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Abstract

Objectives: Myositis is a heterogeneous family of diseases that includes dermatomyositis (DM), 

antisynthetase syndrome (AS), immune-mediated necrotizing myopathy (IMNM), inclusion body 

myositis (IBM), polymyositis, and overlap myositis. Additional subtypes of myositis can be 

defined by the presence of myositis-specific autoantibodies (MSAs). The purpose of this study 

was to define unique gene expression profiles in muscle biopsies from patients with DM, AS, 

IMNM, IBM, and the MSA-defined subtypes of myositis.

Methods: RNAseq was performed on muscle biopsies from 119 myositis patients with IBM 

or defined MSAs and 20 controls. Machine learning algorithms were trained on transcriptomic 

data and recursive feature elimination was used to determine which genes were most useful for 

classifying muscle biopsies into each type and MSA-defined subtype of myositis.

Results: The support vector machine learning algorithm classified the muscle biopsies with 

>90% accuracy. Recursive feature elimination identified genes most useful to the machine learning 

algorithm and that are only overexpressed in one type of myositis. For example, CAMK1G, 

EGR4, and CXCL8 are highly expressed in AS but not in DM or other types of myositis. 

Using the same computational approach, we also identified genes that are uniquely overexpressed 

in different MSA-defined subtypes. These included APOA4, which is only expressed in anti-

HMGCR myopathy, and MADCAM1, which is only expressed in anti-Mi2-positive DM.

Conclusions: Unique gene expression profiles in muscle biopsies from patients with DM, AS, 

IMNM, IBM and different MSA-defined subtypes of myositis suggest that different pathological 

mechanisms underly muscle damage in each of these diseases.
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INTRODUCTION

The idiopathic inflammatory myopathies (IIM) are a heterogeneous family of diseases that 

includes six major types: dermatomyositis (DM), antisynthetase syndrome (AS), immune-

mediated necrotizing myopathy (IMNM), inclusion body myositis (IBM), polymyositis, 

and overlap myositis [1]. Furthermore, 50-80% of IIM patients have myositis-specific 

autoantibodies (MSAs) that define phenotypically distinct IIM subtypes[2 3].
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Muscle biopsies from patients with each major type of myositis have distinctive pathological 

features. For example, perifascicular myofiber atrophy and/or necrosis is a characteristic 

feature of both DM and AS, IMNM biopsies have abundant scattered necrotic myofibers, 

and IBM muscle biopsies usually include myofibers with cytoplasmic vacuoles[4]. However, 

histologic features that can reliably distinguish between DM and AS have not been 

identified. Similarly, histologic features cannot reliably be used to distinguish between 

different MSA-defined subtypes of DM or IMNM. Thus, it remains unclear whether 

different pathological pathways lead to muscle damage in the different myositis types and 

MSA-defined subtypes.

The advent of gene chip microarray and next-generation sequencing technologies has 

facilitated the use of myositis muscle biopsy gene expression profiles to identify 

pathological pathways. For example, microarray analysis led to the discoveries that type 

I and type II IFN-inducible genes are upregulated in muscle biopsies from patients with 

DM[5] and IBM[6 7], respectively. However, disease-specific gene expression profiles have 

not been fully described in patients with IMNM, AS, or any of the autoantibody-defined 

subtypes of DM. Furthermore, little attention has been given to genes that are differentially 

expressed between patients with different types and subtypes of myositis.[8–11] In the 

current study, we trained machine learning algorithms to classify muscle biopsies using 

transcriptomic data from normal, IBM, and MSA-positive muscle biopsies; biopsies from 

the 20-50% of myositis patients who are MSA-negative were not included in this study. We 

then used recursive feature elimination to identify novel disease-specific gene expression 

patterns that may be pathologically relevant in DM, AS, IMNM, IBM, and MSA-defined 

subtypes of myositis.

MATERIALS AND METHODS

Patients, samples, and autoantibody testing

Muscle biopsies obtained from subjects enrolled in IRB-approved longitudinal cohorts from 

the NIH (IRB number 91-AR-0196), the Johns Hopkins Myositis Center (IRB number 

NA_00007454), the Clinic Hospital (Barcelona; IRB number HCB/2015/0479), and the Vall 

d’Hebron Hospital (Barcelona; IRB number PR (AG) 68/2008) were included in the study 

if the patients fulfilled IBM criteria according to Lloyd,[12] or had one of the following 

MSAs: anti-NXP2, -Mi2, -TIF1γ, -MDA5, -HMGCR, -SRP, or -Jo1. Autoantibody testing 

was performed as previously described for anti-HMGCR and by line blot for the others 

(EUROLINE Myositis Profile 4). Patients were classified as having the antisynthetase 

syndrome (AS) if they had autoantibodies against Jo-1 and fulfilled Connor’s AS criteria,

[13] in the DM group if they had autoantibodies recognizing Mi2, NXP2, TIF1γ or MDA5 

and in the IMNM group if they tested positive for anti-SRP or anti-HMGCR autoantibodies. 

