and 1.00 [0.40, 1.00], for the automatedmethod and IRV, respectively. Automatedmatchingwas
significantlymore efficient than either reader (p< 0.001). In high-burden cases,medianmatching
time for the readers was 60 and 30min, respectively, while automatedmatching took amedian of
3.9min Significance.The automated lesion-matching algorithmwas successful in performing lesion
matching,meeting the benchmark of IRV. Automated lesionmatching can significantly expedite and
improve the consistency of longitudinal lesion-matching.

1. Introduction

Patients withmetastatic cancers are often imaged longitudinally throughout the course of their disease for
diagnosis, staging, and response assessment with a variety ofmodalities including computed tomography (CT),
magnetic resonance imaging (MRI), or positron emission tomography (PET). Images are interpreted by
clinicians to judge therapy efficacy and tomake decisions about a patient’s treatment pathway. Central to the
interpretation of longitudinal radiological images is the assessment of changes in lesions fromone timepoint to
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the next. This includes the appearance of new lesions, the disappearance of lesions responding to treatment, and
changes in the size or appearance of persistent lesions.

When treated systemically, metastatic cancers often exhibit lesion-wise heterogeneity in response, where
some lesions disappear or shrink, some lesions remain stable, some lesions grow, and new lesions appear despite
the ongoing treatment. This response pattern has been termed ‘dissociated response’, ‘mixed response’, and
‘heterogeneous response’, and has been observed in 21%–48%of solid cancers treatedwith chemotherapies and
targeted therapies (Humbert andChardin 2020). The response of individual lesions has been shown to drive
progression. In particular, the appearance of new lesions can negatively impact patient outcomes (Harmon et al
2017). Thus,matching lesions between longitudinal images is critical to ensure that heterogeneous response
patterns can be identified, and imaging data can be best utilized to inform treatment decisions.

Matchingmultiple lesions between longitudinal scans is a difficult task for clinicians to perform. Lesions
may be numerous and densely packedwithin a single organ or tissue. For example,metastatic prostate cancer
patients with high disease burden can exhibit over 100 lesions (Wang and Shen 2012). Additionally, lesionsmay
grow, shrink, split, ormerge over time. Patientsmay be imaged in different positions (e.g. with arms up or down,
prone or supine, with knees bent or straight), and patient anatomymay change between images (e.g. weight loss
due to treatment, surgical changes). Finally, patientsmay be imagedwith differentmodalities (e.g. CT, PET/CT,
MRI), theymay be imaged on different scanners, and their imagesmay be interpreted by different clinicians at
each imaging timepoint. Inter-reader effects, such as differences in clinician experience, practice patterns, and
reporting preferences,may result in inconsistencies in how changes in patient disease between imaging
timepoints are captured and acted upon.

The result of these difficulties is that commonly used response criteria, such as the Response Evaluation
Criteria in Solid Tumors (RECIST) (Eisenhauer et al 2009), consider only five target lesions to determine patient
response.Matching of all lesions in a scan of a high-burdenmetastatic cancer patient is not performed as part of
standard clinical practice, due to the amount of time and effort it would require, particularly when lesions
respond heterogeneously.Without automated software tools, comprehensive lesionmatching is not currently
feasible for clinicians to perform formetastic cancer patients.

Inter-reader variability (IRV), also called inter-observer variability, is a well-establishedmeasure of
reliability ofmedical image interpretation and analyses. A large portion of IRV studies inmedical imaging have
centred on image segmentation problems, such as delineation of prostate tumours onMRI (Steenbergen et al
2015), delineation of lung tumours on cone-beamCT (Sweeney et al 2012), and delineation of organs-at-risk for
external beam radiation therapy of head andneck tumours onCT (Feng et al 2010). IRVhas also been assessed in
classification contexts including breast tumour feature analysis using the Breast Imaging Reporting andData
System (BIRADs) (Lee et al 2008) and target lesion identification andmeasurement according to the Response
EvaluationCriteria in Solid Tumours (RECIST) (Muenzel et al 2012, Yoon et al 2016). Interventions designed to
reduce IRV and increase consistency in image analysis and interpretation is an ongoing area of research (Vinod
et al 2016, Tizhoosh et al 2021).

