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A B S T R A C T   

Precision nutrition aims to deliver personalised dietary advice to individuals based on their personal genetics, 
metabolism and dietary/environmental exposures. Recent advances have demonstrated promise for the use of 
omic technologies for furthering the field of precision nutrition. Metabolomics in particular is highly attractive as 
measurement of metabolites can capture information on food intake, levels of bioactive compounds and the 
impact of diets on endogenous metabolism. These aspects contain useful information for precision nutrition. 
Furthermore using metabolomic profiles to identify subgroups or metabotypes is attractive for the delivery of 
personalised dietary advice. Combining metabolomic derived metabolites with other parameters in prediction 
models is also an exciting avenue for understanding and predicting response to dietary interventions. Examples 
include but not limited to role of one carbon metabolism and associated co-factors in blood pressure response. 
Overall, while evidence exists for potential in this field there are also many unanswered questions. Addressing 
these and clearly demonstrating that precision nutrition approaches enable adherence to healthier diets and 
improvements in health will be key in the near future.   

1. Introduction 

The recent data from the Global Burden of Disease Study highlighted 
the important role poor diet plays on non-communicable disease (NCD) 
mortality and morbidity [1]. Importantly, the data demonstrated that 
suboptimal diet is responsible for more deaths than other risk factors. 
Additionally, high rates of obesity and diet related diseases in children 
are reported [2]. Consequently, there is an urgent need to develop 
innovative ways to improve diets and enable shifts to higher quality 
diets. This need coupled with the increasing evidence that individuals 
respond differently to diets has highlighted the requirement to move 
away from “one size fits all” approaches [3–5]. With the emergence of 
omics technologies the concept of precision nutrition emerged where 
combining different biological data can help understand variability in 
response to diets [5–7]. While both “personalised nutrition” and “pre-
cision nutrition” terms are used interchangeably by some and distinct 
differences defined by others, in the present review we use precision 
nutrition in the broadest terms. 

The omic technologies have contributed to the development of pre-
cision nutrition and offer great potential as the field moves forward not 
only to understand variability in response to diet but also to predict such 
responses. Metabolomics is the study of small molecules called 

metabolites and application of metabolomics in the context of precision 
nutrition is the focus of this review [8]. Metabolomics is suited to exploit 
the study of food by measuring both exogenous and endogenous me-
tabolites [9]. Focusing on exogenous metabolites can capture informa-
tion on food intake while measuring the endogenous metabolome can 
inform how diet impacts on metabolic pathways [9,10]. This dual aspect 
of metabolomics can play a pivotal role in the development and delivery 
of precision nutrition. In this review, we focus on key concepts and 
studies that employ metabolomics/biomarker measurements to progress 
the precision nutrition field. In particular, we focus on areas where 
metabolomics has played a key role such as food intake biomarkers, 
metabolic phenoptyping and response to interventions. 

2. Biomarkers of food intake – role in precision nutrition 

The limitations associated with current methods for assessment of 
food intake are well documented in the literature [11–14]. Metab-
olomics derived biomarkers of food intake have potential to address 
some of these limitations. These metabolites reflect food intake and in 
some instances can also reflect the quantity of food consumed. A recent 
review of the literature examined data in relation to 67 foods and food 
components and reported 347 potential biomarkers [15]. From this 
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review, biomarkers for wholegrains, soy and sugar were the most reli-
able. However, a full validation of all potential biomarkers is needed to 
ensure that we are moving towards improved dietary assessment. Such a 
validation scheme was developed by the European Consortium, Food-
Ball [16]. The validation criteria included assessment of biological 
plausibility, time–response, dose–response, robustness, reliability, sta-
bility, and analytical performance of the method used to measure them. 
Furthermore, a series of systematic reviews were conducted to examine 
biomarkers of a range of different foods [17,18]. While many putative 
biomarkers were identified for foods including citrus, red meat, coffee, 
green leafy vegetables, cereal foods, apple, pear and stone fruit, there 
are relatively few that are fully validated [17–22]. 

