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ABSTRACT 26 

Long interspersed element 1 (L1) are a family of autonomous, actively mobile 27 

transposons that occupy ~17% of the human genome. The pleiotropic effects L1 28 

induces in host cells—promoting genome instability, inflammation, or cellular 29 

senescence—are established, and L1’s associations with aging and aging diseases are 30 

widely recognized. However, because of the cell type-specific nature of transposon 31 

control, the catalogue of L1 regulators remains incomplete.  32 

Here, we employ an eQTL approach leveraging transcriptomic and genomic data from 33 

the GEUVADIS and 1000Genomes projects to computationally identify new candidate 34 

regulators of L1 expression in lymphoblastoid cell lines. To cement the role of candidate 35 

genes in L1 regulation, we experimentally modulate the levels of top candidates in vitro, 36 

including IL16, STARD5, HSDB17B12, and RNF5, and assess changes in TE family 37 

expression by Gene Set Enrichment Analysis (GSEA). Remarkably, we observe subtle 38 

but widespread upregulation of TE family expression following IL16 and STARD5 39 

overexpression. Moreover, a short-term 24 hour exposure to recombinant human IL16 40 

was sufficient to transiently induce subtle but widespread upregulation of L1 41 

subfamilies. Finally, we find that many L1 expression-associated genetic variants are 42 

co-associated with aging traits across genome-wide association study databases.  43 

Our results expand the catalogue of genes implicated in L1 transcriptional control and 44 

further suggest that L1 contributes to aging processes. Given the ever-increasing 45 

availability of paired genomic and transcriptomic data, we anticipate this new approach 46 

to be a starting point for more comprehensive computational scans for transposon 47 

transcriptional regulators.  48 
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BACKGROUND 49 

Transposable elements (TEs) constitute ~45% of the human genome [1]. Among 50 

these, the long interspersed element-1 (LINE-1 or L1) family of transposons is the most 51 

abundant, accounting for ~16-17% [1, 2], and remains autonomously mobile, with 52 

humans harboring an estimated 80-100 retrotransposition-competent L1 copies [3]. 53 

These retrotransposition competent L1s belong to evolutionarily younger L1PA and 54 

L1Hs subfamilies, are ~6 kilobases long, carry an internal promoter in their 5’-55 

untranslated region (UTR), and encode two proteins — L1ORF1p and L1ORF2p — that 56 

are necessary for transposition [4]. The remaining ~500,000 copies are non-57 

autonomous or immobile because of the presence of inactivating mutations or 58 

truncations [1] and include L1 subfamilies of all evolutionary ages, including the 59 

evolutionarily older L1P and L1M subfamilies. Though not all copies are transposition 60 

competent, L1s can nevertheless contribute to aspects of aging [5, 6] and aging-61 

associated diseases [7-10]. 62 

 Though mechanistic studies characterizing the role of L1 in aging and aging-63 

conditions are limited, it is clear that its effects are pleiotropic. L1 can contribute to 64 

genome instability via insertional mutagenesis and an expansion of copy number with 65 

age [11] and during senescence [12]. L1 can also play a contributing role in shaping 66 

inflammatory and cellular senescence phenotypes. The secretion of a panoply of pro-67 

inflammatory factors is a marker of senescent cells, called the senescence associated 68 

secretory phenotype (SASP) [13]. Importantly, the SASP is believed to stimulate the 69 

innate immune system and contribute to chronic, low-grade, sterile inflammation with 70 

age, a phenomenon referred to as “inflamm-aging” [13, 14]. During deep senescence, 71 
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L1 are transcriptionally de-repressed and consequently generate cytosolic DNA that 72 

initiates an immune response consisting of the production and secretion of pro-73 

inflammatory interferons [15]. Finally, L1 is causally implicated in aging-associated 74 

diseases like cancer. L1 may contribute to cancer by (i) serving as a source for 75 

chromosomal rearrangements that can delete tumor-suppressor genes [16] or (ii) 76 

introducing its promoter into normally-silenced oncogenes [17]. Thus, because of the 77 

pathological effects L1 can have on hosts, it is critical that hosts maintain precise control 78 

over L1 activity.  79 

 Eukaryotic hosts have evolved several pre- and post-transcriptional mechanisms 80 

for regulating TEs [18, 19]. Nevertheless, our knowledge of regulatory genes remains 81 

incomplete because of cell type-specific regulation and the complexity of methods 82 

required to identify regulators. Indeed, one clustered regularly interspaced short 83 

palindromic repeats (CRISPR) screen in two cancer cell lines for regulators of L1 84 

transposition identified >150 genes involved in diverse biological functions, such as 85 

chromatin regulation, DNA replication, and DNA repair [20]. However, only about ~36% 86 

of the genes identified in the primary screen exerted the same effects in both cell lines 87 

[20], highlighting the cell type-specific nature of L1 control. Moreover, given the 88 

complexities of in vitro screens, especially in non-standard cell lines or primary cells, in 89 

silico screens for L1 regulators may facilitate the task of identifying and cataloguing 90 

candidate regulators across cell and tissue types. One such attempt was made by 91 

generating gene-TE co-expression networks from RNA sequencing (RNA-seq) data 92 

generated from multiple tissue types of cancerous origin [21]. Although co-expression 93 

modules with known TE regulatory functions, such as interferon signaling, were 94 
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correlated with TE modules, it is unclear whether other modules may harbor as of now 95 

uncharacterized TE-regulating properties, since no validation experiments were carried 96 

out. Additionally, this co-expression approach is limited, as no mechanistic directionality 97 

can be assigned between associated gene and TE clusters, complicating the 98 

prioritization of candidate regulatory genes for validation. Thus, there is a need for the 99 

incorporation of novel “omic” approaches to tackle this problem. Deciphering the 100 

machinery that controls TE activity in healthy somatic cells will be crucial, in order to 101 

identify checkpoints lost in diseased cells. 102 

 The 1000Genomes Project and GEUVADIS Consortium provide a rich set of 103 

genomic resources to explore the mechanisms of human TE regulation in silico. Indeed, 104 

the 1000Genomes project generated a huge collection of genomic data from thousands 105 

of human subjects across the world, including single nucleotide variant (SNV) and 106 

structural variant (SV) data [22, 23]. To accomplish this, the project relied on 107 

lymphoblastoid cell lines (LCLs), which are generated by infecting resting B-cells in 108 

peripheral blood with Epstein-Barr virus (EBV). Several properties make them 109 

advantageous for use in large-scale projects, e.g. they can be generated relatively 110 

uninvasively, they provide a means of obtaining an unlimited amount of a subject’s DNA 111 

and other biomolecules, and they can serve as an in vitro model for studying the effects 112 

of genetic variation with any phenotype of interest [24, 25]. Indeed, the GEUVADIS 113 

Consortium generated transcriptomic data for a subset of subjects sampled by the 114 

1000Genomes Project, and used their genomic data to define the effects genetic 115 

variation on gene expression [26]. Together, these resources provide a useful toolkit for 116 

investigating the genetic regulation of TEs, generally, and L1, specifically.  117 
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 In this study, we (i) develop a pipeline to identify novel candidate regulators of L1 118 

expression in lymphoblastoid cell lines, (ii) provide experimental evidence for the 119 

involvement of top candidates in L1 expression control, and (iii) expand and reinforce 120 

the catalogue of diseases linked to L1. 121 

 122 

  123 
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RESULTS 124 

 125 

In silico scanning for L1 subfamily candidate regulators by eQTL analysis 126 

To identify new candidate regulators of L1 transcription, we decided to leverage 127 

publicly available human “omic” datasets with both genetic and transcriptomic 128 

information. For this analysis, we focused on samples for which the following data was 129 

available: (i) mRNA-seq data from the GEUVADIS project, (ii) SNVs called from whole-130 

genome sequencing data overlayed on the hg38 human reference genome made 131 

available by the 1000Genomes project, and (iii) repeat structural variation data made 132 

available by the 1000Genomes project. This yielded samples from 358 European and 133 

86 Yoruban individuals, all of whom declared themselves to be healthy at the time of 134 

sample collection (Figure 1A). Using the GEUVADIS data, we obtained gene and TE 135 

subfamily expression counts using TEtranscripts [27]. As a quality control step, we 136 

checked whether mapping rates segregated with ancestry groups, which may bias 137 

results. However, the samples appeared to cluster by laboratory rather than by ancestry 138 

(Figure S1A). As additional quality control metrics, we also checked whether the SNV 139 

and SV data segregated by ancestry following principal component analysis (PCA). 140 

These analyses demonstrated that the top two and the top three principal components 141 

from the SNV and SV data, respectively, segregated ancestry groups (Figure S1B, 142 

Figure S1C). 143 

 144 

We then chose to do a three-part integration of the available “omic” data (Figure 145 

1B). Since TEtranscripts quantifies TE expression aggregated at the TE subfamily level 146 
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and discards TE position information, we chose to carry out a trans-eQTL analysis 147 

against global expression of each L1 subfamily. We reasoned that there would have to 148 

be factors (i.e., miRNAs, proteins, non-coding RNAs) mediating the effects of SNVs on 149 

L1 subfamily expression. Thus, to identify candidate genic mediators, we searched for 150 

genes with cis-eQTLs that overlapped with L1 trans-eQTLs. As a final filter, we 151 

reasoned that for a subset of regulators, L1 subfamily expression would respond to 152 

changes in the expression of those regulators. Consequently, we chose to quantify the 153 

association between L1 subfamily expression and candidate gene expression by linear 154 

regression. We hypothesized that this three-part integration would result in 155 

combinations of significantly correlated SNVs, genes, and L1 subfamilies (Figure 1B). 156 

 157 

The trans-eQTL analysis against every expressed L1 subfamily led to the 158 

identification of 499 trans-eQTLs distributed across chromosomes 6, 11, 12, 14, and 15 159 

that passed genome-wide significance (Figure 1C, Supplementary Table S1A). The 160 

cis-eQTL analysis led to the identification of 845,260 cis-eQTLs that passed genome-161 

wide significance (Supplementary Figure S2, Supplementary Table S1B). After 162 

integrating the identified cis- and trans-eQTLs and running linear regression, we 163 

identified 1,272 SNV-Gene-L1 trios that fulfilled our three-part integration approach 164 