Inter-reader variability has been used as a benchmark for the evaluation of automated image analysis tasks.
For example, the performance of an automatedmethod for detecting lymphoma lesions on 18F-FDGPET/CT
was benchmarked against the variability between two clinicians performing the same task (Weisman et al 2020).
Turing tests, where users are asked to distinguish automated outputs from expert outputs, have been used to
benchmark organ contouring performance (Gooding et al 2018). The rationale for using IRV as a performance
benchmark is that IRV captures the variability plausibly present in any reference standard dataset against which
the automatedmethod is tested.

The objective of this studywas to compare the performance of an automated lesion-matchingmethod
against the reference standard of IRV in the task ofmatching lesions between longitudinal PET/CT andCT
scans.We hypothesized that the performance of the developed automated lesion-matching would be
comparable to the IRV. Themain contributions of thismanuscript are: (1) thefirst head-to-head comparison of
automated lesionmatchingwith a reader-produced reference standard, and (2) thefirst reporting of IRV in the
task of lesionmatching.

2.Methods

2.1. Study population
Scan-pairs in four disease cohorts (lung, head and neck, lymphoma, and other advanced cancers)were collected
for analysis. All data were collected either frompublic sources or obtained byAIQ Solutions, a biotechnology
company that is developing a clinical decision support software for oncologists tomanage late stage cancer
patients, as part of research collaborationswith academicmedical centres. These cohorts were selected for their
range of disease burden, and differences in spatial distributions of lesions. For some datasets, lesion contours
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were provided from the dataset source. For scanswhere contours were not provided, lesionswere identified and
segmented by author SC. All provided lesion contours were reviewed for accuracy by two nuclearmedicine
physicianwith 15 and 11 years’ experience (authors SC andMC) prior to completion of the lesionmatching task.
Lesions on each scanwere assigned unique integer indices via connected component analysis.

2.1.1. Non-small cell lung cancer
Ten subjects withmetastatic non-small cell lung cancer (NSCLC) imagedwith 18F-FDGPET/CTwere
randomly selected froma public dataset (ACRIN-NSCLC-FDG-PET: ACRIN6668) (Kinahan et al 2019).

2.1.2. Head and neck cancers
Ten subjects with head and neck cancers (squamous cell carcinomas) imagedwith 18F-FDGPET/CTwere
randomly selected (N= 5 each) from two public datasets (QIN-HEADNECK (Beichel et al 2015), andHNSCC
(Grossberg et al 2020)).

2.1.3. Diffuse large B cell lymphoma
Ten subjects with diffuse large B-cell lymphoma (DLBCL) imagedwith 18F-FDGPET/CTwere randomly
selected froma public dataset (CALGB-50503) (Bartlett et al 2020).

2.1.4. Advanced cancers
Ten subjects with other advancedmalignancies (metastatic neuroendocrine, prostate, breast,melanoma, and
lung cancers) imagedwith a variety of imagingmodalities (PET/CTorCT)were collected for analysis. Patients
were selected from a variety of internal and collaborator-provided sources specifically for having advanced
disease to assess lesionmatching IRV and performance in difficult cases.

Cases were also divided by the number of lesions into three disease-burden cohorts: low burden (<10
lesions), intermediate burden (10–29 lesions), and high burden (30+ lesions). The number of lesions was taken
as the sumof the number of lesions on both scans.

Imaging data in the non-small cell lung cancer, heand and neck cancers, and diffuse large B cell lymphoma
were all obtained frompubliclly available datasets hosted by TheCancer Imaging Archive. Imaging data in the
AdvancedCancers cohort were obtained fromvarious AIQ collaborators, was anonymized prior to receipt by
AIQ Solutions, andwas sharedwith explicit permission for use in research projects. AIQ’s access to the
retrospective imaging data followed all professional standards applicable to research including compliance for
access to data including the protection of patient privacy.

2.2. Lesionmatches as graphs
Anundirected bipartite graphG(N1,N2,E)was used to describe lesionmatches between a pair of scans, where
nodesN represent lesions and edges E representmatches. For a scan pair, one group of nodesN1= {n1,1, n1,2,K,
n1,i} represents lesions on thefirst scan and a second group of nodesN2= {n2,1, n2,2,K, n2,i} represents lesions
on the second scan. EdgesE between a node in the first scan and a node in the second scan represent amatch. For
example, if lesion 2 on the first scanmatches to lesion 6 on the second scan, the edge e= {n1,2, n2,6} is added to
the graph.