Normal muscle biopsies were obtained from the Johns Hopkins Neuromuscular Pathology 

Laboratory (n=10) and the Skeletal Muscle Biobank of the University of Kentucky (n=10).

Standard protocol approvals and patient consents.

This study was approved by the Institutional Review Boards at participating institutions and 

written informed consent was obtained from each participant.
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Human muscle biopsy processing, human skeletal muscle cell culture, and mouse muscle 
injury

See Supplementary Methods.

RNA-sequencing

RNA-sequencing (RNA-seq) was performed as previously described.[14] Briefly, RNA was 

prepared using TRIzol. Libraries were prepared using the NeoPrep™ system according to 

the TruSeq Stranded mRNA Library Prep protocol (Illumina) and sequenced using the 

Illumina HiSeq 2500 or 3000. Reads were aligned using the STAR v.2.5 25, the abundance 

of each gene was quantified using StringTie v.1.3.3.26 and the differential gene expression 

was performed using DESeq2 v.1.20 (Supplementary Methods). The Benjamini-Hochberg 

correction was used to adjust for multiple comparisons and a corrected p-value (q-value) of 

0.05 or less was considered statistically significant.

Pathway analysis

We used Ingenuity Pathway Analysis v.01-07 and genes with a q-value below 0.05 and an 

expression ratio greater than 2 in each group compared to the rest of the biopsies were 

included in the analysis. Immunologic pathways with a z-score over 2 were selected.

RNAseq-based classification

To find the ability of RNAseq data to classify different types of myositis we first tested 

several classification models. Next, we performed stratified cross-validation to estimate the 

accuracy of each model. All steps were performed using Python v.3.6.3. Numpy v.1.13.3 and 

Pandas v.0.20.3 were used for data wrangling and basic statistical calculations, respectively 

(Supplementary Methods).

Those genes with significantly differential expression levels in one group compared to the 

rest of the biopsies were included in each model. The sample was split into a training set 

containing 2/3 of the observations and a test set containing the remaining 1/3. The training 

set was used to build the classificatory models and the testing set to evaluate the accuracy 

of the model. The machine learning models were developed using the package Scikit-learn 

v.0.19.1. Models were built using 2/3 random resamples of the data and tested in the 

remaining 1/3. The accuracy of classifying each of the myositis subsets was determined 

based on the mean and 95% CI of one thousand resampling cycles (Supplementary 

Methods).

Recursive feature elimination was applied to the whole dataset to rank each gene according 

to how useful it was for the model to differentiate the different patient groups. The RFE 

technique was applied through its implementation in Scikit-learn v.0.19.1 (Supplementary 

Methods).

Statement of patient and public involvement

Neither patients nor the public were involved in the design, conduct, reporting, or 

dissemination of this research.
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Data availability statement

Deidentified RNAseq data will be made available upon request to Dr. Andrew Mammen 

(andrew.mammen@nih.gov)

RESULTS

Machine learning models accurately classify muscle biopsies

Muscle biopsy specimens were available from 119 myositis patients including 39 with DM 

(11 anti-Mi2-, 12 anti-NXP2-, 11 anti-TIF1γ-, and 5 anti-MDA5-positive), 49 with IMNM 

(9 anti-SRP- and 40 anti-HMGCR-positive), 18 with anti-Jo1-positive AS, and 13 with IBM. 

Twenty normal muscle biopsy specimens were utilized as comparators. Expression levels of 

all genes were determined for each sample by RNAseq. Details regarding the patients and 

their muscle biopsy features are found in Supplementary Table 1. Expression levels of genes 

associated with immune cells, regenerating myofibers, and mature skeletal muscle are found 

in Supplementary Figure 1.