(Supplementary Table S1C). Among this pool of trios, we identified 7 unique protein-165 

coding genes including IL16, STARD5, HLA-DRB5, HLA-DQA2, HSD17B12, RNF5, and 166 

FKBPL (Figure 1C). We note that although EHMT2 did not pass out screening 167 

approach, it does overlap EHMT2-AS1, which did pass our screening thresholds 168 

(Figure 1C).  We also note that several other unique non-coding genes, often 169 
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overlapping the protein-coding genes listed, were also identified (Figure 1C). For 170 

simplicity of interpretation, we focused on protein-coding genes during downstream 171 

experimental validation. 172 

 173 

Next, to define first and second tier candidate regulators, we clumped SNVs in 174 

linkage disequilibrium (LD) by L1 trans-eQTL p-value to identify the most strongly 175 

associated genetic variant in each genomic region (Figure 2A, Supplementary Figure 176 

S3A). LD-clumping identified the following index SNVs (i.e. the most strongly associated 177 

SNVs in a given region): rs11635336 on chromosome 15, rs9271894 on chromosome 178 

6, rs1061810 on chromosome 11, rs112581165 on chromosome 12, and rs72691418 179 

on chromosome 14 (Supplementary Table S1D). Genes linked to these SNVs were 180 

considered first tier candidate regulators and included IL16, STARD5, HLA-DRB5, HLA-181 

DQA2, and HSD17B12 (Figure 2B, Supplementary Table S1E). The remaining genes 182 

were linked to clumped, non-index SNVs and were consequently considered second tier 183 

candidates and included RNF5, EHMT2-AS1, and FKBPL (Supplementary Figure 184 

S3B). Additionally, for simplicity of interpretation, we considered only non-HLA genes 185 

during downstream experimental validation, since validation could be complicated by 186 

the highly polymorphic nature of HLA loci [28] and their involvement in multi-protein 187 

complexes. 188 

 189 

Finally, to computationally determine whether candidate genes may causally 190 

influence L1 subfamily expression, we carried out mediation analysis on all SNV-gene-191 

L1 trios (Supplementary Figure S4A). Interestingly, 868 out of the 1,272 (68.2%) trios 192 
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exhibited significant (FDR < 0.05) mediation effects (Supplementary Table S1F). 193 

Among the 1st tier candidate regulators, significant, partial, and consistent mediation 194 

effects could be attributed to STARD5, IL16, HSD17B12, and HLA-DRB5 195 

(Supplementary Figure S4B, Supplementary Table S1F). To note, while significant 196 

mediation could be attributed to the index SNV for STARD5, significant mediation could 197 

only be attributed to clumped SNVs for IL16 and HSD17B12. Given that STARD5 and 198 

IL16 share cis-eQTL SNVs, this suggests that STARD5 may be the more potent 199 

mediator. Among the 2nd tier candidate regulators, significant, partial, and consistent 200 

mediation effects could be attributed to RNF5, EHMT2-AS1, and FKBPL 201 

(Supplementary Figure S4C, Supplementary Table S1F). These results suggest that 202 

candidate genes may mediate the effects between linked SNVs and L1 subfamilies. 203 

 204 

 205 

In silico scanning for L1 subfamily candidate regulators in an African population 206 

 We next sought to assess the cross-ancestry regulatory properties of candidate 207 

genes by repeating our scan using the Yoruban samples as a smaller but independent 208 

replication cohort. Here, rather than conduct a genome-wide scan for cis- and trans- 209 

associated factors, we opted for a targeted approach focusing only on gene cis-eQTLs 210 

and L1 subfamily trans-eQTLs that were significant in the analysis with European 211 

samples (Supplementary Figure S5A). The targeted trans-eQTL analysis led to the 212 

identification of 227 significant (FDR < 0.05) trans-eQTLs distributed across 213 

chromosomes 6 and 11 (Supplementary Table S2A). The targeted cis-eQTL analysis 214 

led to the identification of 1,248 significant (FDR < 0.05) cis-eQTLs (Supplementary 215 
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Table S2B). After integrating the identified cis- and trans-eQTLs and running linear 216 

regression, we identified 393 SNV-Gene-L1 trios that fulfilled our three-part integration 217 

approach (Supplementary Table S2C). Among this pool of trios, we identified 2 unique 218 

protein-coding genes—HSD17B12 and HLA-DRB6—as well as several unique non-219 

coding genes (Supplementary Table S2C). Again, we clumped SNVs in linkage 220 

disequilibrium (LD) by L1 trans-eQTL p-value. LD-clumping identified the following index 221 

SNVs: rs2176598 on chromosome 11 and rs9271379 on chromosome 6 222 

(Supplementary Table S2D). Genes linked to these SNVs were considered first tier 223 

candidate regulators and included both HSD17B12 and HLA-DRB6 (Supplementary 224 

Figure S5B, Supplementary Table S2E). Finally, we carried out mediation analysis on 225 

all SNV-gene-L1 trios; however, no significant (FDR < 0.05) mediation was observed 226 

(Supplementary Table S2F). These results implicate HSD17B12 and the HLA loci as 227 

candidate, cross-ancestry L1 expression regulators. 228 

 229 

To assess why some candidate genes did not replicate in the Yoruba cohort, we 230 

manually inspected cis- and trans-eQTL results for trios with those genes 231 

(Supplementary Figure S6A). Interestingly, we identified rs9270493 and rs9272222 as 232 

significant (FDR < 0.05) trans-eQTLs for L1MEb expression. However, those SNVs 233 

were not significant cis-eQTLs for RNF5 and FKBPL expression, respectively. For trios 234 

involving STARD5, IL16, and EHMT2-AS1, neither the cis-eQTL nor the trans-eQTL 235 

were significant. We note that for most of these comparisons, although the two 236 

genotypes with the largest sample sizes were sufficient to establish a trending change 237 

in cis or trans expression, this trend was often broken by the third genotype with 238 
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spurious sample sizes. This suggests that replication in the Yoruba cohort may be 239 

limited by the small cohort sample size in the GEUVADIS project.  240 

 241 

 242 

TE families and known TE-associated pathways are differentially regulated across L1 243 

trans-eQTL variants 244 

Though our eQTL analysis identified genetic variants associated with the 245 

expression of specific, evolutionarily older L1 subfamilies, we reasoned that there may 246 

be more global but subtle differences in TE expression profiles among genotype groups, 247 

given that TE expression is highly correlated [21]. Thus, for each gene-associated index 248 

SNV identified in the European eQTL analysis, we carried out differential expression 249 

analysis for all expressed genes and TEs (Supplementary Table S3A-S3C; Figure 250 

3A). At the individual gene level, we detected few significant (FDR < 0.05) changes: 4 251 

genes/TEs varied with rs11635336 genotype (IL16/STARD5), 4 genes/TEs varied with 252 

rs9271894 genotype (HLA), and 5 gene/TEs varied with rs1061810 genotype 253 

(HSD17B12) (Supplementary Table S3A-S3C). Importantly, however, these 254 

genes/TEs overlapped the genes/TEs identified in the cis- and trans-eQTL analyses, 255 

providing an algorithmically independent link among candidate SNV-gene-TE trios.  256 

In contrast to gene-level analyses, Gene Set Enrichment Analysis (GSEA) 257 

provides increased sensitivity to subtle but consistent/widespread transcriptomic 258 

changes at the level of gene sets (e.g. TE families, biological pathways, etc.). Thus, we 259 

leveraged our differential expression analysis in combination with GSEA to identify 260 

repeat family and biological pathway gene sets impacted by SNV genotype in the 261 
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GEUVADIS dataset (Supplementary Table S3D-S3O; Figure 3A). Interestingly, 262 

changes in the genotype of rs11635336 (IL16/STARD5), rs9271894 (HLA), and 263 

rs1061810 (HSD17B12) were associated with an upregulation, upregulation, and 264 

downregulation, respectively, of multiple TE family gene sets (Figure 3B, 265 

Supplementary Table S3P). Differentially regulated TE family gene sets included DNA 266 

transposons, such as the hAT-Charlie family, and long terminal repeat (LTR) 267 

transposons, such as the endogenous retrovirus-1 (ERV1) family (Figure 3B, 268 

Supplementary Table S3P). Noteworthy, the L1 family gene set was the only TE gene 269 

set whose expression level was significantly altered across all three SNV analyses 270 

(Figure 3B, Supplementary Table S3P). Consistent with their relative significance in 271 

the L1 trans-eQTL analysis, the L1 family gene set was most strongly upregulated by 272 

alternating the IL16/STARD5 SNV (NES = 3.74, FDR = 6.43E-41), intermediately 273 

upregulated by alternating the HLA SNV (NES = 1.90, FDR = 7.19E-5), and least 274 

strongly changed by alternating the HSD17B12 SNV (NES = -1.57, FDR = 2.11E-2) 275 

(Figure 3C). We briefly note here that rs9270493, a clumped SNV linked to RNF5, was 276 

also linked to upregulation of the L1 family gene set (Supplementary Table S3Q-S3R). 277 

These results suggest that TE subfamily trans-eQTLs are associated with subtle but 278 

global differences in TE expression beyond a lone TE subfamily. 279 

 280 

Next, we asked if other biological pathways were regulated concomitantly with 281 

TE gene sets in response to gene-linked index SNVs, reasoning that such pathways 282 

would act either upstream (as regulatory pathways) or downstream (as response 283 

pathways) of TE alterations. GSEA with the MSigDB Hallmark pathway gene sets [29, 284 
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30] identified 5 gene sets fitting this criterion, including “oxidative phosphorylation”, 285 