One extra nodewas added to each group to account for lesionswhich do notmatch (e.g. lesions which
disappear or are new on the second scan). Lesions that disappear (present on thefirst scan but not the second) are
accounted for with an edge e connecting the node for that lesion in the first scan to the added ‘disappeared’node
in the second scan e= {n1,i, n2,disappeared}. Lesions that are newon the second scan are accounted for with an
edge connecting the node for that lesion in the second scan to the added ‘new’node in thefirst scan e= {n1,new,
n2,i}.

While our analyses in this studywere limited to exactly 2 scans per subject, the lesion graph is generalizable to
any number of scans. A series of k scans can be represented by a k-partite graph.

2.3. Automated lesionmatching algorithm
An automated, registration-based lesionmatchingmethodwas developed by our research group and has been
reported in a previous publication (Santoro-Fernandes et al 2021). Briefly, themethod consists of four steps: (1)
image registration using 3Ddeformable registration of CT images (Rueckert 1999), (2) lesion dilation to account
for registration uncertainties, (3) lesion clustering to account for lesionsmerging or splitting between scans, and
(4) lesionmatching via theMunkres assignment algorithm (Munkres 1957), whichmaximizes lesion
intersection volume between scans.

The registration step (1) reported in Santoro-Fernandes et al (2021) has undergone additional refinement
since the publication of Santoro-Fernandes et al (2021). First, bones and organs are contoured on theCT images
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using a previously trained convolutional neural network (Weisman et al 2022a, 2022b). Next, initial alignment
of the two scans is performed via a rigid (translation only) registration of the organ and bonemasks. Finally, a
deformable registration is performed using a free-formdeformation based onB-splines. All registrationwas
performed using SimpleElastix software (Marstal et al 2016). The dilation step (2) utilized afixed dilation
magnitude of 25 mm, as was determined to be optimal for lesionmatching in our previous study (Santoro-
Fernandes et al 2021).

The automated lesionmatchingmethodwas used tomatch lesions for all scan pairs.Matches produced by
the automatedmethodwere compared against the reader consensus. Automated lesionmatchingwas run twice
for each scan pair to evaluate the reproducibility of automated lesionmatching. The amount of time taken by the
automatedmethodwas also recorded. Automated lesionmatchingwas performed on a desktopworkstation
with an 8 core/16 threadCPUand 16GBof RAM.

2.4.Multi-reader lesionmatching study
Twonuclearmedicine physicians with 15 and 11 years experience (authors SC andMC) performed the lesion
matching task. For each scan pair, each reader was providedwith images (PET/CTorCT) and lesion contours
where each lesionwas labeledwith a unique integer index.Matching reviewwas completed using 3DSlicer, an
open-source platform formedical image viewing and analysis (Kikinis et al 2014). Readers were also provided
with a spreadsheet workbook to record theirmatching results. For each scan pair readersfilled two columns,
where thefirst column listed lesion indices present in the first scan, and the second column listed lesion indices
present in the second scan. Each row thus described lesion correspondence between the two scans. Lesions
matched between scanswere recorded by putting the corresponding lesion indices in both columns. Lesions
present in only one scan (notmatched)were noted by a zero (0) in the column corresponding to the scan on
which the lesionwas not present. Readers also recorded the amount of time they took to review andmatch each
scan-pair.

Following independent review of all cases, the two readersmet to discuss all cases and reach a single expert
consensus. The expert consensus was used as a reference standard against which the performance of the
automated lesionmatchingmethodwas compared.

2.5.Metrics for assessing lesion-matching algorithmperformance and IRV
Inter-reader variability was assessed by comparingmatches produced by reader A againstmatches produced
independently by reader B. Thematches of each readerwere described as a graphG(N1,N2, E). Each reader
produced one graph per subject. Graphs from two readers have identical nodesN1 andN2, but different sets of
edges (EA versus EB). IRVwas thus assessed by comparing the set of edges EA from the lesionmatching
graph produced by reader AGA(N1,N2,EA) against the set of edges EB from the lesion graph produced by reader
BGB(N1,N2,EB).Matching analyses were limited to lesions above a volume threshold of 0.1 cm3. This cutoff was
chosen following discussionwith the study readers (authors SC andMC). Readers were not confident in the
reliability of lesion contours, or in their ability to reliablymatch lesions below a volume of 0.1 cm3.

