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Abstract 

Rare cell populations are key in neoplastic progression and therapeutic response, 

offering potential intervention targets. However, their computational identification and 

analysis often lag behind major cell types. To fill this gap, we introduced MarsGT: Multi-

omics Analysis for Rare population inference using Single-cell Graph Transformer. It 

identifies rare cell populations using a probability-based heterogeneous graph 

transformer on single-cell multi-omics data. MarsGT outperformed existing tools in 

identifying rare cells across 400 simulated and four real human datasets. In mouse 

retina data, it revealed unique subpopulations of rare bipolar cells and a Müller glia cell 

subpopulation. In human lymph node data, MarsGT detected an intermediate B cell 

population potentially acting as lymphoma precursors. In human melanoma data, it 

identified a rare MAIT-like population impacted by a high IFN-I response and revealed 

the mechanism of immunotherapy. Hence, MarsGT offers biological insights and 

suggests potential strategies for early detection and therapeutic intervention of disease.  
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Multicellular organisms encompass a diverse range of specialized cells. Identifying 

these cell types is pivotal in immunotherapy and clinical scenarios, as it illuminates 

immune mechanisms, aids in devising targeted therapies, and bolsters personalized 

medicine by unmasking the unique cellular makeup of each patient1. However, 

difficulties surface when encountering rare or transiently expressed cells2,3. Despite 

their scarcity, rare cell populations step up to play crucial roles in a variety of biological 

processes4,5. For example, antigen-specific memory T cells are integral for sustained 

immunosurveillance and long-term immunity, even in infection-free periods6. 

Conversely, invariant natural killer T cells impact a variety of pathologies, including 

microbial infections and autoimmune diseases, due to their robust immunoregulatory 

functions7,8. Additionally, minimal residual disease, denoting the minute cancer cell 

population post-treatment, acts as a significant early indicator for potential tumor 

relapse, highlighting the necessity to identify and comprehend these rare cell groups 

in disease dynamics and therapeutic interventions9,10. A refined grasp of these rare cell 

populations, culminating in a more detailed depiction, will illuminate our understanding 

of tumor microenvironments and the intricate mechanisms that steer the responses to 

immunotherapy.  

 

The advent of single-cell RNA sequencing (scRNA-seq) has vastly improved our ability 

to identify individual cell types, offering high-resolution molecular profiles that illuminate 

cellular diversity and the complex dynamics of gene expression within specific cells11,12. 

Most existing rare cell identification tools, such as FIRE4, GapClust13, TooManyCells14, 

GiniClust15, RaceID2, and SCMER1, confront several challenges, such as high false 

positives when inferring rare populations, limited performance with complex samples 

like tumor biopsy single-cell data, inability to concurrently identify major and rare cell 

types, and compromised accuracy with ultra-rare cell types (<1% of the sample). These 

issues could stem from the limited representation of rare cells, which may lead to 

inaccurate grouping with more prevalent cell populations when solely relying on gene 

expression data. This pursuit can be further accelerated by technological innovations 

like single-cell ATAC sequencing (scATAC-seq)12. When synergistically used with 

scRNA-seq, these methodologies provide partial regulatory data concerning enhancer 

regions pivotal in preserving cell type identities1. This invaluable information can be 

tapped into for the construction of gene regulatory networks, thereby unraveling critical 

insights into the nature and function of rare cell populations16. 

 

Meanwhile, graph neural networks have recently demonstrated profound proficiency 

in deciphering complex biological data, offering robust backing for the precise analysis 

and study of scMulti-omics data16-20. The implementation of the heterogeneous graph 

transformer provides a unified framework that amalgamates diverse single-cell data 

types, thereby facilitating a comprehensive understanding of cellular heterogeneity16,21-

23. This approach unveils the intricate interplay among various cell types within 

complex cellular landscapes, enhancing our comprehension of biological systems and 

bolstering opportunities for precision therapeutic interventions.  
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To fill the gap and validate the theory, we developed MarsGT (Multi-omics analysis for 

rare population inference using single-cell Graph Transformer), an end-to-end deep 

learning model for rare cell population identification from scMulti-omics data. Graph 

neural networks have recently demonstrated profound proficiency in modeling single-

cell data24,25. Furthermore, our in-house tool, DeepMAPS16, has shown the superior 

performance of heterogeneous graph transformer (HGT), a powerful graph neural 

network architecture that can deal with large-scale heterogeneous and dynamic 

graphs, in biological network inference and cell clustering from the joint analysis of 

scMulti-omics data. With such a foundation, MarsGT introduces a probability-based 

HGT framework to analyze scMulti-omics data from a heterogeneous graph, including 

cells, genes, and peaks, which can build peak-gene regulatory relationships and utilize 

such relationships to characterize rare cell populations.  