“mTORC1 signaling”, “fatty acid metabolism”, “adipogenesis”, and “cholesterol 286 

homeostasis” (Figure 3D, Supplementary Table S3S). Interestingly, several of these 287 

pathways or genes in these pathways have been implicated in TE regulation before. 288 

Rapamycin, which acts through mTORC1, has been shown to alter the expression of L1 289 

and other repeats [31, 32]. Estrogens, which are involved in cholesterol and lipid 290 

metabolism, have been found to drive changes in repeat expression, and the receptors 291 

for both estrogens and androgens are believed to bind repeat DNA [32, 33]. 292 

Pharmacological inhibition of the mitochondrial respiratory chain and pharmacological 293 

reduction of endogenous cholesterol synthesis have also been shown to induce 294 

changes in L1 protein levels or repeat expression more broadly [34, 35]. GSEA with the 295 

GO Biological Process gene sets (Figure 3E, Supplementary Table S3T) and the 296 

Reactome gene sets (Figure 3F, Supplementary Table S3U) also identified several 297 

metabolism-related pathways including “ATP metabolic process”, “Generation of 298 

precursor metabolites and energy”, and “metabolism of amino acids and derivatives”. 299 

These results add to the catalogue of pathways associated with differences in L1 300 

expression.  301 

 302 

In our eQTL analysis, we also identified two orphan index SNVs, rs112581165 303 

and rs72691418, to which we could not attribute a protein-coding gene mediator. To 304 

determine whether these SNVs also regulate any transposon families or biological 305 

pathways, we repeated the differential expression analysis (with all expressed genes 306 

and TEs) (Supplementary Table S4A-S4B) and the GSEA (Supplementary Table 307 
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S4C-S4J) with these SNVs (Supplementary Figure S7A). At the individual gene level, 308 

we detected 3193 genes/TEs that varied significantly (FDR < 0.05) with rs112581165 309 

genotype and 1229 genes/TEs that varied significantly with rs72691418 genotype 310 

(Supplementary Table S4A-S4B). Similar to above, we next carried out GSEA to 311 

identify changes in functionally relevant gene sets. Like the gene-linked index SNVs, 312 

changes in the genotype of rs112581165 and rs72691418 were both associated with a 313 

downregulation and upregulation, respectively, of 10 TE families (Supplementary 314 

Figure S7B, Supplementary Table S4K). Noteworthy, the L1 family gene set was 315 

among the most strongly dysregulated TE family gene sets for both rs112581165 (NES 316 

= -4.32, FDR = 5.18E-89) and rs72691418 (NES = 4.01, FDR = 5.38E-79) 317 

(Supplementary Figure S7C). These results suggest that TE subfamily trans-eQTLs 318 

are associated with subtle differences in TE expression beyond the lone TE subfamily, 319 

even in the absence of a protein-coding gene cis-eQTL. 320 

 321 

Like before, we asked if other biological pathways were regulated concomitantly 322 

with TE gene sets in response to orphan index SNVs. The top 10 Hallmark pathway 323 

gene sets identified by GSEA included gene sets that were previously identified 324 

(“oxidative phosphorylation”, “fatty acid metabolism”, and “mTORC1 signaling”), as well 325 

as several new pathways (Supplementary Figure S7D, Supplementary Table S4L). 326 

Among the new pathways, “DNA repair” [20] and the “P53 pathway” [36, 37] have also 327 

been linked to L1 control, and proteins in the “Myc targets v1” gene set interact with L1 328 

ORF1p [38]. GSEA with the GO Biological Process gene sets (Supplementary Figure 329 

S7E, Supplementary Table S4M) and the Reactome gene sets (Supplementary 330 
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Figure S7F, Supplementary Table S4N) identified several metabolism-related 331 

pathways and several translation-related pathways, such as “cytoplasmic translation”, 332 

“eukaryotic translation initiation”, and “eukaryotic translation elongation”. Importantly, 333 

proteins involved in various aspects of proteostasis have been shown to be enriched 334 

among L1 ORF1p-interacting proteins [38]. Again, these results add to the catalogue of 335 

pathways associated with differences in TE expression, even in the absence of a 336 

candidate cis mediator.  337 

 338 

 339 

Modulation of top candidate gene activity in a lymphoblastoid cell line induces small but 340 

widespread TE expression changes 341 

We decided to validate the L1 regulatory properties of top candidate genes 342 

associated with L1 trans-eQTLs. For experimental purposes, we selected the GM12878 343 

lymphoblastoid cell line, because (i) it is of the same cell type as the transcriptomic data 344 

used here for our eQTL analysis, and (ii) its epigenomic landscape and culture 345 

conditions have been well well-characterized as part of the ENCODE project [39, 40]. 346 

For validation purposes, we selected IL16, STARD5, HSD17B12, and RNF5 out of the 7 347 

protein-coding gene candidates. We chose these genes for validation because the first 348 

3 are associated with top trans-eQTL SNVs and the fourth one had very strong 349 

predicted mediation effects. To note, although GM12878 was part of the 1000Genomes 350 

Project, it was not included in the GEUVADIS dataset. However, based on its genotype, 351 

we can predict the relative expression of candidate regulators (Supplementary Figure 352 

S8A), which suggest that GM12878 may be most sensitive to modulations in IL16 and 353 
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STARD5 expression, given their relatively low endogenous expression. Interestingly, 354 

examination of the ENCODE epigenomic data in GM12878 cells [39] demonstrated that 355 

the region near the IL16/STARD5-linked index SNV (rs11635336) was marked with 356 

H3K4Me1 and H3K27Ac, regulatory signatures of enhancers (Supplementary Figure 357 

S8C). Similarly, the region near the HLA-linked index SNV (rs9271894) was marked 358 

with H3K4Me1, marked with H3K27Ac, and accessible by DNase, suggesting regulatory 359 

properties of the region as an active enhancer (Supplementary Figure S8C). These 360 

results further highlight the regulatory potential of the IL16-, STARD5-, and HLA-linked 361 

SNVs. 362 

 363 

First, we decided to test the transcriptomic impact of overexpressing our top 364 

candidates in GM12878 LCLs. Cells were electroporated with overexpression plasmids 365 

(or corresponding empty vector), and RNA was isolated after 48h (Figure 4A, 366 

Supplementary Figure S9A). Differential expression analysis comparing control and 367 

overexpression samples confirmed the overexpression of candidate genes 368 

(Supplementary Figure S9B, Supplementary Table S5A-S5D). Intriguingly, we 369 

observed that IL16 was significantly upregulated following STARD5 overexpression 370 

(Supplementary Figure S9C, Supplementary Table S5B), although the inverse was 371 

not observed (Supplementary Figure S9C, Supplementary Table S5A), suggesting 372 

that IL16 may act downstream of STARD5. We note here that, consistent with the use 373 

of a high expression vector, the IL16 upregulation elicited by STARD5 overexpression 374 

(log2 fold change = 0.45) was weaker than the upregulation from the IL16 375 

overexpression (log2 fold change = 1.89) (Supplementary Table S5A-S5B). 376 
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 377 

To further assess the biological relevance of each overexpression, we carried out 378 

GSEA using the GO Biological Process, Reactome pathway, and Hallmark pathway 379 

gene sets (Supplementary Table S5E-S5P). Importantly, GSEA using GO Biological 380 

Process and Reactome pathway gene sets highlighted differences that were consistent 381 

with the known biology of our candidate genes. Firstly, IL16 is involved in regulating T-382 

cell activation, B-cell differentiation, and functions as a chemoattractant [41-46]. 383 

Moreover, it modulates macrophage polarization by regulating IL-10 expression [47]. 384 

IL16 overexpressing cells showed upregulation for “phagocytosis recognition” and 385 

“positive chemotaxis”, downregulation for “negative regulation of cell differentiation”, and 386 

downregulation for “Interleukin 10 signaling” (Figure 4B-4C). Secondly, STARD5 387 

encodes a cholesterol transporter and is upregulated in response to endoplasmic 388 

reticulum (ER) stress [48-50]. STARD5 overexpressing cells showed downregulation of 389 

various cholesterol-related gene sets such as “sterol biosynthetic process”, “sterol 390 

metabolic process”, and “regulation of cholesterol biosynthesis by SREBP (SREBF)” 391 

(Figure 4D-4E). Thirdly, HSD17B12 encodes a steroid dehydrogenase involved in 392 

converting estrone into estradiol and is essential for proper lipid homeostasis [51-53]. 393 

HSD17B12 overexpressing cells showed downregulation of cholesterol-related gene 394 

sets, including “sterol biosynthetic process” and “regulation of cholesterol biosynthesis 395 

by SREBF (SREBP)” (Supplementary Figure S9D-S9E). Finally, RNF5 encodes an 396 

ER and mitochondrial-bound E3 ubiquitin-protein ligase that ubiquitin-tags proteins for 397 

degradation [54-57]. RNF5 overexpressing cells demonstrated alterations in gene sets 398 

involved in proteostasis and ER biology, including upregulation of “ERAD pathway”, 399 
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“response to endoplasmic reticulum stress”, and “intra-Golgi and retrograde Golgi-to-ER 400 

traffic” (Supplementary Figure S9F-S9G). These results suggest that our approach 401 

leads to biological changes consistent with the known biological impact of the genes 402 

being overexpressed. 403 

 404 

Next, we sought to determine whether modulation of candidate genes had any 405 

impact on TE expression in general, and L1 in particular. Although there were no 406 

significant changes for individual TE subfamilies following IL16 and STARD5 407 

overexpression (Supplementary Table S5A-S5B), we identified subtle but widespread 408 

upregulation of various TE families across both conditions by GSEA (Figure 4F, 409 

Supplementary Table S5Q-S5R). Interestingly, 7 families, including L1, ERV1, ERVL-410 

MaLR, Alu, ERVL, TcMar-Tigger, and hAT-Charlie families, were commonly 411 

upregulated under both conditions (Figure 4F). In contrast, cells overexpressing 412 