For biomarkers to be useful in assessment of dietary intake for de-
livery of precision nutrition it is imperative that large scale efforts are 
made to validate food intake biomarkers both at an individual and 
population level [10,23]. Working through the validation criteria for 
Food intake biomarkers will remove biomarkers that are not suitable 
and may be influenced by factors other than food intake. Understanding 
the impact of factors such as age, BMI and ethnicity on biomarker levels 
is important to drive forward their potential use [24]. Furthermore, we 
need to progress the use of food intake biomarkers so that they have 
added value over traditional self-reported approaches or can be used in 
conjunction with such approaches. Examples of where metabolomic 
derived biomarkers were used to calibrate self-reported data exists. In a 
recent study a combination of urinary and serum biomarkers for red 
meat were used to develop calibration equations in a biomarker study 
with 450 participants. These calibration equations were then used to 
adjust the self-reported data from FFQs in a larger study to examine 
associated of intake with cardiovascular disease, cancer, and diabetes 
incidence [25]. While a high-meat dietary pattern was associated with 
higher chronic disease risks, the associations were attributable to 
high-fat, high-energy and high-sodium that occur in a high red-meat diet 
rather than to the meat in this population group. The employment of the 
biomarkers enables a fresh look at the associations between dietary 
factors and disease risks and outcomes. Work in our research group 
developed calibration curves using a controlled dietary intervention to 
allow determination of citrus intake from urinary proline betaine [26]. 
We further developed regression calibration curves using dietary data 
from 4-day food records and biomarker data which could be used to 
correct self-reported data [27]. Both these examples demonstrate the 
potential of food intake biomarkers to improve the accuracy of dietary 
assessment which in turn can be used to assess individuals’ diet prior to 
the delivery of personalised advice. Accurately, assessing current intake 
could aid in the prioritisation of foods to focus on for personalised 
advice. 

Concomitant with the development of the concepts in relation to 
specific food intake biomarkers is the use of panels of biomarkers to 
assess dietary patterns. There are several studies that have used bio-
markers to examine adherence to established dietary patterns such as 
the Mediterranean diet [28–30]. A series of serum metabolite levels in 
postmenopausal women were used to distinguish between low and high 
adherence to four healthy diet scores [31]. Other studies have similarly 
found associations between metabolites and predefined dietary patterns 
[30,32–34]. More recently, urinary profiles were linked with the 
Alternative Healthy Eating Index [35]. While measurement of adher-
ence to dietary patterns is interesting, the assessment of the links with 
disease risk represents exciting possibilities for the development of 
precision nutrition. A metabolites signature including 67 metabolites 
was associated with adherence to the Mediterranean diet in a Spanish 
population and replicated in US cohorts. Then in prospective analysis, 
the metabolite signature was predictive of CVD risk [36]. In a recent 
study a total of eight metabolites (mannose, γ/β-tocopherol, 
N1-methylinosine, pyrraline and four amino acids) were inversely 
associated with three healthy dietary patterns [37]. These metabolites 
were associated with worse cardiometabolic traits and elevated diabetes 
risk, indicating that targeting a reduction in these metabolites could be a 

successful precision nutrition strategy. 
While adherence to pre-defined dietary patterns can inform us about 

the dietary quality of an individual, there is also interest in using panels 
of biomarkers to classify individuals into dietary patterns. The advan-
tage of such an approach is that is removes the reliance on self-reported 
data and therefore reduces the burden on participants. Classification 
into a dietary pattern could be followed by personalised dietary advice. 
Evidence exists to support the potential of combination of biomarkers to 
classify individuals into dietary patterns. Using urinary metabolomics 
data individuals were classified into dietary patterns and the classifi-
cation was validated in independent studies [38]. Work in our research 
group also employed the urinary NMR profile to classify individuals into 
four dietary patterns and replication was achieved in a separate popu-
lation group which also demonstrated good reproducibility over four 
timepoints. 