 

MarsGT, as a novel probability-based subgraph-sampling method, can highlight rare 

cell-related genes and peaks in a heterogeneous graph. We conducted extensive 

simulations (n=400) to thoroughly test the accuracy and robustness of MarsGT in 

identifying rare cell populations. The performance of MarsGT, validated on the above 

simulation data and four human peripheral blood mononuclear cell datasets, 

surpassed existing methods in F1 score and Normalized Mutual Information (NMI) 

metrics. To further showcase the application capability of MarsGT, we applied MarsGT 

on three scMulti-omics case studies of (1) mouse retina, (2) human Fresh Frozen 

Lymph Node with lymphocytic lymphoma, and (3) melanoma patients and healthy 

donors. Our results demonstrate that MarsGT can distinguish unique rare cell 

populations—a feat not achievable with other computational tools—and provide 

strategies for early clinical detection and the development of immunological blockers.  

     

Results 

Overview of the MarsGT framework 

MarsGT incorporates scRNA-seq and scATAC-seq data, and concurrently yields 

primary and rare cell populations along with their respective regulatory relations (Fig. 

1, Supplementary Fig. 1). A heterogeneous graph, comprising cells, genes, and 

enhancers, is constructed from the initial scRNA-seq and scATAC-seq data, with the 

presence of genes and peaks within cells represented as edges. The genes/peaks 

within a cell are segmented into high or low-selection regions according to the first 

quartile of the expression/accessibility. For a given cell, the selection probability of a 

gene/peak is determined by the proportion of gene/peak expression/accessibility in the 

high selection region. With the selection gene/peaks criteria, subsampling graphs are 

specifically tailored for rare cells. The multi-head attention mechanism facilitates the 

update of joint embeddings of cells, genes, and peaks on the sampled subgraphs. The 

cell assignment probability matrix and peak-gene link assignment probability matrix 

are predicted post-learning joint embedding. The peak-gene relations and rare cell 

populations from the subgraphs are concurrently determined and iteratively updated 

for model training. The fully trained model is subsequently applied to the entire 

heterogeneous graph, and a transcription factor (TF) database is incorporated to 
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construct cell cluster enhancer gene regulatory networks (eGRNs)12 (Methods). 

 

 

Fig. 1. The framework of MarsGT. The model employs a six-step process for cell clustering 

and eGRN inference from matched scRNA-seq and scATAC-seq data. First, a heterogeneous 

graph, comprised of cells, genes, and peaks, is constructed from the original scRNA-seq and 

scATAC-seq data. Genes and peaks serving as edges are selected for a cell if they show high 

accessibility/expression within that cell and low accessibility/expression in others. The second 

step is learning joint embedding, which employs four graph relations to pass the message via 

a heterogeneous transformer. Arrows depict connections between target and source nodes. 

The third step involves cell assignment. Here, cell clusters are inferred from a probability matrix 

with rows representing cells and columns indicating pseudo-cell clusters. Cells that share the 

same maximum probability belong to the same cluster. The fourth step is constructing the peak-

gene relationship via a matrix calculated from gene and peak embeddings, with rows denoting 

the regulatory potential of the peak to gene and columns indicating pseudo-cell clusters. In the 

final step, the trained model is applied to the entire graph. Following this, TF database 

information is integrated to infer cell clusters and eGRNs. Circles represent rare cell populations. 