First, we identified those genes with statistically significant differential expression in 

controls and each major type of myositis compared to the rest of the groups. A total of 

10,141 differentially expressed genes were identified and the top 10 for each group are 

listed in Table 1. For example, the interferon-inducible gene ISG15 is the top differentially 

expressed gene in both DM and normal muscle biopsies; it is expressed at 43-fold higher 

levels in DM compared to the rest of the groups and at 17-fold lower levels in normal 

biopsies compared to the rest of the groups.

To determine whether machine learning programs could use transcriptomic data to 

accurately classify patients into each major type of myositis or the control group, all 

differentially expressed genes were included in each of 10 machine learning models 

(Supplementary Methods). From among the models tested, the linear support vector machine 

(SVM) model performed the best with accuracies of 91% or greater to identify normal DM, 

AS, IMNM and IBM muscle biopsies. (Table 2).

Identifying genes with unique expression patterns in DM, AS, IMNM, and IBM

We expected that for each major type of myositis, those genes contributing most to the 

accuracy of the machine learning classification model would be involved in disease-specific 

pathological processes. To identify which among the thousands of differentially expressed 

genes used by the linear SVM model are most useful to classify a biopsy into each 

type of myositis, we used the recursive feature elimination technique.[15] This method 

systematically eliminates genes with the weakest role in the model, leaving those that are 

most important to classify muscle biopsies into the correct group. Table 3 lists the 10 genes 

whose expression levels have the greatest utility to identify samples as belonging to each 

type of myositis or control group. Figure 1 shows the expression levels of the 3 most 

important genes from each group.

We first sought to validate this approach by determining whether it would identify key genes 

already known to play roles in DM pathogenesis. As genes upregulated by type I IFN are 
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known to be expressed at high levels in DM muscle[5 16], we expected that expression 

levels of type I IFN-inducible genes should be important for the linear SVM model. Indeed, 

high expression levels of type 1 IFN-inducible genes MX1 and ISG15 were among the 3 

most important features used to identify DM muscle biopsies (Table 3).

When applied to the AS group, recursive feature elimination identified CAMK1G (calcium/

calmodulin-dependent protein kinase IG), EGR4 (early growth response protein 4), and 

CXCL8 (interleukin 8) as the 3 most important genes (Table 3). Each of these genes is 

expressed at markedly higher levels in AS than in the other groups (Figure 1).

High expression levels of MYH4 (myosin heavy chain 4) and JCHAIN (the joining chain 

of multimeric IgA and IgM) were among the 3 most important features used by the linear 

SVM model to identify samples as belonging to the IBM group (Table 3 and Figure 1). In 

addition, the low expression level of H19 (a noncoding RNA) in IBM compared to DM, AS, 

and IMNM (Figure 1) appeared to be important for IBM classification.

Expression levels of STAT1 (signal inducer and activator of transcription 1), MYH8 (myosin 

heavy chain 8), and PSMB9 (proteasome subunit beta 9) were the top features used to 

classify a muscle biopsy as IMNM (Table 3). Based on the patterns of expression (Figure 

1), the model seems to rely both on the low expression of IFN-inducible genes STAT1 and 

PSMB9 (expressed at high levels in DM, AS, and IBM) as well as the high expression of 

MYH8 (expressed at low levels in normal muscle) to classify biopsies as IMNM.

The expression levels of ACTC1 (actin alpha cardiac muscle 1), LOC151121 (a non-coding 

gene), and SAA1 (serum amyloid A1) were the top features used to classify normal muscle 

biopsies (Table 3). Interestingly, normal muscle biopsies were characterized by low levels 

of ACTC1, which encodes a structural protein expressed during muscle regeneration[17] 

(Figure 1). Similarly, the SAA1 gene, which encodes the acute phase reactant serum 

amyloid A1, was expressed at low levels in normal muscles and high levels in all of the 

myositis groups. In contrast, LOC151121 was expressed at high levels in normal muscle but 

at low levels in all the myositis groups (Figure 1).

Identifying genes with unique expression patterns in the different subtypes of IMNM and 
DM

Using the same methodology, we next identified those genes that were most useful to 

classify biopsies according to the different autoantibody-defined subtypes within IMNM and 

DM. This revealed that APOA4 (apolipoprotein A4) was selectively expressed in IMNM 

patients with anti-HMGCR autoantibodies (Figure 2). Similarly, MADCAM1 (mucosal 

vascular addressin cell adhesion molecule 1) was exclusively detectable in DM patients 

with anti-Mi2 autoantibodies (Figure 2).