There is interest in using metabolomic biomarkers for assessment of 
exposure to bioactive compounds such as polyphenols. Dietary poly-
phenols are typically referred to as anti-oxidants, as in vitro these com-
pounds can scavenge reactive oxygen, nitrogen, and chlorine species, 
whilst chelating metal ions that could promote oxidation reactions. 
However, the anti-oxidant properties of polyphenols are perhaps less 
relevant in vivo due to their low concentrations in plasma, and their 
rapid metabolism by liver enzymes and gut bacteria. Also, their me-
tabolites may not have the same level of antioxidant activity. Instead, 
dietary polyphenols may act as pro-oxidants by activating the tran-
scription factors of nuclear factor erythroid 2 related factor 2 (Nrf-2) and 
heat shock factor (HSF), as shown in several vitro and in vivo studies, and 
reviewed by us [39]. This supports a role for dietary polyphenols in 
enhancing the production of anti-oxidant enzymes and heat shock pro-
teins to protect against the potential damage by ROS. Measurement of 
polyphenols and the derived metabolites offers the potential to assess 
exposure and can help address and understand the interindividual 
variation in response to polyphenol interventions [40]. Furthermore, 
consumption of bioactive compounds like polyphenols are believed to 
affect disease outcomes depending on their concentration in the diet, on 
genetic factors that determine enzyme activity, on gut microbiota 
composition and on lifestyle, which are all highly individualized factors 
and therefore important in the context of precision nutrition [41]. 
Collectively, the above examples illustrate the power of metabolomics in 
terms of assessment of food intake which in turn has potential for 
development and implementation of precision nutrition (Fig. 1). 

3. Metabotyping for precision nutrition 

In recent years the concept of metabotypes has emerged which in-
volves using metabolic parameters to group individuals into subgroups 
with similar metabolic profiles. Metabolomics plays a key role in either 
defining these subgroups/metabotypes or supporting the definition of 
the metabotypes. Interest in metabotypes emerged initially through 
research demonstrating that metabotypes had differential response to 
diets and interventions [42–44]. Developing precision nutrition ap-
proaches based on metabotypes is an attractive approach to deliver 
advice that is tailored to the metabolic profile of the individuals (Fig. 2). 

A recently published study examined the ability of metabotypes to 
deliver nutrition advice. During a 12 week randomised controlled 
intervention the PERSON study delivered advice according to metab-
otypes of tissue specific insulin resistance [45]. Using an oral glucose 
tolerance test (OGTT), individuals were classified as muscle insulin 
resistant or liver insulin resistant. For each metabotypes participants 
were randomised to a diet that was optimal or suboptimal for their 
phenotype with the hypothesis that those randomised to the optimal diet 
would have improvements in the primary (the disposition index) and 
secondary (insulin sensitivity, glucose homeostasis, serum tri-
acylglycerol, and C-reactive protein) outcomes. While no changes in the 
primary outcome were observed, significant improvements in the sec-
ondary outcomes were reported. Furthermore, the improvements were 
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for individuals who received the suboptimal diet highlighting the 
complexity of delivering precision nutrition. Nonetheless, the study 
clearly supports the concept that modulation of diet based on metab-
otypes can produce more pronounced clinically relevant improvements 
in cardiometabolic health. 

Delivery of tailored dietary advice to a general population group 
through use of metabotypes is an attractive approach. Using four 
routinely measured markers of metabolic health (triacyglycerol, 
cholesterol, HDL-cholesterol and glucose), a total of three metabotypes 
were identified in a population [46,47]. Subsequently, a framework was 
developed to deliver nutrition advice to each metabotype [47]. The 
metabotypes were successfully replicated in the German cohort KORA 
and the incidence of cardiometabolic diseases differed across the 
metabotypes supporting the use of the framework to delivery tailored 
advice [43]. The ability of this framework to deliver personalised 
nutrition is currently under investigation using a 12-week randomised 
controlled trial (RCT) (n = 107) [48]. The primary outcome will 
determine if the metabotype approach is an effective mechanism of 

improving diet quality and metabolic health parameters. 
The PREVENTOMICS platform was developed to deliver personal-

ised advice to overweight and obese individuals [49,50]. Employing 52 
urine and blood biomarkers in conjunction with 35 SNPs, the algorithm 
calculated scores for each individual based on five metabolic processes 
including oxidative stress, inflammation, carbohydrate metabolism, 
lipid metabolism and gut microbiota metabolism. In a 10-week RCT, the 
platform was tested for its ability to improve fat mass compared to 
generic dietary advice. However, following the intervention, both the 
personalised and generic groups improved fat mass, body weight, dia-
stolic blood pressure and metabolic health biomarkers. While following 
the metabotype diet did not improve the outcomes further, work is 
needed to better define/refine the metabotypes. It is also possible that 
the study duration was not long enough to see the added benefit of 
advice via the personalised approach. 