Performance of the automated lesionmatchingmethodwas assessed similarly, comparing the set of edges in
the graph produced by the automatedmethodGauto(N1,N2,Eauto) against the set of edges in the graph produced
by the reader consensusGcons(N1,N2,Econs). Both IRV and automatedmatching performancewere quantified
using themetrics outlined as follows.

Precision—the proportion ofmatches present in readerA’smatches thatwere also present in readerB’s
matches. This is also called positive predictive value (PPV):

=
Ç
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Recall—the proportion ofmatches present in readerB’smatches that were also present in readerA’s
matches. Also called sensitivity:
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Number of differencesNd—the number of edges present in one graph and not the other. This is equivalent
to the cardinality of the symmetric difference between the sets of edges EA andEB
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For assessing the performance of the automated lesionmatchingmethod versus the reference standard
reader consensus, we set EA= Eauto andEB= Econs, where Eauto andEcons were the sets of edges produced by the
automatedmatchingmethod and the reader consensus, respectively. For the assessment of IRV,we adopted the
convention for precision and recall that reader B’smatches were the reference standard against which reader A’s
matches were being evaluated. This choice was arbitrary, and if it were to be reversed, the effect would be that the
reported values for IRVprecision and recall would be reversed. The F1 score and the number of differencesNd

would be equivalent if the order of readers A andBwere reversed (e.g. F(EA,EB)= F(EB,EA)).

2.6. Statistical analysis
Differences between IRV and performance of the automatedmethod and differences inmatching timewere
assessedwith pairedWilcoxon tests. Correlation between lesionmatchingmetrics, the time for readers to
performmatching, and the number of lesions in each scan-pair were assessedwith Spearman correlation.

3. Results

3.1. Automated lesionmatching
Clinical characteristics of the dataset are reported in table 1. Automatedmatching performance by disease-
cohort is shown in table 2. Automated lesionmatching performancewas not significantly different from IRV for
any assessedmetric, for any disease-cohort (Wilcoxon paired test, p> 0.05). However, when allN= 40 cases
were considered, a significant difference in Recall between IRV and automatedmatching performancewas
observed (IRV:median recall of 1.00, automated:median recall of 0.92, p= 0.05). A similar difference in the
number of differences was verging on significance at theα= 0.05 level (IRV:medianNd of 0, automated:median
Nd of 2, p= 0.06). In the AdvancedCancers disease cohort (41.6± 43.0 lesions per scan), at least one difference
inmatching between the automatedmethod and reader consensus was observed in 8/10 (80%) of cases.

The performance of the automated lesionmatchingmethodwas dependent on disease burden. In high-
burden cases (30+ lesions,N= 9 cases), median F1-scorewas 0.89, and one ormore differences inmatchingwas
observed in 8/9 (89%) cases. In low-burden cases (<10 lesions,N= 14), themedian F1-scorewas 1.00, and one
ormore differences inmatchingwas observed in 2/14 (14%) cases. Performance of the automatedmatching
method by disease burden is summarized in table 3. Automated lesionmatching performancewas not
significantly different from IRV for any assessedmetric, for any burden-cohort (Wilcoxon paired test, p> 0.05).

We investigated correlation between automated lesionmatchingmetrics and the number of lesions per
scan-pair. As the number of lesions increased, the performance of the automatedmatching decreased for all

Table 1.Patient characteristics. NSCLC=non-small cell lung cancer.

NSCLC (N= 10) Head and neck (N= 10)
Lymphoma

(N= 10) Advanced cancers (N= 10)

Sex—n (%)
Male 6 (60%) 6 (60%) 6 (60%) 8 (80%)
Female 1 (10%) 4 (40%) 4 (40%) 2 (20%)
Not provided 3 (30%) 0 (0%) 0 (0%) 0 (0%)
Age—year

Median

(range)
61 (47, 69) 58 (48, 66) 51 (36, 74) 67 (48, 77)

Disease stage

1 0 0 1 0

2 1 2 1 0

3 6 2 1 2

4 0 6 7 8

Not provided 3 0 0 0

Treatment Platinum-based chemor-

adiotherapywithout

surgery

Chemoradiotherapies,

various

Rituximab plus

chemotherapies

Various (Lu-radiopharmaceutical

therapies, hormonal therapy,

immunotherapies,

chemotherapies)
Time between

scans—days

Median

(range)
162 (82, 210) 172.5 (102, 312) 115 (44, 156) 95 (0, 912)
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metrics (Spearman correlation, p< 0.05). Automated lesionmatchingmetrics as a function of number of lesions
are shown infigure 1.