HSD17B12 or RNF5 did not drive widespread changes in L1 family expression, as 413 

assessed by GSEA (Supplementary Table S5S-S5T). Noteworthy, the L1 family gene 414 

set was more strongly upregulated following STARD5 overexpression (NES = 2.25, 415 

FDR = 6.14E-7) compared to IL16 overexpression (NES = 2.24, FDR = 2.40E-5) 416 

(Figure 4G, Supplementary Table S5Q-S5R). Since IL16 is upregulated in response to 417 

STARD5 overexpression, this suggests that STARD5 may synergize with IL16 for the 418 

regulation of L1 transcription. 419 

 420 

Then, we decided to further characterize the impact of IL16 activity on TEs, since 421 

(i) its overexpression led to a global upregulation of TE transcription, and (ii) it was itself 422 
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upregulated in response to STARD5 overexpression, which also led to increased TE 423 

expression. Thus, since IL16 is a soluble cytokine, we independently assessed its 424 

regulatory properties by exposing GM12878 cells to recombinant human IL16 peptide 425 

[rhIL16] for 24 hours (Figure 5A, Supplementary Figure S10A). Differential gene 426 

expression analysis (Supplementary Table S6A) and comparison with the IL16 427 

overexpression results demonstrated that differentially expressed genes were weakly 428 

but significantly correlated (Supplementary Figure S10B). Additionally, we carried out 429 

GSEA using the GO Biological Process, Reactome pathway, and Hallmark pathway 430 

gene sets (Supplementary Table S6B-S6E) and compared those results with the 431 

GSEA from the IL16 overexpression (Supplementary Table S6F-S6H). Consistent with 432 

the known biology of IL16, GSEA highlighted a downregulation of many immune cell-433 

related gene sets, including “leukocyte differentiation”, “mononuclear cell differentiation”, 434 

and “Interleukin-10 signaling” (Figure 5B-5C, Supplementary Table S6F-S6H). Like 435 

the overexpression results, exposure of GM12878 to rhIL16 for 24 hours led to an 436 

upregulation of an L1 family gene set by GSEA, although the effect was less 437 

pronounced than with the overexpression (Figure 5D). Even though treatment of 438 

GM12878 with rhIL16 for 48 hours exhibited known features of IL16 biology 439 

(Supplementary Figure S10B-S10D, Supplementary Table S6J-S6Q), the L1 440 

upregulation was no longer detectable, though other TEs remained upregulated 441 

(Supplementary Figure S10E, Supplementary Table S6Q). These results further 442 

support the notion that IL16 acts as a modulator of L1 expression. 443 

 444 
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Finally, we sought to define the biological pathways regulated concomitantly with 445 

the L1 family gene set under all experimental conditions where it was upregulated (i.e., 446 

IL16 overexpression, STARD5 overexpression, and 24 hours of rhIL16 exposure) 447 

(Figure 6A, Figure 6B, Supplementary Table S7A). Again, we reasoned that such 448 

pathways would act either upstream (as regulatory pathways) or downstream (as 449 

response pathways) of TE alterations. GSEA with the Hallmark pathway gene sets 450 

identified 7 gene sets fitting this criterion, including “TNFα signaling via NF-ΚB”, “IL2 451 

STAT5 signaling”, “inflammatory response”, “mTORC1 signaling”, “estrogen response 452 

early”, “apoptosis”, and “UV response up” (Figure 6C, Supplementary Table S7B). 453 

GSEA with the GO Biological Process gene sets (Figure 6D, Supplementary Table 454 

S7C) and the Reactome pathway gene sets (Figure 6E, Supplementary Table S7D) 455 

also identified MAPK signaling, virus-related pathways like “HCMV early events”, 456 

pathways involved in cell differentiation, and pathways involved in cholesterol and 457 

steroid metabolism like “signaling by nuclear receptors”. These results further cement 458 

the catalogue of pathways associated with differences in TE expression.  459 

 460 

 461 

L1 trans-eQTLs are co-associated with aging traits in GWAS databases. 462 

Although TE de-repression has been observed broadly with aging and age-463 

related disease [5, 58], whether this de-repression acts as a causal driver, or a 464 

downstream consequence, of aging phenotypes remains unknown. We reasoned that if 465 

increased TE expression at least partially drives aging phenotypes, L1 trans-eQTLs 466 
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should be enriched for associations to aging traits in genome-wide association studies 467 

[GWAS] or phenome-wide association studies [PheWAS].  468 

 469 

To test our hypothesis, we queried the Open Targets Genetics platform with our 470 

499 trans-eQTL SNVs, mapped traits to standardized MeSH IDs, and then manually 471 

curated MeSH IDs related to aging-related traits (Figure 7A). Consistent with our 472 

hypothesis, a large proportion of L1 trans-eQTL SNVs (222/499 or 44.5%) were either 473 

(i) associated with an aging MeSH trait by PheWAS or (ii) LD-linked to a lead variant 474 

associated with an aging MeSH trait (Figure 7B). Moreover, among the 222 SNVs with 475 

significant aging-trait associations, we observed frequent mapping to more than a single 476 

age-related trait by PheWAS, with many SNVs associated with 10-25 traits (Figure 7C, 477 

Supplementary Table S8A). Additionally, many of the 222 SNVs mapped to 1-5 aging 478 

traits through a proxy lead variant (Figure 7D, Supplementary Table S8A). Among the 479 

most frequently associated or linked traits, we identified type 2 diabetes mellitus, 480 

hyperparathyroidism, thyroid diseases, coronary artery disease, hypothyroidism, and 481 

psoriasis, among many others (Figure 7E, Supplementary Table S8B).  482 

 483 

As a parallel approach, we queried the Open Targets Genetics platform with our 484 

L1 trans-eQTL SNVs, as well as 500 combinations of random SNVs sampled from all 485 

SNVs used in the eQTL analyses. We then leveraged broader phenotype categories 486 

annotated by the platform, including 14 disease categories that we considered aging-487 

related, to determine whether L1 eQTL associations were enriched for any disease 488 

categories (Supplementary Figure S11A). L1 eQTL associations were significantly 489 
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enriched (FDR < 0.05 and ES > 1) for 13 out of 14 disease categories, including cell 490 

proliferation disorders, immune system diseases, and musculoskeletal diseases 491 

(Supplementary Figure S11B-N). The cardiovascular diseases category was the only 492 

disease category for which we did not observe a significant enrichment 493 

(Supplementary Figure S11O). The enrichment for cell proliferation disorders is 494 

consistent with the associations of L1 activity with cellular senescence [12, 15] and 495 

cancer [59, 60]. The enrichment for immune system diseases is consistent with the role 496 

of L1 as a stimulator of the interferon pathway, inflammation, and senescence [15], as 497 

well as the more general notion that transposons can mimic viruses and stimulate 498 

immune responses from their hosts [61].  The enrichment for musculoskeletal diseases 499 

is consistent with an increase in L1 expression and copy number with age in muscle 500 

tissue from aging mice [11]. These results reinforce the notion that L1 activity is strongly 501 

and non-randomly associated with an assortment of age-related diseases. 502 

 503 

Intriguingly, a large fraction of co-associated SNVs were on chromosome 6 near 504 

the HLA locus, which has previously been shown to be a hotspot of age-related disease 505 

traits [62]. Despite its association to our strongest L1 trans-eQTL SNV, little is known 506 

about the regulation and impact of IL16 during aging. One study, however, found that 507 

IL16 expression increases with age in ovarian tissue, and the frequency of IL16 508 

expressing cells is significantly higher in ovarian tissue from women at early and late 509 

menopause, compared to premenopausal women [63]. Given these findings, and since 510 

L1 expression levels and copy number have been found to increase with age [5],  we 511 

asked whether circulating IL16 levels may also change with age, using C57BL/6JNia 512 
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mice as a model (Figure 7F, Supplementary Table S8C). Consistent with the notion 513 

that increased IL16 levels may, at least partially, drive age-related TE de-repression, we 514 

observed a significant increase in circulating IL16 levels in female mice with age, and a 515 

trending increase with age in male mice (although the levels showed more animal-to-516 

animal variability). By meta-analysis, circulating IL16 levels changed significantly with 517 

age across sexes (Figure 7F). These results further support the hypothesis that IL16 is 518 

involved in L1 biology and may modulate L1 age-related changes. In sum, our results 519 

provide one of the first pieces of evidence of a causal link between L1 expression levels 520 

and age-related decline. 521 

 522 

  523 
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DISCUSSION 524 

In this work, we developed a pipeline to computationally identify candidate L1 525 

transcriptional regulators by eQTL analysis. We provide experimental evidence for the 526 

involvement of top candidates in regulating L1 expression, demonstrating as a proof-of-527 

principle that this approach can be broadly used on other large “omic”-characterized 528 

cohorts with human (i.e. GTEx [64, 65] or HipSci [66]) or mouse (i.e. DO mice [67]) 529 

subjects to identify other regulators of L1 activity. These datasets, combined with our 530 

approach, could be utilized to rigorously characterize conserved or group-specific TE 531 

regulatory mechanisms on multiple layers, such as across TE families (like Alu or 532 

ERVs), across cell or tissue types, across ancestry groups, and across species. This 533 

approach, which leverages existing datasets to perform in silico screening, could be a 534 

powerful method to expand our knowledge of TE regulation in non-diseased cells and 535 

tissues. 536 

 537 

While we believe this approach can readily be applied to other datasets, we 538 

would like to note potential limitations with the approach implemented here, some of 539 

which were simply beyond the scope of this paper. Firstly, though it is common to use 540 

probabilistic estimation of expression residuals (PEER) [68] to enhance detection of cis-541 

eQTLs, PEER was not implemented in our analysis as a precautionary measure, in 542 

order to avoid potentially blurring global TE signals, which likely led to a more 543 

conservative list of candidate cis gene mediators. Second, given the technical 544 

complexity in generating the vast amount of mRNA-seq data used for the eQTL 545 

analysis, it is possible that technical covariates introduced non-linear effects that would 546 
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not be easily removed by approaches like PEER or SVA [69]. For that reason, we opted 547 

to supplement our computational predictions with experimental data. Third, the L1 trans-548 

eQTLs identified were specific to older L1 subfamilies (L1P and L1M) and were not 549 

shared across subfamilies. One factor that may partially explain this is the heightened 550 

difficulty of quantifying the expression of evolutionarily younger L1 subfamilies using 551 

short-read sequencing [70]. More generally, significant single gene differences are often 552 

difficult to reproduce across studies, and it is for this reason that methods like GSEA 553 

were developed, to robustly identify broader changes in sets of genes [29]. Consistently, 554 