Collectively these studies highlight the potential of metabotypes for 
delivery of precision nutrition. Further work is needed to demonstrate 
the efficacy of the approach and to understand the mechanistic un-
derpinnings. Rather than focus on a specific set of metabolites relevant 
for a particular metabotype the important aspect of the work that has 
emerged to date is the overall framework for using metabotyping. Using 
the approach to sub group the population group and then tailor the 
advice according to the sub-group is the key underpinning concept. 
Future work is now needed to develop these concepts further and 
demonstrate the efficacy of tailoring dietary advice based on sub- 
groups/metabotypes within a population. 

4. Use of metabolomics to predict response to dietary 
intervention 

The field of precision nutrition aims to determine the factors asso-
ciated with differences in response to dietary interventions. There are a 
small number of elegant studies which have, following careful consid-
eration of mechanistical pathways, established that response to a diet, or 
weight loss intervention, could be predicted by one or two single factors. 
For example, microbial enterotypes are characterized by distinct 
digestive functions with preference for specific dietary substrates, 
resulting in short-chain fatty acids that may influence energy balance in 
the host. Consequently, the enterotype may have the ability to affect an 
individuals’ ability to lose weight. This was demonstrated in a study 
where stratification of individuals according to two microbial enter-
otypes, e.g. dominance of either Prevotella or Bacteroides, helped to 
predict weight loss responses following an average Danish diet or a high- 
fibre new Nordic diet. The high-fibre diet seemed to optimize weight loss 
among Prevotella-enterotype subjects but not among Bacteroides- 
enterotype subjects [51]. Another example relates to predicting the 
blood pressure lowering response in those where high blood pressure is 
associated with homozygosity for the common C677T polymorphism in 
the MTHFR gene. The homozygous TT variant is associated with a 
decreased enzyme activity of methylenetetrahydrofolate reductase 
(MTHFR). This is due to the loss of the B-vitamin riboflavin, which, as 
the precursor of the co-enzyme and electron carrier flavin adenine 
dinucleotide (FAD), is required as a cofactor for MTHFR (Fig. 3). Ribo-
flavin appears to stabilise MTHFR in vivo, and a range of randomized 
controlled studies have subsequently shown that riboflavin supple-
mentation significantly reduces systolic blood pressure by 5-13 mmHg, 
specifically in individuals with the MTHFR 677 TT genotype [52]. A 
third study, already discussed above, validated previous observations 
that the presence of specific insulin-resistant phenotypes may predict 
cardiometabolic responsiveness to specific diets differing in dietary 
macronutrient composition, e.g. a high MUFA diet or a low-fat high 
complex carbohydrate diet [45]. 

However, prediction of response is usually more complex. To enable 
the identification of predictive factors, we typically need large studies, 
with hundreds of participants, that examine a whole range of bio-
markers which may help to explain the differences in response between 

Fig. 1. Role of metabolomics in the assessment of dietary intake. Metab-
olomics based biomarkers can give objective information on food intake, and 
therefore improve the accuracy of dietary assessment acquired through dietary 
questionnaires,. Furthermore, metabolomics can measure an individuals’ 
exposure to bioactive compounds. Therefore, metabolomics approaches can aid 
the development and implementation of precision nutrition approaches. 