3.2.Multi-reader lesionmatching study
Both readers completed independent review of allN= 40 scan-pairs and recordedmatching results. An example
of the inter-reader lesionmatching analysis for a subject in theNSCLC cohort is shown infigure 2. A full
summary of inter-reader variaibility by disease-cohort is shown in table 2. In the AdvancedCancers disease
cohort, at least one difference inmatching between readers was observed in 10/10 (100%) cases.

Similar to the automatedmethod, IRVwas highly dependent on disease burden. In high-burden cases (30+
lesions,N= 9 cases), themedian F1-score between the two readers was 0.93.One ormore differences in
matchingwas observed in 6/9 (67%) cases. In low-burden cases (<10 lesions,N= 14), themedian F1-score
between the two readers was 1.00.One ormore differences inmatchingwas observed in 2/14 (14%) of low-
burden cases. IRV of lesionmatching by disease burden is summarized in table 3.

We assessed correlation between IRVmetrics and the number of lesions on each scan-pair (figure 3). Similar
to automatedmatching performance, the amount of variation between readers increased as the number of
lesions increased (Spearman correlation, p< 0.05) for allmetrics.

Table 2. Inter-reader variability of lesionmatching versus the performance of the automated lesionmatchingmethod (auto) by disease
cohorts. Data are reported asmedian (range).P-values are tests for significant differences between IRV and automatedmatching
performance (Wilcoxon paired tests).

Precision Recall F1 score Nd

NSCLC (N= 10)
IRV 0.97 (0.67, 1.00) 1.00 (0.50, 1.00) 0.98 (0.57, 1.00) 0.5 (0, 4)
Auto 0.92 (0.80, 1.00) 0.89 (0.71, 1.00) 0.91 (0.75, 1.00) 2.5 (0, 8)
p 0.74 0.26 0.40 0.18

Head and neck (N= 10)
IRV 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 0 (0, 0)
Auto 1.00 (0.50, 1.00) 1.00 (0.33, 1.00) 1.00 (0.40, 1.00) 0 (0, 3)
p 0.11 0.11 0.11 0.08

Lymphoma (N= 10)
IRV 1.00 (0.25, 1.00) 1.00 (1.00, 1.00) 1.00 (0.40, 1.00) 0 (0, 3)
Auto 1.00 (0.92, 1.00) 1.00 (0.80, 1.00) 1.00 (0.86, 1.00) 0 (0, 4)
p 1.00 0.18 1.00 0.41

AdvancedCancers (N= 10)
IRV 0.92 (0.69, 1.00) 0.86 (0.74, 0.96) 0.89 (0.72, 0.96) 5.5 (2, 58)
Auto 0.88 (0.59, 1.00) 0.86 (0.60, 1.00) 0.87 (0.63, 1.00) 15.5 (0, 59)
p 0.24 0.95 0.86 0.53

ALL (N= 40)
IRV 1.00 (0.25, 1.00) 1.00 (0.50, 1.00) 1.00 (0.40, 1.00) 0 (0, 58)
Auto 0.97 (0.50, 1.00) 0.92 (0.33, 1.00) 0.94 (0.40, 1.00) 2 (0, 59)
p 0.14 0.05 0.12 0.06

Table 3. Inter-reader variability of lesionmatching versus the performance of the automated lesionmatchingmethod (auto) by disease
burden. Caseswere divided into three disease-burden cohorts: low-(<10 lesions), intermediate- (10–29 lesions) and high- (30 ormore
lesions) burden. Data are reported asmedian (range). P-values are tests for significant differences between IRV and automatedmatching
performance (Wilcoxon paired tests).

Precision Recall F1 score Nd

Lowburden (N= 14)
IRV 1.00 (0.25, 1.00) 1.00 (0.50, 1.00) 1.00 (0.40, 1.00) 0 (0, 3)
Auto 1.00 (0.50, 1.00) 1.00 (0.33, 1.00) 1.00 (0.40, 1.00) 0 (0, 3)
p 0.85 0.41 1.00 1.00

Intermediate burden (N= 17)
IRV 1.00 (0.80, 1.00) 1.00 (0.77, 1.00) 1.00 (0.79, 1.00) 0 (0, 7)
Auto 0.92 (0.59, 1.00) 0.91 (0.71, 1.00) 0.91 (0.65, 1.00) 2 (0, 14)
p 0.17 0.27 0.17 0.11