GSEA suggests that many TE families, beyond the single L1 subfamilies identified in 555 

the eQTL analysis, are differentially regulated among samples with different genotypes 556 

for trans-eQTL SNVs and among samples where IL16/IL16 and STARD5 were 557 

manipulated. We note that although HLA and HSD17B12 loci were significant in both 558 

the European and African cohorts, we were not able to independently identify all of the 559 

same candidate regulators. This is likely due to a combination of small sample size for 560 

the African cohort and the existence of population-specific L1 regulation. Future studies 561 

with larger sample sizes may be useful for expanding the catalogue of loci that are 562 

biologically meaningful for L1 expression across more than one population. Importantly, 563 

our computational scan is limited to loci exhibiting genomic variation among tested 564 

individuals. This will vary with factors like the ancestry groups of the populations being 565 

studied. Moreover, variants that confer extreme fitness defects may not exist at a 566 

sufficiently high level in a population so as to allow for an assessment of their 567 

involvement as eQTLs. Also, a potential “blindspot” of our current approach is that it 568 

does not distinguish between TE reads of intronic or intergenic origin. Intronic TE RNA 569 
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is often considered less interesting from a biological perspective since their presence 570 

may be attributed to readthrough transcription [71]. However, all analyses carried out in 571 

this study relied on polyA-selected libraries, which should be enriched for mature gene 572 

and transposon transcripts, minimizing the presence of readthrough transcribed L1 573 

RNA. Additionally, even if L1-containing transcripts were quantified, these have been 574 

implicated in tightly controlled functions like T-cell quiescence maintenance [31], 575 

suggesting that intronic L1 RNA possesses biologically meaningful properties. Thus, 576 

this pipeline should help expand our understanding of L1 biology in either case. Finally, 577 

although we focused on protein-coding candidate regulators, it is possible that the non-578 

coding genes identified in our scan may also causally drive differences in L1 579 

expression. Though not explored here, other regulatory factors like small RNAs may 580 

also act as partial mediators. Since the GEUVADIS Consortium generated small RNA 581 

data in parallel to the mRNA data used in this study [26], in the future, our pipeline could 582 

be adapted to scan for cis small RNA mediators relatively easily. These unexplored 583 

factors may explain the associations between orphan SNV genotypes and TE family 584 

gene set changes. 585 

 586 

Despite potential limitations, our approach identified IL16, STARD5, HLA-DRB5, 587 

HLA-DQA2, HSD17B12, RNF5, FKBPL, and EHMT2-AS1 as candidate L1 regulators in 588 

the European cohort. Moreover, the upregulation of several TE gene sets following 589 

IL16/IL16 and STARD5 manipulation highlights a causal role for these genes in TE 590 

control. Between these two genes, multiple lines of evidence suggest that STARD5 is 591 

the more potent mediator. First, the three-part integration statistics are more significant 592 
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for STARD5 than for IL16. Second, the index SNV on chromosome 15 exhibited 593 

significant mediation effects through STARD5 but not IL16; the most significant 594 

mediation effect for IL16 was linked to a clumped SNV. Third, the upregulation for the 595 

L1 family gene set was stronger under STARD5 overexpression than under IL16 596 

overexpression. Importantly, we observed that IL16 was upregulated following STARD5 597 

overexpression, but this upregulation was less than the upregulation from the IL16 598 

overexpression. This suggests that IL16 can participate in the L1-regulating properties 599 

exerted by STARD5. Moving forward, it will be informative to assess the effects of IL16 600 

and STARD5 on L1 expression in other cell types. Interestingly, other genes like 601 

EHMT2 have previously been linked to retrotransposons [72, 73]. For the remaining 602 

genes that we experimentally tested, we note that GM12878 is predicted to have 603 

relatively high endogenous HSD17B12 expression and intermediate RNF5 expression, 604 

based on the GM12878 genotypes at cis-eQTLs for these genes. Given these 605 

expression patterns, GM12878 may not be sensitive to overexpression of RNF5, and 606 

especially insensitive to HSD17B12 overexpression. For these two candidates, cells 607 

may be more sensitive to knockdown- or knockout-based approaches. Indeed, 608 

HSD17B12 is essential for mouse development, HSD17B12 knockout in adult mice 609 

results in reduced body weight and liver toxicity, and knockdown of the Caenorhabditis 610 

elegans ortholog for HSD17B12 reduces lipid stores and blocks induction of the 611 

unfolded protein response of the endoplasmic reticulum [52, 74, 75]. Given that TEs are 612 

often derepressed when homeostasis is challenged [61], such as following HSD17B12 613 

knockout/knockdown, it remains possible that HSD17B12 possesses L1 regulatory 614 

properties that were not detectable by our approach. Future work could avert such 615 
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technical limitations by testing the impact of candidate genes by both up- and down-616 

regulation, or by selecting LCL samples with endogenous target gene expression levels 617 

that would be most sensitive to our overexpression approach.  618 

 619 

As another, theoretical line of evidence for the potential involvement of candidate 620 

genes in L1 regulation, we highlight known interactions between tested candidate genes 621 

and viral infections, which may be relevant under conditions where transposons are 622 

recognized as viral mimics [61]. Indeed, IL16 has been extensively studied for its ability 623 

to inhibit human immunodeficiency virus (HIV) replication, partly by suppressing mRNA 624 

expression [76-78]. Additionally, but in contrast to its HIV-suppressive properties, IL16 625 

can enhance the replication of influenza A virus (IAV) and facilitate its infection of hosts, 626 

potentially through its repression of type I interferon beta and interferon-stimulated 627 

genes [79].  IL16 can also contribute to the establishment of lifelong gamma herpesvirus 628 

infection [80]. STARD5 is another candidate implicated in the influenza virus replication 629 

cycle [81]. HSD17B12 promotes the replication of hepatitis C virus via the very-long-630 

chain fatty acid (VLCFA) synthesis pathway and the production of lipid droplets 631 

important for virus assembly [82, 83]. Additionally, HSD17B12 has been found 632 

interacting with the coronavirus disease 2019 (COVID-19) protein nonstructural protein 633 

13 (NSP13), which is thought to antagonize interferon signaling [84]. Finally, RNF5 has 634 

been implicated in both promoting and antagonizing severe acute respiratory syndrome 635 

coronavirus 2 (SARS-CoV-2) by either stabilizing the interactions of membrane protein 636 

(M) [85] or inducing degradation of structural protein envelope (E) [86], respectively. 637 

Fundamentally, RNF5 regulates virus-triggered interferon signaling by targeting the 638 
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stimulator of interferon genes (STING) or mitochondrial antiviral signaling protein 639 

(MAVS) for ubiquitin-mediated protein degradation [56, 57]. These studies reinforce the 640 

roles of tested candidate regulators in virus-associated processes, including interferon-641 

mediated signaling. 642 

 643 

 Consistent with the notion that L1 is associated with aging and aging phenotypes 644 

[5, 58], we observed that L1 trans-eQTL SNVs were associated with aging phenotypes 645 

in GWAS/PheWAS databases. This is very surprising, but interesting, given that all 646 

1000Genomes Project participants declared themselves to be healthy at the time of 647 

sample collection. Assuming this to be true, our results suggest that L1 expression 648 

differences exist in natural, healthy human populations, and these expression 649 

differences precede onset of aging diseases. Though it is often unclear whether L1 mis-650 

regulation is a consequence or driver of aging phenotypes, our results suggest that L1 651 

levels may drive aging phenotypes. As we continue to expand the catalogue of L1 652 

regulators, especially in healthy cells and tissues, the L1 regulatory processes that are 653 

disrupted over the course of aging will become increasingly clear. To that end, this work 654 

may serve as a guide for conducting more comprehensive scans for candidate TE 655 

regulators.  656 

 657 

  658 
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CONCLUSIONS 659 

We developed an eQTL-based pipeline that leverages genomic and 660 

transcriptomic data to scan the human genome for novel candidate regulators of L1 661 

subfamily expression. Though the initial scan identified genetic variants associated with 662 

expression differences in specific L1 subfamilies, secondary analyses by GSEA suggest 663 

that genetic variants are associated with subtle but global differences in the expression 664 

of many TE families. Our pipeline identified candidate genes, including HSD17B12 and 665 

HLA genes, that likely play a conserved role in L1 regulation across human populations 666 

of different ancestries. Though some top candidates from the European cohort scan, 667 

such as IL16, STARD5, and RNF5, were not significant in the African cohort analysis, it 668 

is likely that some of these genes would appear in cross-ancestry scans with larger 669 

samples sizes. We detected subtle but global differences in L1 family expression 670 

following IL16 overexpression, STARD5 overexpression, and rhIL16 treatment for 24 671 

hours, further suggesting that some candidate genes have regulatory potential. We 672 

generate a list of pathways, such as mTORC1 signaling and cholesterol metabolism, 673 

that may act upstream of L1 expression. Finally, the co-association of some genetic 674 

variants with both L1 expression differences and various age-related diseases suggests 675 

that L1 differences may precede and contribute to the onset of disease. Our results 676 

expand the potential mechanisms by which L1 expression is regulated and by which L1 677 

may influence aging-related phenotypes. 678 

 679 

  680 
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METHODS 681 

Publicly available data acquisition 682 

The eQTL analysis was carried out on 358 European (EUR) individuals and 86 683 

Yoruban (YRI) individuals for which paired single nucleotide variant, structural variant, 684 

and transcriptomic data were available from Phase 3 of the 1000 Genomes Project [22, 685 