Fig. 2. Role of metabotyping in the development of targeted dietary 
advise. Metabotypes are subgroups of metabolically similar individuals. The 
use of metabolomics to define subgroups, and the development and delivery of 
tailored dietary advice to these subgroups, is a tool for delivery of preci-
sion nutrition. 
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participants, including genetics, the participant’s gut microbiome, body 
composition, hyperlipidaemic and diabetic phenotypes, and a range of 
metabolites indicative of, for example, glucose or protein metabolism, as 
identified through metabolomics. More recently, studies have started to 
use more advanced statistical approaches and machine-learning algo-
rithms to exploit the inter-individual differences in response to foods, 
meals and diets, for example in relation to postprandial (post-meal) 
glycaemic and lipid responses, based on a much wider range of indi-
vidual genetic and/or phenotypic traits, often obtained by the applica-
tion of omics technologies. Two landmark studies have pioneered the 
field of precision nutrition and predicting individual responses dietary 
intake. The first study, performed in an Israelian population by Zeevi 
and colleagues [6], measured continuous glucose responses to 46,898 
meals in 800 participants. Typically, studies report a high variability in 
the glucose response to identical meals between individuals [7,53]. But 
by integrating individual data on blood clinical chemistry outcomes, 
dietary habits, anthropometrics, physical activity and gut microbiota, 
machine-learning algorithms could accurately predict individual post-
prandial glycaemic responses to a standardised breakfast. Individual 
BMI, HbA1c, fasting glucose, and age were, as expected, strongly 
correlated with the postprandial response to a standardized breakfasts 
and real-time meals, but the study also found significant positive cor-
relations between the individual postprandial response of participants 
and some of their clinical data, such as HbA1c, alanine aminotrans-
ferase, CRP, and their gut microbiome. These results suggest that post-
prandial glycaemic responses are associated with multiple and diverse 
factors, including factors related to meal content (carbohydrate, fat, 
fibre, alcohol, and sodium), or unrelated to meal content (time that 
passed since last sleeping, cholesterol levels, HbA1c%, and microbiome) 
[6]. The model of personalised algorithms developed for this particular 
study was subsequently applied in a second study to design a person-
alised diet for Israelian adults with newly diagnosed Type2 Diabetes 
Mellitus, aiming to improve personal postprandial glucose responses 
and metabolic health, as compared with the commonly recommended 
Mediterranean-style diet. The authors found that the personalised diet 
significant lowered levels of continuous glucose measurement-based 
measures, including the average postprandial glucose response and 
mean glucose levels. The personalised diet also significantly improved 
multiple metabolic health parameters, including HbA1c, fasting glucose, 
and triglycerides, and in over half of the participants, diabetes remission 

was observed [54]. The model of personalised algorithms, as developed 
by Zeevi et al. [6], was also applied in the Personal Diet Study in 1999 
overweight and obese American adults with abnormal glucose meta-
bolism and obesity. Participants were either consuming a low-fat diet, or 
a personalised diet where meal choices were coded green, yellow or red 
based on individual estimated postprandial glucose responses. In this 
latter group, participants were instructed to make different food choices 
or substitutions to change a yellow or a red score to a green score. 
Participants in both groups lost weight, although not to the extent that it 
could be considered clinically meaningful. The personalised diet tar-
geting a reduction in PPGR did not result in greater weight loss 
compared with a low-fat diet, after 6 months [55]. The second study, 
performed in a UK and USA population [5], assessed a range of post-
prandial metabolic responses in 1002 twins and unrelated healthy 
adults. They observed a large interindividual variability in postprandial 
responses of blood triglycerides, glucose and insulin following identical 
and standardised muffin meals. Interestingly, this study found that 
different person-specific factors had a higher or lower degree of influ-
ence on each of these postprandial responses. For example, meal 
composition, genetics, meal context, serum glycaemic markers and the 
gut microbiome had the greatest influence on postprandial glucose 
levels, whereas serum lipids and fasting triglycerides were the main 
determinants of postprandial triglycerides, in both cases explaining 
nearly 50% of variance. Overall, genetics had relatively little (<10%) 
impact on responsiveness to meal composition and in this study, the role 
of metabolomic phenotyping appeared more useful in the delivery of 
precision nutrition [5]. Overall, the potential role of heritability in 
predicting outcomes appears to vary depending on the outcomes being 
considered; twin studies have shown that heritability estimates for 
adherence to dietary indices varied between 10 and 43% [56], whereas 
environmental factors such as diet and anthropometric measures are 
much more important in shaping human gut microbiota than host ge-
netics [57]. On the other hand, for Type 2 Diabetes prevalence, herita-
bility is believed to be as high as 72%, and the impact of environmental 
factors is much lower as evidenced by the low number of discordant 
monozygotic pairs for Type 2 Diabetes in the DISCOTWIN study [58]. 