High burden (N= 9)
IRV 0.95 (0.69, 1.00) 0.91 (0.74, 1.00) 0.93 (0.72, 1.00) 5 (0, 58)
Auto 0.91 (0.66, 1.00) 0.86 (0.60, 1.00) 0.89 (0.63, 1.00) 17 (0, 59)
p 0.12 0.26 0.26 0.18
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Figure 1.Performance of the automated lesion-matching algorithm as a function of the number of lesions in four cohorts. Number of
lesions is defined as the sumof the number of lesions present on the two scans in each case. Eachmetric is annotatedwith Spearman
correlation (ρ) between themetric and the number of lesions. Note the data are presented on a log scale.

Figure 2. Lesionmatching in a female subject with stage IIINSCLC imagedwith 18F-FDGPET/CTbefore (Scan 1) and after (Scan 2)
platinum-based chemotherapy. PET/CTwere acquired 179 d apart. The lesion located in the rectum (orange contour, label 1) is
matched differently between readers. Reader A determines that the lesion disappears after scan 1 and a new lesion in a similar area
appears on scan 2. Reader B determines that these two lesions are homologous and should bematched between scans.
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3.3. Time spent on lesionmatching
Across allN= 40 cases,manual, individual lesionmatching by the two readers took amedian of 5 (range: 1, 130)
and 7 (range: 2, 120)minutes, respectively. The automatedmethod took amedian of 1.1 (range: 0.5, 10.6)
minutes tomatch lesions. The automated lesionmatchingmethod took significantly less time tomatch lesions
than either reader (Wilcoxon paired test, p< 0.001). The difference inmatching time between readers was not
significant (p= 0.37). Time to performmatching for the readers and automatedmethod is summarized in
table 4.

In high-burden cases (30+ lesions,N= 9 cases), themedian time to performmatching for the two readers
was 60 and 30 minThe automatedmethod performedmatching in high-burden cases in amedian of 3.9 min In
low-burden cases (<10 lesions,N= 14 cases), themedian time to performmatching for the two readers was 3
and 3.5 min, and the corresponding time for the automatedmethodwas 0.9 min.

Positive correlation between the number of lesions in a scan pair andmatching time for both readers
(Spearman ρ= 0.86, ρ= 0.89), and for the automated lesionmatchingmethod (ρ= 0.67).Matching time as a
function of number of lesions is shown infigure 4.

Figure 3.Matching IRVmetrics as a function of the number of lesions in four cohorts. Number of lesions is defined as the sumof the
number of lesions present on the two scans in each case. Eachmetric is annotatedwith Spearman correlation (ρ) between themetric
and the number of lesions. Note the data are presented on a log scale.

Table 4.Disease burden and time for readers and the automatedmethod (Auto) to performmanualmatching. Data are reported asmedian
(range).

Number of lesions—

Scan 1

Number of lesions—

Scan 2

Time reader

A (min)
Time reader

B (min)
Time

auto (min)

NSCLC (N= 10) 8.5 (1, 28) 8.5 (1, 19) 10 (1, 20) 11.5 (4, 25) 1.1 (0.7, 1.7)
Head and neck (N= 10) 3 (2, 6) 3 (1, 7) 3 (2, 5) 3 (2, 6) 0.9 (0.5, 1.5)
Lymphoma (N= 10) 8 (2, 30) 3 (1, 8) 4 (2, 5) 4 (3, 16) 1.0 (0.8, 1.6)
Advanced can-

cers (N= 10)
21.5 (3, 63) 33.5 (7, 179) 60 (15, 130) 25 (10, 120) 3.9 (1.0, 10.6)

ALL (N= 40) 7 (1, 63) 6 (1, 179) 5 (1, 130) 7 (2, 120) 1.1 (0.5, 10.6)
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3.4. Reproducibility of automated lesionmatching
To evaluate the reproducibility of the automated lesionmatching algorithm,matchingwas performed twice for
each scan pair and thematching results from the first runwere compared to the results of the second run.No
differences in lesionmatchingwere observed between runs of the automated lesionmatching algorithm
(precision, recall, F1 score all=1 andNd= 0).