 

MarsGT achieves superior performances in rare and major cell populations 

identification simultaneously on simulated and real data 

We assessed the performance of MarsGT in identifying both rare and major cell 

populations across 400 simulated matched scRNA-seq and scATAC-seq datasets. To 

evaluate the performance of tools on distinct datasets. We simulated 100 datasets 

using highly homogeneous cell line data (Sim-CL 1, 2). To test these tools in more 

complex, less distinguishable scenarios, we simulated an additional 300 datasets 

using peripheral blood mononuclear cell (PBMC) data (Sim-PBMC 1, 2, 3, 4, 5, 6) 
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(Supplementary Data 1, Methods). Each simulated dataset included benchmark 

annotations from their original manuscripts. MarsGT was first compared with 

CellCUIS26, FIRE4, and GapClust15, which operate as classification-like tools, to infer 

rare cells only. The performance was evaluated based on the F1 score, Precision, and 

Recall metrics for rare cell identification performance. To ensure fairness, each 

benchmarking tool was also tuned with different parameter combinations (Methods). 

We selected the parameter combination for performance comparison based on the 

grid search benchmarking of all the above tools. Specifically, if the mean score of a 

parameter combination achieves the highest across all datasets, we consider it the 

default parameter (Methods). MarsGT outperformed all classification-like tools across 

seven types of simulated datasets (totaling 350) regarding F1 score, Precision, and 

Recall (Fig. 2a, Supplementary Fig. 2, Supplementary Data 2).  

 

Furthermore, to evaluate MarsGT's ability to identify major and rare cell populations 

simultaneously, we compared it with three clustering-like tools (GiniClust13, RaceID2, 

and SCMER1) using NMI, Purity, and Entropy metrics. MarsGT was 5.66% higher than 

the NMI score of the existing best-performing tool on the independent test dataset (Fig. 

2b, Supplementary Fig. 3, Supplementary Data 2). Furthermore, to verify MarsGT's 

rate of false positives, we compared it with other tools using the Sim-PBMC 6 dataset, 

which lacks rare cells (Methods). The results confirm that MarsGT does not force the 

identification of rare cell populations (Supplementary Fig. 4, Supplementary Data 3). 

A cell type is classified as a rare cell type if it constitutes less than 3% of the total cells. 

However, certain rare cells, such as senescent cells, can constitute an even smaller 

proportion27. To assess each tool's ability to identify these extremely rare cell types, we 

performed a gradient test with proportions of 0.5%, 1%, 2%, and 3% rare cells across 

five simulated datasets. A detailed comparison across all evaluation metrics 

demonstrated that MarsGT outperformed the existing top-performing tool in rare cell 

identification, exhibiting a superior F1 score that was 11.56%~143.49% higher, across 

different proportions of rare cells (Supplementary Fig. 5, Supplementary Data 4).  

    

To evaluate MarsGT's performance on real datasets, we chose four datasets (PBMC-

bench-1, 2, 3, and PBMC-test) from human peripheral blood mononuclear cells with 

ground truth labels. To maintain fairness, we presented the performance in a bar plot, 

using default parameters for all benchmarking tools and showing the results of 

parameter combinations (Supplementary Data 5-6). In real data, we separately 

classified cell types constituting less than 3% and 1% of total cell counts as rare cell 

types. On average, MarsGT achieved 13.21% and 64.08% higher F1 scores, 

compared to other tools, for 1% and 3% simulated rare cell proportion identification, 

respectively (Fig. 2c). The cell clustering UMAP on an independent dataset with 

benchmarking labels illustrated that MarsGT can accurately identify all rare cell types 

compared to other tools (Fig. 2d). The cell clustering UMAP on an independent dataset 

with benchmarking labels illustrated that MarsGT can accurately identify all rare cell 

types compared to other tools (Supplementary Fig. 6, Supplementary Data 7), which 

confirmed MarsGT's robust stability. 
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Fig. 2. Benchmarking of MarsGT in terms of rare cell population identification. a. 

Benchmark rare cell population identification on Sim-CL 1 and Sim-PBMC 1 datasets with 

classification-like tools in terms of F1 score. The X-axis signifies the dataset, while the Y-axis 

presents F1 scores arranged in descending order. b. Rare cell population identification on Sim-

CL 1 and Sim-PBMC 1 datasets benchmarked with clustering-like tools evaluated via NMI 

scores. The X-axis signifies the dataset, while the Y-axis denotes NMIs, organized in 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 17, 2023. ; https://doi.org/10.1101/2023.08.15.553454doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.15.553454
http://creativecommons.org/licenses/by-nc-nd/4.0/


descending order. c. Comparative results on three real training datasets (PBMC-bench-1, 2, 3) 

and one independent test dataset (PBMC-test). Test parameters across all tools are determined 

by the most optimal results obtained from the training dataset. d. The UMAPS results for the 

independent PBMC-test dataset were calculated using PCA and predicted cell clusters in the 

tools. The purple and orange ellipses represent rare cell populations constituting less than 1% 

and 3%, respectively. Tools like FIRE and GapClust can distinguish only between major and 

rare populations in a binary fashion based on their method design. CellSISU, due to its design, 

can identify several rare cell populations but cannot recognize major ones.   