Previous approaches, which attempted to link postprandial glycae-
mic responses to the intrinsic properties of a consumed food, such as is 
done with using the glycaemic index model [59], are now superseded by 
evidence from, for example, the studies above that, whilst individual 
postprandial glucose and lipid responses are still strongly dependent on 
factors like meal composition, endogenous phenotypic characteristics, 
such as serum glycaemic markers and the gut microbiome, also play an 
important role when predicting individual response [5,6,55]. This 
means that it is possible to develop personalised diet strategies to predict 
and therefore better manage postprandial glucose and triglyceride re-
sponses, at least in populations that were represented in these two large 
studies. It would be interesting to see, however, whether use of such 
algorithms provide comparable predictive ability in other populations. 

Personalised strategies to better exploit the potential of diet or di-
etary components to improve health outcomes depend on our ability to 
identify ‘response’ to diet in intervention studies, and based on that, 
identify which characteristics determine whether one person is a 
‘responder’ and another person is not. Only recently have studies started 
to look into identifying responders and non-responders to intervention 
in a more comprehensive and considered way, in an attempt to push 
forward the field of personalised and precision nutrition, as highlighted 
below. Many of these studies have benefitted from the richness of omics 
datasets, especially when involving metabolomics, to better define the 
individual phenotype. For example, a recent study characterised gly-
caemic responders and non-responders to a low-caloric diet, based on 
significant improvements in visceral fat, overall and tissue-specific in-
sulin resistance following a low caloric diet (800 kcal/d) for 8 weeks. 
The analysis was performed in 375 participants of the DiOGenes mul-
ticentre randomised controlled dietary intervention study who had lost 
>8% body weight. All had similar body composition, glycaemic control, 

Fig. 3. Riboflavin and one carbon metabolism. The B vitamin riboflavin, in 
its co-enzymatic form FAD, is required as a cofactor for methylenetetrahy-
drofolate reductase (MTHFR), which catalyses the reduction of 5,10 methylene 
THF to 5-methyl THF. 5-methyl THF is required by methionine synthase for the 
vitamin B12–dependent conversion of homocysteine to methionine, which, 
once activated by ATP, forms the methyl donor S-adenosylmethionine. 
Decreased MTHFR enzyme activity is evident in individuals where high blood 
pressure is associated with homozygosity for the common C677T polymorphism 
in the MTHFR gene, but supplementation with riboflavin appears to stabilise 
MTHFR enzyme activity. 
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adipose tissue transcriptomics and levels of plasma ketone bodies at 
baseline. However, integrative analyses of plasma Somalogic prote-
omics, LC-MS lipidomics, NMR metabolomics and clinical biochemistry 
analysis identified a plasma omics model of baseline parameters that 
could predict non-responders for weight loss and insulin sensitivity 
improvement better than clinical models. The study elegantly demon-
strated that differences in responsiveness may be due to de novo lipo-
genesis, keto-metabolism and lipoprotein metabolism, suggesting an 
important role for adipose and liver tissue in metabolic improvement 
following low-calorie intervention [60]. 

Another study characterised individual responses in postprandial 
glucose levels, and the inter- and intra-individual reproducibility of 
postprandial glucose responses, in overweight and obese adults upon 
consumption of hydrolysed milk proteins drinks. Independent t-tests 
were used to explore if individuals were responders or non-responders to 
either one of two casein hydrolysates, compared with consumption of an 
intact caseinate supplement, at an individual participant level at P <
0.05. The ingestion of one specific casein hydrolysate successfully 
reduced the postprandial glucose response at the group level. However, 
at an individual level, only 3 participants were classified as ‘responders’. 
This could be linked to inter-individual coefficients of variation being 
significantly higher than the intra-individual coefficients of variation, in 
responses to dietary intervention [7]. 