23] and from the GEUVADIS consortium [26]. Specifically, Phase 3 autosomal SNVs 686 

called on the GRCh38 reference genome were obtained from The International Genome 687 

Sample Resource (IGSR) FTP site ( 688 

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/relea689 

se/20190312_biallelic_SNV_and_INDEL/ ). Structural variants were also obtained from 690 

the IGSR FTP site 691 

(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/). mRNA-692 

sequencing fastq files generated by the GEUVADIS consortium were obtained from 693 

ArrayExpress under accession E-GEUV-1. 694 

 695 

 696 

Aggregating and pre-processing genotype data for eQTL analyses 697 

To prepare SNVs for association analyses, all SNVs were first annotated with 698 

rsIDs from dbSNP build 155 using BCFtools v1.10.2 [87]. VCFtools v0.1.17 [88] was 699 

then used to remove indels and keep variants with the following properties in each of 700 

the two populations: possessed a minimum and maximum of two alleles, possessed a 701 

minor allele frequency (MAF) of at least 1%, passed Hardy-Weinberg equilibrium 702 

thresholding at p < 1e-6, with no missing samples, and located on an autosome. We 703 
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note here that sex chromosomes were not included in the analysis since (i) Y 704 

chromosome SNVs were not available and (ii) analyses with X chromosome SNVs 705 

require unique algorithms and cannot simply be incorporated into traditional association 706 

pipelines [89, 90]. VCF files containing these filtered SNVs were then converted to 707 

PLINK BED format using PLINK v1.90b6.17 [91], keeping the allele order. PLINK BED 708 

files were subsequently used to generate preliminary 0/1/2 genotype matrices using the 709 

‘--recodeA’ flag in PLINK. These preliminary matrices were manipulated in terminal, 710 

using the gcut v9.0 function to remove unnecessary columns and datamash v1.7 to 711 

transpose the data, to generate the final 0/1/2 matrices used for the eQTL analyses. 712 

Finally, PLINK was used to prune the list of filtered SNVs, using the “--indep-pairwise 50 713 

10 0.1” flag, and to generate principal components (PCs) from the pruned genotypes. 714 

 715 

To control for inter-individual differences in genomic transposon copy number 716 

load, we applied 1 of 2 approaches, depending on the analysis. For approach 1, the net 717 

number of L1 and Alu insertions was quantified across the 444 samples. We chose to 718 

aggregate the L1 and Alu copy numbers, since Alu relies on L1 machinery for 719 

mobilization [92], and so the aggregate number may provide a finer view of L1-720 

associated copy number load. Briefly, VCFTools was used to extract autosomal 721 

structural variants from the 1000Genomes structural variant calls. L1 and Alu insertions 722 

and deletions were then extracted with BCFtools by keeping entries with the following 723 

expressions: ‘SVTYPE=”LINE1”’, ‘SVTYPE=”ALU”’, ‘SVTYPE=”DEL_LINE1”’, and 724 

‘SVTYPE=”DEL_ALU”’. The resulting VCF files were then transformed to 0/1/2 matrices 725 

in the same manner as the SNVs. A net copy number score was obtained for each 726 
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sample by adding the values for the L1 and Alu insertions and subtracting the values for 727 

the L1 and Alu deletions. For approach 2, the complete structural variant matrix was 728 

filtered with VCFtools using the same parameters as with the SNV matrices. The filtered 729 

structural variant matrix was then pruned with PLINK, and these pruned structural 730 

variant genotypes were used to generate principal components, in the same fashion as 731 

with the SNV matrix. The net copy number score or the structural variant principal 732 

components, depending on the analysis, were included as covariates. 733 

 734 

  735 

mRNA-seq read trimming, mapping, and quantification  736 

Fastq files were first trimmed using fastp v0.20.1 [93] with the following 737 

parameters: detect_adapter_for_pe, disable_quality_filtering, trim_front1 17, trim_front2 738 

17, cut_front, cut_front_window_size 1, cut_front_mean_quality 20, cut_tail, 739 

cut_tail_window_size 1, cut_tail_mean_quality 20, cut_right, cut_right_window_size 5, 740 

cut_right_mean_quality 20, and length_required 36. Read quality was then inspected 741 

using fastqc v0.11.9.  742 

 743 

Next, the GRCh38 primary human genome assembly and comprehensive gene 744 

annotation were obtained from GENCODE release 33 [94]. Since LCLs are generated 745 

by infecting B-cells with Epstein-Barr virus, the EBV genome (GenBank ID V01555.2) 746 

was included as an additional contig in the human reference genome. The trimmed 747 

reads were aligned to this modified reference genome using STAR v2.7.3a [95] with the 748 

following parameters: outFilterMultimapNmax 100, winAnchorMultimapNmax 100, and 749 
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outFilterMismatchNoverLmax 0.04. Finally, the TEcount function in the TEtranscripts 750 

v2.1.4 [27] package was employed to obtain gene and TE counts, using the GENCODE 751 

annotations to define gene boundaries and a repeat GTF file provided on the Hammell 752 

lab website (downloaded on February 19 2020 from 753 

https://labshare.cshl.edu/shares/mhammelllab/www-754 

data/TEtranscripts/TE_GTF/GRCh38_GENCODE_rmsk_TE.gtf.gz) to define repeat 755 

boundaries. 756 

 757 

  758 

Gene cis-eQTL and L1 trans-eQTL analyses 759 

Gene and TE count files were loaded into R v4.2.1. Lowly expressed genes were 760 

first filtered out if 323/358 European samples and 78/86 Yoruban samples did not have 761 

over 0.44 counts per million (cpm) or 0.43 cpm, respectively. These fractions were 762 

selected because they corresponded to expression in ~90% of samples and thus helped 763 

maintain maximal statistical power by focusing on genes ubiquitously expressed across 764 

each entire population. The cpm thresholds were selected because they corresponded 765 

to 10 reads in the median-length library within each set of samples.  766 

 767 

Then, counts underwent a variance stabilizing transformation (vst) using DESeq2 768 

v1.36.0 [96]. The following covariates were regressed out from vst normalized 769 

expression data using the ‘removeBatchEffect’ function in Limma v3.52.2 [97]: lab, 770 

population category, principal components 1-2 of the pruned SNVs, biological sex, net 771 

L1/Alu copy number, and EBV expression levels. Since the Yoruban samples were all 772 
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from the same population, the population variable was omitted in their batch correction. 773 

Here, we note several things. First, EBV expression was included as a covariate 774 

because heightened TE expression is often a feature of viral infections [98]. Secondly, 775 

although PEER [68] is often used to remove technical variation for cis-eQTL analysis, 776 

this can come at the expense of correcting out genome-wide biological effects. This can 777 

be problematic in some settings, such as trans-eQTL analysis. Thus, PEER factors 778 

were not included. The batch-corrected data underwent a final inverse normal 779 

transformation (INT), using the RankNorm function in the R package RNOmni v1.0.1, to 780 

obtain normally distributed gene expression values.  781 

 782 

The INT expression matrices were split into genes and L1 subfamilies, which 783 

were used to identify gene cis-eQTLs and L1 subfamily trans-eQTLs in the European 784 

superpopulation using MatrixEQTL v2.3 [99]. For gene cis-eQTLs, SNVs were tested for 785 

association with expressed genes within 1 million base pairs. We opted to use a trans-786 

eQTL approach using aggregate subfamily-level TE expression since the trans 787 

approach should allow us to identify regulators of many elements rather than one. The 788 

Benjamini-Hochberg false discovery rate (FDR) was calculated in each analysis, and we 789 

used the p-value corresponding to an FDR of < 5% as the threshold for eQTL 790 

significance. In addition, the cis-eQTL and trans-eQTL analyses were also repeated 791 

using 20 permuted expression datasets in which the sample names were scrambled, 792 

and the p-value corresponding to an average empirical FDR of < 5% was used as a 793 

secondary threshold. To note, we calculated the average empirical FDR at a given p-794 

value pi by (i) counting the total number of null points with p ≤ pi, (ii) dividing by the 795 
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number of permutations, to obtain an average number of null points with p ≤ pi, and (iii) 796 

dividing the average number of null points with p ≤ pi by the number of real points with p 797 

≤ pi. eQTLs were called as significant if they passed the stricter of the two thresholds. 798 

SNV-gene and SNV-L1 associations that were significant in the European 799 

superpopulation were then targeted and tested in the Yoruban population using R’s 800 

built-in linear modelling functions. In this case, only the Benjamini-Hochberg FDR was 801 

calculated, and significant eQTLs were called if they possessed an FDR < 5%.  802 

 803 

 804 

Defining SNV-gene-L1 trios and mediation analysis 805 

For each population, the cis- and trans-eQTL results were integrated to identify 806 

SNVs associated with both gene and L1 subfamily expression. We reasoned that L1 807 

expression would respond to differences in expression of bona fide regulators. 808 

Consequently, gene expression and L1 subfamily expression associations were 809 

assessed by linear regression, and the p-values from this analysis were Benjamini-810 

Hochberg FDR-corrected. Candidate SNV-gene-L1 trios were defined as those with cis-811 

eQTL, trans-eQTL, and expression regression FDRs < 5%. To identify top, index SNVs 812 

in regions of linkage disequilibrium (LD), SNVs within 500 kilobases of each other with 813 

an R2 > 0.10 were clumped together by trans-eQTL p-value using PLINK v1.90b6.17. 814 

Mediation analysis was carried out using the ‘gmap.gpd’ function in eQTLMAPT v0.1.0 815 

[100] on all candidate SNV-gene-L1 trios. Empirical p-values were calculated using 816 

30,000 permutations, and Benjamini-Hochberg FDR values were calculated from 817 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 17, 2023. ; https://doi.org/10.1101/2023.08.15.553416doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.15.553416
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38

empirical p-values. Mediation effects were considered significant for trios with FDR < 818 