4.Discussion

In this study, we assessed performance of an automated approach to lesionmatching between longitudinal scans
of patients with variousmetastatic cancers, and compared the performance of the automatedmethod against
IRV.When comparing the automated lesionmatchingmethod to the reader consensus as a reference standard,
the automated lesionmatchingmethod performedwithin IRV. The performance of the automated lesion
matchingmethodwas not significantly different from IRVof lesionmatching for any assessedmetric in any
cohort.

Little IRV of lesionmatchingwas observed in low burden cases (<10 lesions per scan). However, in high-
burden cases (30+ lesions), differences between readers were seen in 67%of cases. In the advanced cancers
disease cohort (up to 179 lesions per scan) selected specifically formatching difficulty, differences between
readers were seen in 100%of cases. This suggests that IRV is of significant concern in patients with high disease
burden imaged longitudinally.Moreover, this study represents only a single step of the image analysis that is
performed for patients with cancer imaged longitudinally. Higher IRVwould be observed if all steps in the
analysis were included (i.e. lesion detection, segmentation, and response interpretation).

Across all cases,manual lesionmatching took the two readers amedian of 5 and 7 min, respectively. This was
significantly longer than automatedmatching, which took amedian of 1.1 min In high-burden cases, the
difference between reader and automated lesionmatching speedwasmost evident. Here, the readers took a
median of 60 and 30 min, respectively, while the automatedmatching took amedian of 3.9 min In current
clinical practice, only a susbet of lesionsmay bematched between scans to perform aRECIST-based response
assessment (Eisenhauer et al 2009). The high amount of time (up to 130 min) required for the readers in this
study to perform lesionmatching highlights why it is not performed in typical clinical practice today. Availablity
of automatedmethods such as the one described in this study is important to enable access for clinicians to
comprehensive lesion-matching in clinical practice with accurate,more reproducable results.

The readers who participated in the inter-reader study (authors SC andMC) have 15 and 11 years’ relevant
experience and have contributed to the refinement of the automated lesionmatching algorithm. Theywere also
providedwith precontoured and numbered lesion labels to performmatching. Due to their specific experience

Figure 4.Time to performmanualmatching for the two readers and the automatedmethod as a function of the number of lesions in
eachmatching case. Number of lesions is defined as the sumof the number of lesions present on the two scans in each case. Correlation
between number of lesions andmatching timewas quantifiedwith Spearman’s r. For all cases, correlation between number of lesions
andmatching timewas significant (p< 0.001).
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and provided lesion labels, theymay perform lesionmatching faster ormore consistently than a typical clinician
with less experience andwho is not providedwith precontoured lesion labels. This suggests that the estimate of
time cost in our studymay underestimate the true time cost ofmanual lesionmatching if it were to be performed
clinically.

For both readers and the automatedmethod, significant correlationwas observed between the number of
lesions in the scans and the time to performmatching.While the difference inmatching time between readers
and the automatedmethodwas smaller for low-burden cases, automated lesionmatching still conveys the
inherent advantage of requiring zero reader time, excepting quality assurance. The speed of the automated
method is dependent on the hardware of the computer it is executed on. In this study, we report the timing of the
automatedmethod running on a desktopworkstationwith an 8 core/16 threadCPU and 16GB of RAM,which
are reasonable specifications for a desktopworkstation at the time ofwriting. Further speed improvements
could be realized either through optimization of the automated code, or by executing the programonhardware
with improved specifications.

When the automated lesionmatching algorithmwas runmultiple times, no differences inmatching results
between runswere observed. This suggests the automated lesionmatching algorithm is highly reproducible.
Small differences in deformable image registration can occur between repeated trials, however thesewere
minimized by using fixed random seeds, andwere not substantial enough to result in differences inmatching in
our study. Therefore, the advantage of automated lesionmatching is not onlyworkflow time-saving, but also
high reproducibility. The strength ofmatching reproducibiltymay be especially relevant whenmatching is
performed by less experienced operators. To validate this hypothesis, amulti-reader study using pairs of
operators with a variety of experience levels could be performed.

We reviewed all cases where the performance of the automated lesionmatchingmethod deviated from the
reader consensusmatching. Themost common reasons for deviationswere: inaccurate image registration
placing homologous lesions too far apart for amatch to be established, small lesion fragments not being grouped
with a nearby lesion cluster, and spuriousmatches being assigned between lesionswhich overlap following
registration but occupy distinct tissues. These boundary conditions are of interest for future refinement of the
automated lesionmatchingmethod. Based on these observations, it is likely that deformable image registration
performance is themain factor affectingmatching performance. Investigation of factors contributing to patient-
specific registration undertainty, or alternative approaches to registration, such as deep learning-based
registration (Fu et al 2020) should be performed. Beyond registration, further refinement of themethod’s
dilation step could be investigated by implementing anatomy-specific dilationmagnitudes, as registration
uncertainty in rigid anatomy such as bone is likely lower than uncertainty in soft tissue.