Two further studies recently assessed inter-individual variability in 
response to protein and fish oil supplementation in older adults at risk of 
sarcopenia [61], and how inter-individual variability in response to fish 
oil supplements could be used to predict the triglyceride-lowering 
response in healthy adults [62]. The first of these two studies set out 
to test the interindividual variability in responses in appendicular lean 
mass, leg strength, timed up-and-go, and serum triglyceride concentra-
tions, to supplementation with leucine-enriched protein, 
leucine-enriched protein plus fish oil, or a control supplement, in older 
adults at risk for sarcopenia. In order to determine ‘responsiveness’, 
inter-individual variability in response to supplementation was esti-
mated by comparing the standard deviation of individual responses with 
the minimally clinically important difference. Responsiveness to sup-
plementation was then assessed as clinically meaningful interindividual 
variability, e.g. when the standard deviation of the individual response 
exceeded the minimally clinically important difference in the main 
outcomes. This methodological approach indicated that there was 
minimal inter-individual variability in changes in appendicular lean 
mass, leg strength, timed up-and-go, and serum triglyceride concentra-
tions in response to protein and fish oil supplementation in older adults 
at risk of sarcopenia [61]. For the second study, we used data from the 
placebo-controlled crossover FINGEN study, assessing the effects of fish 
oil supplements in 312 healthy individuals [63], to predict change in 
concentrations of plasma triglycerides and in plasma levels of the main 
fish oil fatty acids eicosapentaenoic acid (EPA) + docosahexaenoic acid 
(DHA). We developed variable selection models, based on forward and 
backward stepwise selection, LASSO and the Boruta algorithm, to show 
that fish oil supplementation led to a greater lowering in triglycerides in 
those with lower pre-intervention levels of plasma insulin, LDL choles-
terol, and saturated fat consumption, and higher pre-intervention levels 
of plasma triglycerides, and serum IL-10 and VCAM-1 levels. The models 
also found greater increases in plasma levels of EPA + DHA in those who 
were older and were female. This study highlights the opportunities for 
secondary analysis of large trial datasets to identify those who are more 
likely to benefit from intervention, in this case fish oil supplementation, 
in terms of relevant physiological outcomes [62]. 

There has been discussion on how best to identify response in 
intervention studies. Some studies have dichotomise continuous physi-
ological outcomes into “responders” or “non-responders”, with re-
sponders being participants in a study group whose individual response 
is above or below a certain response threshold deemed to be clinically 
important. However, it may not be appropriate to label someone as a 
responder or non-responder from a single pair of values (e.g. a baseline 

versus end value, representing a change from baseline); as responses 
may vary from occasion to occasion [64]. Indeed, pre-to-post within 
subject variability, due to within-person variability because of fluctua-
tions in physiology, and due to technological variability when 
measuring physiological markers [65], can introduce significant varia-
tion between consecutive measurements. Another issue with dichoto-
misation is that responses could potentially be explained by ‘regression 
to the mean’, especially when baseline values in, for example blood 
pressure or plasma lipids, were particularly high [66]. Using outcomes 
on a continuous scale rather than being dichotomised into responders 
and non-responders to intervention, as done by Potter et al. [62], would 
maximise statistical power [64,66]. Furthermore, it has been proposed 
that a less biased and more informative approach should use the stan-
dard deviation of individual responses to estimate the chance a new 
person from the population of interest will be a responder [66]. 

N-of-1 trials would make predictions for individuals more accurate 
[64]. Such studies repeatedly assess the response to one or multiple 
treatments in the same person. Repeated measurements are increasingly 
being facilitated by a growing number of outcomes that can be measured 
automatically, outside of the clinic, via electronic devices, such as 
continuous glucose measurements. N-of-1 designs can be applied to both 
short-term physiological and clinical studies, as well as longer-term 
studies to assess how everyday behaviours affect individual health. 
This may help to reveal novel associations between participant charac-
teristics and health outcomes, with repeated measures providing power 
and precision to accurately determine an individual’s health status [62]. 

A recent series of N-of-1 studies aimed to investigate the individual 
variability in postprandial glycaemic response when eating diets with 
different proportions of dietary fat and carbohydrates, in apparently 
healthy Chinese adults. The authors applied a Bayesian analysis model 
to calculate the posterior probability of a clinically meaningful differ-
ence in maximum postprandial glucose, mean amplitude of glycaemic 
excursions, and the total area under the CGM curve from 00:00 to 24:00 
h, between the 6-day intervention periods where participants received 
either the low fat-high carbohydrate or high fat-low carbohydrate diets, 
at the individual level. Amongst those with a posterior probability 
>80%, 9 of the 30 participants were identified as high-carbohydrate 
responders whilst 6 of the 30 participants were identified as high-fat 
responders. Analyses of the Bayesian-aggregated n-of-1 trials among 
all participants showed a relatively low posterior probability of reaching 
a clinically meaningful difference of the 3 outcomes between low fat- 
high carbohydrate and high fat-low carbohydrate diets [67]. 