5%. 819 

 820 

 821 

Differential expression analysis across trans-eQTL SNV genotypes 822 

Transcriptomic changes associated with alternating the allele of each SNV of 823 

interest were evaluated using DESeq2 v1.36.0. Using the same filtered counts prepared 824 

for the eQTL analysis, a linear model was constructed with the following covariates for 825 

each SNV: SNV genotype in 0/1/2 format, biological sex, lab, population category, 826 

principal components 1-2 of the pruned SNVs, and principal components 1-3 of the 827 

pruned SVs (to account for structural variant population structure). As before, the 828 

population label was omitted from the Yoruban population analysis. Significant genes 829 

and TEs were those with an FDR < 5%.  830 

 831 

 832 

Functional enrichment analyses 833 

We used the Gene Set Enrichment Analysis (GSEA) paradigm as implemented 834 

in the R package clusterProfiler v4.4.4 [101]. Gene Ontology, Reactome, and Hallmark 835 

pathway gene sets were obtained from the R package msigdbr v7.5.1, an Ensembl ID-836 

mapped collection of gene sets from the Molecular Signature Database [29, 30]. 837 

Additionally, TE subfamilies were aggregated into TE family gene sets using the TE 838 

family designations specified in the TE GTF file (downloaded on February 19 2020 from 839 

https://labshare.cshl.edu/shares/mhammelllab/www-840 
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data/TEtranscripts/TE_GTF/GRCh38_GENCODE_rmsk_TE.gtf.gz) used during the 841 

RNA-seq quantification step. The DESeq2 v1.36.0 Wald-statistic was used to generate 842 

a combined ranked list of genes and TEs for functional enrichment analysis. All gene 843 

sets with an FDR < 5% were considered significant. For plots with a single analysis, the 844 

top 5 downregulated and top 5 upregulated gene sets were plotted, at most. For plots 845 

with multiple analyses, shared gene sets with the desired expression patterns in each 846 

individual analysis were first identified. Then, the p-values for shared gene sets were 847 

combined using Fisher’s method, and this meta-analysis p-value was used to rank 848 

shared gene sets. Finally, the top 5 gene sets with one expression pattern and the top 5 849 

gene sets with the opposite expression pattern were plotted. If there were less than 5 850 

gene sets in either group, those were replaced with gene sets exhibiting the opposite 851 

regulation, in order to plot 10 shared gene sets whenever possible. 852 

 853 

 854 

Cell lines and cell culture conditions.  855 

GM12878 (RRID: CVCL_7526) lymphoblastoid cells were purchased from the 856 

Coriell Institute. We opted to use GM12878 as a well-characterized representative cell 857 

line for candidate validation, given that (i) it is of the same cell type as the transcriptomic 858 

data used here for our eQTL analysis, and (ii) its epigenomic landscape and culture 859 

conditions are well-characterized as part of the ENCODE project [39, 40].  860 

 861 

GM12878 cells were maintained in RPMI (Corning cat. 15-040-CV) containing 862 

15% FBS and 1X Penicillin-Streptomycin-Glutamine (Corning cat. 30-009-CI). Cells 863 
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were cultured in a humidified incubator at 37°C and 5% CO2, subculturing cells 1:5 once 864 

cells reached a density of ~106 mL-1. All cells used were maintained below passage 30 865 

and routinely tested for mycoplasma contamination using the PlasmoTest Mycoplasma 866 

Detection Kit (InvivoGen). 867 

 868 

 869 

Plasmids 870 

The empty pcDNA3.1(+) backbone (Invitrogen cat. V79020) was a kind gift from 871 

the lab of Dr. Changhan David Lee at the University of Southern California Leonard 872 

Davis School of Gerontology. Overexpression vectors for IL16 (CloneID OHu48263C), 873 

STARD5-FLAG (CloneID OHu07617D), HSD17B12-FLAG (CloneID OHu29918D), and 874 

RNF5-FLAG (CloneID OHu14875D) on a pcDNA3.1 backbone were purchased from 875 

GenScript. Plasmid sequences were verified for accuracy using Plasmidsaurus’s whole 876 

plasmid sequencing service. 877 

 878 

 879 

Transfections  880 

Escherichia coli were cultured in LB Broth (ThermoFischer Scientific) 881 

supplemented with 50 μg/mL carbenicillin to an optical density 600 (OD600) of 2 – 4. 882 

Plasmid extractions were carried out using the Nucleobond Xtra Midi Plus EF kit 883 

(Macherey-Nagel) following manufacturer recommendations. Plasmids were aliquoted 884 

and stored at -20°C until the time of transfection. On the day of transfection, GM12878 885 

cells were collected in conical tubes, spun down (100xG, 5 minutes, room temperature), 886 
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resuspended in fresh media, and counted by trypan blue staining using a Countess II FL 887 

automated cell counter (Thermo Fisher). The number of cells necessary for the 888 

experiment were then aliquoted, spun down, and washed with Dulbecco’s phosphate-889 

buffered saline (DPBS)(Corning, cat. #21-031-CV).  890 

 891 

GM12878 cells were transfected by electroporation using the Neon Transfection 892 

System (Invitrogen) with the following parameters: 1200 V, 20 ms, and 3 pulses for 893 

GM12878 cells in Buffer R. Per reaction, we maintained a plasmid mass:cell number 894 

ratio of 10 μg :  2*106 cells. For mRNA-sequencing, 8*106 GM12878 cells were 895 

independently transfected for each biological replicate, with 4 replicates per 896 

overexpression condition, and cultured in a T25 flask. Immediately after transfection, 897 

cells were cultured in Penicillin-Streptomycin-free media for ~24 hours.  898 

 899 

Afterwards, to promote selection of viable and healthy transfected GM12878 900 

cells, we enriched for viable cells using the EasySep Dead Cell Removal (Annexin V) 901 

Kit (STEMCELL Technologies) before seeding 2*106 live cells in the same media used 902 

for cell maintenance. After another 24 hours, cell viability was measured by trypan blue 903 

staining on a Countess automated cell counter and cells were spun down (100xG, 5 904 

min, room temperature) and lysed in TRIzol Reagent (Invitrogen) for downstream total 905 

RNA isolation (see below). 906 

 907 

 908 

Recombinant human IL16 (rhIL16) peptide treatment 909 
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Human rIL16 was obtained from PeproTech (cat. #200-16) and resuspended in 910 

0.1% bovine serum albumin (BSA) solution (Akron, cat. #AK8917-0100). GM12878 cells 911 

were seeded at a concentration of 500,000 live cells per mL of media on 6-well 912 

suspension plates with 3 independent replicates per condition. Cells were exposed to 0, 913 

24, or 48 hours of 100 ng mL-1 of rhIL16. To replace or exchange media 24 hours after 914 

seeding, cells were transferred to conical tubes, spun down (100xG, 5 min, room 915 

temperature), resuspended in 5 mL of the appropriate media, and transferred back to 6-916 

well suspension plates. After 48 hours, cell viability was measured by trypan blue 917 

staining and cells were spun down (100xG, 5 min, room temperature) and lysed in 918 

TRIzol Reagent (Invitrogen). 919 

 920 

 921 

RNA extractions and mRNA sequencing 922 

RNA was extracted using the Direct-zol RNA Miniprep kit (Zymo Research) 923 

following manufacturer recommendations. The integrity of RNA samples was evaluated 924 

using an Agilent High Sensitivity RNA ScreenTape assay (Agilent Technologies), 925 

ensuring that all samples had a minimum eRIN score of 8 before downstream 926 

processing. We then submitted total RNA samples to Novogene (Sacramento, 927 

California) for mRNA library preparation and sequencing on the NovaSeq 6000 platform 928 

as paired-end 150 bp reads. 929 

 930 

 931 

Analysis of overexpression and rhIL16 exposure mRNA-seq 932 
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 mRNA-seq reads were trimmed, mapped, and quantified like for the eQTL 933 

analysis, except for the overexpression sample data. For this data, one modification 934 

was made: the EBV-inclusive reference genome was further modified to include the 935 

pcDNA3.1 sequence as an additional contig. Lowly expressed genes were filtered using 936 

a cpm threshold as in the eQTL processing, but that cpm threshold had to be satisfied 937 

by as many samples as the size of the smallest biological group. For the overexpression 938 

data, surrogate variables were estimated with the ‘svaseq’ function [69] in the R 939 

package ‘sva’ v3.44.9, and they were regressed out from the raw read counts using the 940 

‘removeBatchEffect’ function in the R package Limma v3.52.2. DESeq2 was used to 941 

identify significantly (FDR < 5%) differentially expressed genes and TEs between 942 

groups. Functional enrichment analysis was carried out as previously described. 943 

 944 

 945 

PheWAS analysis 946 

To gather the known associated traits for the 499 TE-related SNVs, we used 947 

Open Targets Genetics (https://genetics.opentargets.org/), a database of GWAS 948 

summary statistics [102]. First, we queried the database using the 499 TE-related SNVs 949 

and collected traits that were directly associated (with P < 5x10-8) with the SNVs, as well 950 

as traits associated with lead variants that were in linkage disequilibrium (LD) with the 951 

queried SNPs (with R2 > 0.6). For age-related traits (ARTs), we used the 952 

comprehensive list of 365 Medical Subject Headings (MeSH) terms reported by [103] 953 

(downloaded from https://github.com/kisudsoe/Age-related-traits). To identify known 954 

age-related traits, the known associated traits were translated into the equivalent MeSH 955 
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terms using the method described by [103]. Then, the MeSH-translated known 956 

associated traits for the 499 TE-related SNVs were filtered by the MeSH terms for age-957 

related traits. 958 

 959 

As a parallel approach, we mapped the RsIDs for all SNVs used during the eQTL 960 

analyses to their corresponding bi-allelic Open Targets variant IDs, when available. The 961 

variant IDs corresponding to L1 trans-eQTL SNVs were extracted, and 500 different 962 

equal-length combinations of random SNVs were generated. Next, we queried the Open 963 