Pathway analysis

To gain further insight into the biological processes that distinguish each group compared to 

the others, we performed pathway analyses. For each analysis, we included the set of genes 

differentially expressed by at least two-fold in the type of myositis (or control) compared to 

the rest of the biopsies. Pathways annotated as related to the “cellular immune response”, 
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“cytokine signaling”, and “humoral immune response” (i.e., immunologic pathways) were 

included in each analysis.

As expected, “interferon signaling” was the top over-represented immunologic pathway in 

DM (Figure 3). The AS and IBM biopsies shared the same top 3 over-represented pathways 

that were not included DM, IMNM, or control biopsies. These included the T cell pathways 

“ICOS-ICOSL signaling in T helper cells”, “CD28 signaling in T helper cells”, and the “Th1 

pathway”. No immunologic pathways were over-represented in IMNM biopsies. Rather, 

IMNM biopsies, like control biopsies, were notable for the under-representation of pathways 

that were important in DM, AS, and/or IBM.

Muscle regeneration genes are among the top differentially expressed genes in IMNM and 
are also overexpressed in other types of myositis

To classify biopsies as IMNM, linear SVM relied on the relative under expression of 

genes expressed at high levels in other forms of myositis (e.g., STAT1 and PSMB8)[16] 

rather than on genes that were uniquely overexpressed in IMNM. To further investigate 

pathological processes important for IMNM, we considered the known functions of the top 

10 overexpressed genes in biopsies from these patients (Table 4). Interestingly, several of 

these are known to play a role in skeletal muscle differentiation and/or muscle repair. For 

example, ACTC1 encodes alpha-actin which is expressed in early adult skeletal muscle.[17] 

Similarly, TNC encodes an extracellular matrix protein that is expressed only in actively 

remodeling musculoskeletal tissue.[18]

To determine whether the other most overexpressed genes in IMNM play a role in muscle 

regeneration, we analyzed their expression levels in cultured human myoblasts as they 

differentiated to form myotubes. Each gene was expressed at low levels in myoblasts and 

at high levels in differentiating myotubes (Supplementary Fig 2). Similarly, these genes 

were expressed at low levels in healthy mouse muscle, but at high levels in regenerating 

mouse muscles following a muscle injury (Supplementary Fig 3). This pattern suggests that 

these genes are expressed as part of the muscle regeneration process induced by necrosis 

in IMNM muscle. Since regeneration is also a common feature of muscle biopsies from 

those with DM, AS, and IBM, we expected that muscle biopsies from each of these types 

of myositis should also have high levels of the genes overexpressed in IMNM. Indeed, even 

though they were not among the top 10 overexpressed genes in the other groups, each of 

these genes was highly expressed in the other types of myositis muscle but not control 

muscle (Supplementary Fig 4).

We next considered the known functions of the top 10 upregulated genes in DM, AS, and 

IBM compared to control muscle (Table 4). Consistent with prior studies, many of the top 

10 differentially expressed genes in muscle biopsies from DM patients are inducible by 

interferon type I (e.g., ISG15[19 20], IFI6[21], and MX1[22]) (Table 4). Similarly, several 

of the most overexpressed genes in AS and IBM muscle biopsies are interferon type II 

inducible genes (e.g., PSMB8[23], GBP2, and GBP1[24 25]) (Table 4).
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DISCUSSION

In this study, we showed that machine learning algorithms trained on transcriptomics data 

could accurately classify myositis muscle biopsies from DM, AS, IMNM, and IBM patients. 

This demonstrates that these IIM types have unique gene expression profiles. Indeed, by 

applying recursive feature elimination to the machine learning algorithms we identified 

novel gene markers (e.g., CAMK1G, EGR, and CXCL8) that are uniquely expressed in 

AS but not DM, even though these two diseases can be histologically indistinguishable. 

Moreover, we also identified genes (e.g., ACTC1 and SSA1) that are overexpressed in all 

types of myositis studied here but not in normal muscle. Finally, we confirmed previous 

observations related to the pathogenesis of myositis, including the role of interferon 

pathways in DM,[8 16] the prominence of muscle regeneration in IMNM,[26] and the 

presence of plasma cells in IBM (as evidenced by overexpression of JCHAIN, a plasma cell 

marker).[27 28]

We applied the same computational approach to identify genes that are uniquely upregulated 

in patients with different MSA-defined IIM subtypes. For example, although anti-SRP 

and anti-HMGCR myopathy muscle biopsies are histologically identical, we identified the 

APOA4 gene as being exclusively upregulated in the latter subtype of IMNM. Since statin 

exposure is a risk factor for developing anti-HMGCR myopathy but not other types of 

myositis[29], it is of interest that APOA4, which contributes to reverse cholesterol transport 

by facilitating the movement of cholesterol from the periphery to the liver for excretion[30], 

is only upregulated in anti-HMGCR myopathy muscle biopsies.