All of these studies show how implementation of omics technologies, 
especially those that relate to continuous glucose monitoring, and 
application of appropriate statistical methods to rich and larger datasets, 
can develop our knowledge of the factors underpinning the heteroge-
neity in physiological responses due to dietary interventions (Fig. 4). 
Such approaches can provide a useful tool for precision nutrition, and in 
the tailoring of dietary recommendations, for different population 
groups. Development of specific targeted metabolomic assays that 
measure specific metabolites in a quantitative fashion will enable testing 
of approaches across multiple studies and study populations. 

5. Future perspectives 

The area of precision nutrition, and the concepts underpinning it’s 
research, have only recently started to attract a lot more attention. The 
opportunities that omics technologies offer, especially metabolomics, to 
broaden our understanding of dietary intake and how this links to dis-
ease development, as well as to evaluate individual responsiveness 
based on metabotypes, and/or other factors including someone’s ge-
netics, their gut microbiome, body composition, and metabolites 
indicative of glucose or protein metabolism, offer important improve-
ments on how we can provide personalised and more precise dietary 
advice. Advanced statistical and AI approaches play an increasingly 
important role in this development, especially in relation to the 
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integration of multi-omics datasets to define metabotypes and predict 
individual response, as pioneered in a few precision nutrition studies 
although it is recommended that such AI approaches should be applied 
carefully and transparently [64]. Furthermore, careful consideration is 
needed to merge the developments with the updating of national dietary 
guidelines. 

However, whilst the studies performed in this area thus far are 
promising, as outlined above, there are important knowledge gaps we 
need to consider. For example, will more precise dietary advice for in-
dividuals or specific population groups lead to better adherence to 
healthier diets, and to better individual health outcomes? The Food4Me 
study [68] was one of the first proof-of-principle studies suggesting that 
personalised approaches could lead to improved adherence and health 
outcomes, at least during the 6 months of the study. However, evidence 
from more longer-term studies, in real-life settings, is currently lacking. 
We also lack evidence on the cost efficacy of precision nutrition ap-
proaches in healthcare settings. The application of precision nutrition 
approaches could be of particular benefit to those diagnosed with 
chronic diseases, but only if precision nutrition approaches would prove 
to be good value for money in comparison to more standard and con-
ventional pharmaceutical approaches. Finally, but importantly, most 
studies thus far have been performed in educated individuals recruited 
from a specific geographical area, with a relatively homogenous 
phenotype, thus limiting the generalizability of findings. It is worth 
noting that N-of-1 studies are ideally suited to study the effects of 
behavioural and environmental factors on dietary compliance and effi-
cacy. N-of-1 studies could also be used to investigate more complex 
research questions and to study underrepresented groups [69]. 

Finally, from a methodology development viewpoint it is imperative 
that metabolites are measured quantitatively and using well validated 
methodologies to enable actionable decisions to be made. Development 
of novel collection devices to enable robust collection of biological 
samples at home will facilitate the expansion of precision nutrition to a 
broader population group. Ensuring that such collection devices are 
compatible with getting robust metabolite measurements will be key. 
Concomitant with this is the need to develop wearable sensors that could 
capture real time monitoring of a range of metabolite levels. Consider-
able success has been obtained using the continuous glucose monitors: 
expanding the measurements to include metabolites that capture more 
metabolic pathways should lead to significant progress in the research 
field of precision and personalised nutrition. In order to create public 
health impact, however, such methodological developments will need to 
be adopted by clinical and healthcare practice as part of primary and 
tertiary prevention strategies, and/or in a home-setting for raising 
health awareness and to allow monitoring of personal health. At present, 
the number of outcomes being analysed by personalised nutrition plat-
forms, and therefore the quality and tailoring of personalised advice 
provided to users and patients, is limited and often not cost-effective. It 
is important, therefore, not to over-promise the potential of precision 
nutrition and to allow sufficient time for the field to reach scientific 

maturity. It is also critical to initiate and maintain clear and open di-
alogues between scientists, clinicians, public health bodies and “users” 
in order to foster trust, and to develop strategies for the field of precision 
nutrition to move on from general population-based dietary guidelines 
to include more targeted dietary advice that better predicts dietary 
health outcomes on an individual level, and to better suit the individual 
on their personalised health journey. 
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