Targets database using the lists of L1-associated and random SNVs and collected the 964 

associated traits (with P < 5x10-8). Importantly, the database assigns traits to broader 965 

categories, including 14 disease categories that we considered age-related. We 966 

counted the number of L1-associated or random SNVs mapping to each category, and 967 

we used the random SNV counts to generate an empirical cumulative distribution 968 

function (ecdf) for each category. We calculated enrichment p-values using the formula 969 

p = 1- ecdf(mapped eQTLs) and then Benjamini-Hochberg FDR-corrected all p-values. 970 

An enrichment score (ES) was also calculated for each category using the formula ES = 971 

number of mapped L1 eQTLs / median number of randomly mapping SNVs. Categories 972 

with an ES > 1 and FDR < 0.05 were considered significantly enriched. 973 

 974 

 975 

Quantification of mouse serum IL16 by ELISA 976 

Serum was collected from male and female C57BL/6JNia mice (4-6 and 20-24 977 

months old) obtained from the National Institute on Aging (NIA) colony at Charles 978 
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Rivers. All animals were euthanized between 8-11 am in a “snaking order” across all 979 

groups to minimize batch-processing confounds due to circadian processes. All animals 980 

were euthanized by CO2 asphyxiation followed by cervical dislocation. Circulating IL16 981 

levels were quantitatively evaluated from mouse serum by enzyme-linked 982 

immunosorbent assay (ELISA). Serum was diluted 1/10 before quantifying IL16 983 

concentrations using Abcam’s Mouse IL-16 ELISA Kit (ab201282) in accordance with 984 

manufacturer instructions. Technical replicates from the same sample were averaged to 985 

one value before statistical analysis and plotting. P-values across age within each sex 986 

were calculated using a non-parametric 2-sided Wilcoxon test, and p-values from each 987 

sex-specific analysis were combined using Fisher’s method. 988 

 989 

 990 

  991 
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FIGURE LEGENDS 1351 

 1352 

Figure 1. Overview of the pipeline developed to scan for L1 transcriptional 1353 

regulators in silico.  1354 

(A) An illustration of the samples and “omic” data used in this study. Of the 358 1355 

European individuals, 187 were female and 171 were male. Of the 86 African 1356 

individuals, 49 were female and 37 were male. (Note that Utah subjects are of Northern 1357 

European ancestry, and thus part of the European cohort for analytical purposes). (B) A 1358 

schematic illustrating how genetic variants, gene expression, and TE expression can be 1359 

integrated to identify highly correlated SNV-Gene-TE trios. (C) A Manhattan plot for the 1360 

L1 subfamily trans-eQTL analysis in the European cohort. The genes that passed our 1361 

three-part integration approach are listed next to the most significant trans-eQTL SNV 1362 

they were associated with in cis. The dashed line at p = 3.44E-8 corresponds to an 1363 

average empirical FDR < 0.05, based on 20 random permutations. One such 1364 

permutation is illustrated in the bottom panel. The solid line at p = 2.31E-8 corresponds 1365 

to a Benjamini-Hochberg FDR < 0.05. The stricter of the two thresholds, p = 2.31E-8, 1366 

was used to define significant trans-eQTLs. FDR: False Discovery Rate. Some panels 1367 

were created with BioRender.com. 1368 

 1369 

Figure 2. Identification of 1st tier candidate L1 expression regulators in the 1370 

European cohort.  1371 

(A) A schematic for how 1st tier candidate genes were defined. In short, these were 1372 

genes in trios with index SNVs that were at the top of their respective peak. (B) The 1373 
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three-part integration results for three protein-coding genes—STARD5, IL16, 1374 

HSD17B12—that we considered first tier candidates for functional, in vitro testing. In the 1375 

left column are the trans-eQTLs, in the middle column are the cis-eQTLs, and in the 1376 

right column are the linear regressions for gene expression against L1 subfamily 1377 

expression. Expression values following an inverse normal transform (INT) are shown. 1378 

The FDR for each analysis is listed at the top of each plot. FDR: False Discovery Rate. 1379 

 1380 

Figure 3. L1 trans-eQTLs are associated with subtle, widespread differences in TE 1381 

families and known TE-associated pathways.  1382 

(A) Scheme for functionally annotating gene-linked index SNVs by GSEA. (B) GSEA 1383 

analysis for shared, significantly regulated TE family gene sets across genotypes for 1384 

rs11635336 (IL16/STARD5), rs9271894 (HLA), and rs1061810 (HSD17B12). (C) GSEA 1385 

plots for the L1 family gene set results summarized in (B). For these plots, the FDR 1386 

value is listed. GSEA analysis for top, shared, concomitantly regulated (D) MSigDB 1387 

Hallmark pathway, (E) GO Biological Process, and (F) Reactome pathway gene sets 1388 

across genotypes for rs11635336 (IL16/STARD5), rs9271894 (HLA), and rs1061810 1389 

(HSD17B12). Shared gene sets were ranked by combining p-values from each 1390 

individual SNV analysis using Fisher’s method. In each bubble plot, the size of the dot 1391 

represents the -log10(FDR) and the color reflects the normalized enrichment score. 1392 

FDR: False Discovery Rate. 1393 

 1394 

Figure 4. Impact of IL16 and STARD5 overexpression on LCL gene and TE 1395 

expression landscapes.  1396 
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IL16 and STARD5 overexpression induce changes consistent with their known biology, 1397 

as well as subtle but widespread upregulation of TE families. (A) Scheme for 1398 

experimentally validating the roles of IL16 and STARD5 in L1 regulation. GSEA analysis 1399 

for top, differentially regulated (B) GO Biological Process and (C) Reactome pathway 1400 

gene sets following IL16 overexpression. GSEA analysis for top, differentially regulated 1401 

(D) GO Biological Process and (E) Reactome pathway gene sets following STARD5 1402 

overexpression. (F) GSEA analysis for shared, significantly regulated TE family gene 1403 

sets following IL16 and STARD5 overexpression. (G) GSEA plots for the L1 family gene 1404 

set results summarized in (F). For these plots, the FDR value is listed. In each bubble 1405 

plot, the size of the dot represents the -log10(FDR) and the color reflects the normalized 1406 

enrichment score. FDR: False Discovery Rate. Some panels were created with 1407 

BioRender.com. 1408 

 1409 

Figure 5. rhIL16 treatment is sufficient to transiently upregulate an L1 family gene 1410 

set. 1411 

 (A) Scheme for experimentally validating the role of rhIL16 in L1 regulation. GSEA 1412 

analysis for top, shared, concomitantly regulated (B) GO Biological Process and (C) 1413 

Reactome pathway gene sets following IL16 overexpression and rhIL16 exposure for 24 1414 

hours. Shared gene sets were ranked by combining p-values from each individual 1415 

treatment analysis using Fisher’s method. (D) GSEA analysis for top, differentially 1416 

regulated TE family gene sets following rhIL16 exposure for 24 hours. The GSEA plot 1417 

for the L1 family gene set result summarized in the bubble plot is also shown. For this 1418 

plot, the FDR value is listed. In each bubble plot, the size of the dot represents the -1419 
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log10(FDR) and the color reflects the normalized enrichment score. FDR: False 1420 

Discovery Rate. Some panels were created with BioRender.com. 1421 

 1422 

Figure 6. Consistent cellular responses to IL16 overexpression, STARD5 1423 

overexpression, and rhIL16 exposure for 24 hours.  1424 

IL16 overexpression, STARD5 overexpression, and rhIL16 exposure for 24 hours are 1425 

associated with subtle but widespread differences in TE families and known TE-1426 

associated pathways. (A) Scheme for assessing concordantly regulated TE family and 1427 

pathway gene sets across conditions where an L1 gene set is upregulated. GSEA 1428 

analysis for top, shared, concomitantly regulated (B) TE family, (C) MSigDB Hallmark 1429 

pathway, (D) GO Biological Process, and (E) Reactome pathway gene sets following 1430 

IL16 overexpression, STARD5 overexpression, and rhIL16 exposure for 24 hours. 1431 

Shared gene sets were ranked by combining p-values from each individual treatment 1432 

analysis using Fisher’s method. In each bubble plot, the size of the dot represents the -1433 

log10(FDR) and the color reflects the normalized enrichment score. FDR: False 1434 

Discovery Rate. 1435 

 1436 

Figure 7. L1 trans-eQTLs are co-associated with aging traits in GWAS databases. 1437 

(A) Scheme for obtaining trans-eQTL SNV-associated aging phenotypes from the Open 1438 

Targets Genetics platform. (B) A pie chart representing the number of SNVs (222/499) 1439 

associated with an aging-related MeSH trait, either by PheWAS or indirectly linked to 1440 

the phenotype through a proxy lead SNP in LD with the SNV. (C) Histogram depicting 1441 

the distribution of number of aging MeSH traits associated with the 222/499 SNVs by 1442 
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PheWAS. (D) Histogram depicting the distribution of number of aging MeSH traits linked 1443 

with the 222/499 SNVs through a proxy lead SNP in LD with the SNVs. (E) A diagram 1444 

highlighting the organ targets of the top 10 most frequently associated aging traits. (F) 1445 

The concentrations of circulating IL16 in aging mice of both sexes was assessed by 1446 

ELISA. Significance across age in each sex was assessed using a Wilcoxon test. The 1447 

p-values from each sex (females in pink and males in blue) were combined by meta-1448 

analysis using Fisher’s method. Any p-value < 0.05 was considered significant. Some 1449 

panels were created with BioRender.com. 1450 

 1451 

 1452 
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Figure 3

A Scheme for functionally annotating SNVs
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Figure 4

A Scheme for assessing the effects of candidate genes on L1 expression
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Figure 5

A Scheme for assessing the effects of IL16 protein on L1 expression
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Figure 6

A Scheme for assessing shared pathway changes in conditions with L1 regulation

B Shared upregulated TE family gene sets
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Figure 7

A Scheme for identifying TE eQTL co-associated aging traits

B Number of SNVs with an age-related 
MeSH trait

E Top traits with the most number of 
associated SNVs F Mouse serum [IL16] with age
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