We also found that different MSA-defined DM subtypes had different gene expression 

profiles. For example, MADCAM1 was uniquely expressed in muscle biopsies from DM 

patients with anti-Mi2 autoantibodies. Of note, MADCAM1 is expressed on endothelial 

surfaces in the intestine where it mediates the migration of lymphocytes into the gut 

by binding to α4β7 integrin found on the surface of CD4+ and CD8+ T-cells[31]. Since 

MADCAM1 recruits inflammatory cells to the gut in patients with colitis, we hypothesize 

that it could play a similar role in anti-Mi2-positive DM patients, who have more 

lymphocytic invasion of muscle fibers than DM patients with other autoantibodies[32]. This 

could have therapeutic implications since drugs that target the MADCAM1/α4β7 pathway 

have already been developed.

This study was not designed to directly compare the performance of machine learning 

algorithms utilizing muscle biopsy transcriptomic data with the analysis of histologic 

features to diagnose different types of myositis. Still, the current study suggests that machine 

learning algorithms would fare favorably in such a comparison. For example, only 72% 

of biopsies from the included DM patients had perifascicular atrophy[32], the key feature 

required for histologic diagnosis of DM[33]. Nonetheless, the SVM algorithm diagnosed 

DM based on the muscle biopsy transcriptome with an accuracy of 92%. This raises the 

possibility that, with the availability of gene expression profile data collected from a large 

number of patients with different types of myopathy, machine learning algorithms could be 

diagnostically useful.
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This study was limited in that we did not include muscle biopsies from all types of myositis. 

Indeed, we excluded biopsies from patients with polymyositis, overlap myositis, and MSA-

negative forms of myositis. Furthermore, our analysis was restricted to gene expression 

data and did not include analyses of the corresponding proteins. Nonetheless, by applying 

machine learning algorithms to muscle biopsy transcriptomic data, we have demonstrated 

that DM, AS, IMNM, and IBM can be distinguished based on their unique gene expression 

patterns. Furthermore, by applying recursive feature elimination to these classification 

models, we not only confirmed known pathological pathways in IIM, such as the role of 

type I interferon in DM, we also identified novel genes that are uniquely upregulated in 

other types and MSA-defined subtypes of myositis. We expect this computational approach 

could be useful for analyzing transcriptomic data from other autoimmune conditions in 

which there are different types and subtypes of the disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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KEY MESSAGES

What is already known about this subject?

• Different types of myositis are likely to have unique pathological 

mechanisms.

What does this study add?

• Machine learning algorithms can be trained on transcriptomic data to classify 

muscle biopsies from patients with DM, AS, IMNM, and IBM.

• Recursive feature elimination can be used to determine which genes are most 

important for the machine learning algorithms to classify the muscle biopsies.

• Only antisynthetase syndrome muscle biopsies express high levels of 

CAMKG, EGR4, and CXCL8 (interleukin 8).

• APOA4, a gene involved in cholesterol metabolism, is uniquely over-

expressed in anti-HMGCR myopathy, which can be triggered by statins.

• MADCAM1, which recruits lymphocytes to target tissues, is uniquely 

over-expressed in muscle biopsies from those with anti-Mi2-positive 

dermatomyositis.

How might this impact on clinical practice?

Gene expression profiling of muscle biopsies from individual myositis patients may 

identify specific pathologic pathways that could be used to tailor therapies.

Pinal-Fernandez et al. Page 12

Ann Rheum Dis. Author manuscript; available in PMC 2023 August 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Expression levels of those genes most helpful to classify muscle biopsies into each type 
of myositis.
The expression levels of the top 3 genes used by the support vector machine model to 

classify muscle biopsies from normal tissue (NT), dermatomyositis (DM), immune-mediated 

necrotizing myositis (IMNM), antisynthetase syndrome (AS) or inclusion body myositis 

(IBM).
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Figure 2. Genes selectively upregulated in different autoantibody-defined subtypes of myositis.
APOA4 and MADCAM1 are selectively overexpressed (log2[FPKM + 1]) in anti-HMGCR 

IMNM (q-value compared to SRP: 0.0009) and anti-Mi2 DM (q-value compared to other 

DM antibodies: 2.9E-9), respectively.