Readers took amaximumof 120 and 130 min to performmanual lesionmatching. The highest average
matching time occurred in a subject withmetastatic neuroendocrine tumours, where each reader took 120 min
to performmatching, and the automatedmethod took 5.7 minThis subject had 59 lesions on scan 1 and 60
lesions on scan 2, whichwere densely concentratedwithin the liver. This casewas difficult for both the readers
and the automated lesionmatchingmethod, resulting in an F1 score of 0.72 between readers and an F1 score of
0.76 between the automatedmethod and reader consensus. Interestingly, while this case took themost reader
time, it was not the case with themost lesions. The case with themost lesionswas a subject with bone-metastatic
prostate cancer imagedwithCT,with 63 lesions on scan 1 and 179 lesions on scan 2. Readers took 130 and
94 min, respectively, tomatch this case, while the automatedmethod took 6.5 min.

In this study, we analyzed lesionmatches above a volume threshold of 0.1 cm3. This volume thresholdwas
chosen in discussionwith the two study readers, whowere not confident in the reliability of lesion contours, or
in their ability to reliablymatch lesions below a volume of 0.1 cm3.While such small lesionsmay represent only a
small fraction of a patient’s overall disease burden, commonly used response criteria such as RECIST 1.1 define a
response of ProgressiveDisease if any new lesions are noted, regardless of size (Eisenhauer et al 2009). For this
reason, small lesions can impact patientmanagement, and determiningwhether they are newormatch to an
existing lesion is of clinical consequence.

In our study, we used graph structures to describe the lesionmatching problem and assess IRVof lesion
matching. Several other published studies havemade use of graphs to describe the process of following lesions
over time. In Szeskin et al (2023), the authors use graphs to describe lesionmatching, and report precision and
recall of their dilation-based lesionmatching approach of (mean± sd) 0.86± 0.18 and 0.90± 015, respectively,
which are similar to our results. Their dataset consisted of 50 scan-pairs containing a total of 492 lesions (mean
of 9.8 lesions/subject), which is similar to our low-burden cohort. Their analysis was limited to liver lesions, and
the did not assess IRVof lesionmatching. In Yan et al (2018), a distance-based approach to lesionmatching is
evaluated in 103 patients imagedwithCT. They report area under the precision–recall curve of 0.959, with an
estimated precision and recall of 0.86 and 0.92, respectively. Their dataset contained 1313 lesions (mean of 12.7
lesions/subject), which ismost similar to the intermediate-burden cohort in our study. Finally, ‘tumor trees’,
which are graph structures, were used inKuckertz et al (2022) to describe progression of tumor burden in
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longitudinally imaged cancer patients. The investigators use a spatial overlap criterion to determinematches, but
do not evaluate the accuracy of theirmethod.

Commonly used imaging response criteria such as the Response EvaluationCriteria in Sold Tumours
(RECIST) assign patient response based on changes in a subset of visible lesions (Eisenhauer et al 2009).
RECISTv1.1 assesses up to 5 target lesions to assign a response category. In our study, 14/40 cases (35%) of
subjects hadfive or fewer lesions on both scans.Within this subset, 2/14 (14%) of cases contained one ormore
matching differences.

In this study, we assessed lesionmatching in a population (N= 40) of patients withNSCLC, head andneck
tumours, DLBCL, and various advanced cancers. These cohorts were selected for their range of disease burden,
and differences in spatial distribution of lesions. Additionally, the datawere collected retrospectively, andwere
not part of a prospective trial with the express purpose of conducting an inter-readermatching study.

5. Conclusion

The automated lesion-matchingmethodmet the benchmark of IRV,while performing thematching task
significantlymore efficiently than human readers. In low-burden patients, little to no IRVwas observed and
time cost for readers to perform lesionmatchingwas acceptable. However, in higher-burden patients,
substantial IRVwas observed and time cost became incompatible with clinical workflow, highlighting the
clinical utility of automated lesionmatching.
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