Normal tissue: NT; inclusion body myositis: IBM; anti-SRP IMNM: SRP; anti-HMGCR 

IMNM: HMGCR; anti-Mi2 DM: Mi2; anti-NXP2 DM: NXP2; anti-TIF1γ DM: TIF1; 

anti-MDA5 DM: MDA5; anti-Jo1 AS: Jo1.
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Figure 3. Pathway analysis in myositis and normal muscle biopsies.
The top 10 pathways of the different muscle biopsy groups are shown. NT, normal tissue; 

DM, dermatomyositis; IMNM, immune-mediated necrotizing myopathy; AS, antisynthetase 

syndrome; IBM, inclusion body myositis.
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Table 2.
A comparison of machine learning models to classify muscle biopsies based on gene 
expression data.

Accuracy and 95% confidence interval in the 1000 test sets of the different machine learning models to 

classify muscle biopsies into normal muscle tissue (NT), dermatomyositis (DM), antisynthetase syndrome 

(AS), inclusion body myositis (IBM) or immune-mediated necrotizing myopathy (IMNM).

NT DM AS IBM IMNM

Linear SVM 94.7 [87.2-100.0] 92.0 [85.1-97.9] 91.0 [85.1-95.7] 95.0 [91.5-100.0] 92.0 [85.1-97.9]

AdaBoost 91.5 [83.0-97.9] 89.6 [80.9-95.7] 89.1 [83.0-93.6] 91.9 [80.9-97.9] 85.8 [76.6-93.6]

Gaussian Process 94.2 [87.2-100.0] 82.9 [74.5-91.5] 87.2 [80.9-91.5] 91.0 [85.1-95.7] 79.6 [68.1-89.4]

Nearest Neighbors 91.5 [85.1-97.9] 87.8 [80.9-95.7] 87.2 [83.0-89.4] 90.6 [89.4-93.6] 77.4 [66.0-87.2]

Random Forest 89.7 [83.0-95.7] 85.6 [76.6-93.6] 85.7 [78.7-91.5] 90.4 [87.2-93.6] 78.3 [68.1-87.2]

Neural Network 89.1 [72.3-97.9] 83.5 [44.7-95.7] 87.4 [74.4-93.6] 91.1 [89.4-97.9] 71.6 [36.2-95.7]

Decision Tree 87.8 [76.6-95.7] 86.5 [76.6-93.6] 85.0 [74.5-91.5] 85.7 [76.6-93.6] 76.1 [57.4-89.4]

RBF SVM 85.1 [85.1-85.1] 82.6 [76.6-87.2] 87.2 [87.2-87.2] 89.4 [89.4-89.4] 64.0 [63.8-66.0]

Gaussian Naïve Bayes 85.1 [85.1-85.1] 80.2 [70.2-89.4] 86.4 [83.0-89.4] 89.3 [87.2-91.5] 66.1 [53.2-78.7]

QDA 86.5 [78.7-93.6] 63.5 [48.9-76.6] 75.5 [61.7-87.2] 80.4 [68.1-89.4] 63.1 [46.8-76.6]

SVM: support vector machines; RBF: radial basis function; AdaBoost: adaptative boosting; QDA: quadratic discriminant analysis. The models are 
sorted based on the average accuracy of all the groups.
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Table 3.

The top 10 most useful genes to differentiate biopsy samples using the recursive feature elimination technique 

on the support vector machine model.

NT DM AS IBM IMNM

ACTC1 MX1 CAMK1G MYH4 STAT1

LOC151121 TUBA1A EGR4 H19 MYH8

SAA1 ISG15 CXCL8 JCHAIN PSMB9

SOCS3 MCU PROK2 CFAP126 KLF10

ANKRD1 HIST2H2AA3 NT5C3A NT5C1A MYBPH

NREP IFI6 CXCL9 CCL13 ISG15

CCDC3 RARRES3 CAPN6 S100A9 MIR23A

PLEKHO1 CYB5R3 RAB13 COQ10A COL3A1

SAA2 IGFN1 ANKRD28 DBNDD1 IGLL5

MYBPH CDKN1A C2ORF40 ZNF106 HIST1H2BD

NT: normal muscle tissue; DM: dermatomyositis; AS: antisynthetase syndrome; IBM: inclusion body myositis; IMNM: immune-mediated 
necrotizing myopathy; The name and location of the genes is indicated in Supplementary Table 2.
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