 

MarsGT effectively captures differential regulatory mechanisms and uncovers 

biologically meaningful rare cell populations often missed by other tools. 

To underscore MarsGT's robust capability in identifying rare cell populations within 

species beyond humans, we utilized MarsGT on a published dataset involving matched 

single-nucleus RNA sequencing (snRNA-seq) and single-nucleus ATAC sequencing 

(snATAC-seq) performed on 9,383 cells from the mouse retina (Supplementary Data 

1). This study demonstrates MarsGT's capabilities in discerning major and numerous 

rare cell populations, and we were able to identify 18 distinct cellular clusters, inclusive 

of one amacrine cell (AC) group, eight bipolar cell (BC) groups, one Cone cell group, 

one horizontal cell (HC) group, three müller glia cell (MG) groups, one retinal ganglion 

cell (RGC) group, and three Rod cell groups (Fig. 3a). Moreover, 12 rare cellular 

populations were distinguished, eight of which boast a 95% confidence level as 

highlighted by scPower28 (Fig. 3b). The annotation of major cell populations was 

accomplished through the visualization of expression levels pertaining to curated 

marker genes29-31 (Fig. 3c). The populations of BC are known to exhibit a multitude of 

rare populations. Utilizing MarsGT, we identified eight unique populations of BC. These 

populations were annotated by visualizing the expression levels of curated marker 

genes specific to the BC subpopulation32 (Fig. 3d). Excluding rod bipolar cell (RBC), 

all eight populations are regarded as rare cell populations at a 95% confidence level, 

as determined by scPower28.  

 

To validate whether the rare cell populations we identified is a false positive, further 

testing is required. Hence, we inferred potential cell-cell communications and 

constructed communication networks among different BC populations using CellChat33. 

Notably, we identified a non-canonical Wnt (ncWnt) signaling pathway originating from 

RBC and targeting both BC3 and BC6 (Supplementary Fig. 7, Supplementary Data 

8). Previous research has highlighted the role of Wnt5a and Wnt5b, produced by RBC, 

in activating a non-canonical signaling pathway in rods, which in turn regulates early 

Outer Plexiform Layer (OPL) patterning34, thereby validating the accuracy of the rare 

cell populations identified by MarsGT. We calculated the differentially expressed genes 

(DEGs) for each population further to elucidate the functionality of these distinct BC 

populations. Based on the cell population-specific DEG list, we inferred the functional 

pathways for each cell population (Fig. 3e). Notably, neuron migration was moderately 

enriched in BC1B, which aligns with its translocation from the bipolar to the amacrine 

cell layer. Categories such as axonogenesis and the glutamate receptor signaling 
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pathway revealed modest differences among BC clusters. Interestingly, extracellular 

ligand-gated ion channel activity was predominantly enriched in OFF types, reflecting 

their employment of ionotropic glutamate receptors35.  

 

Interestingly, our analysis distinguished cluster 10, which comprises 127 cells, from 

cluster 2. Although both clusters are annotated as MG, cluster 10 stands out as a rare 

cell population. We denote cluster 2 as MG-1 and cluster 10 as MG-2. In the original 

paper, the 127 cells are annotated as Rod (120) and MG (5) by scRNA-seq and marker 

gene36. To further validate our findings, we utilized GiniClust15, the algorithm with the 

second-best performance in our benchmarking section after MarsGT. GiniClust 

annotated the 127 cells as Rod (83 cells) and MG (41 cells) (Supplementary Fig. 8). 

This indicates that the rare MG identified in our study, which was not found in the 

original text, are not false positives. We ventured further into exploring the functional 

differences between the two MG clusters. Notably, we found MG-1 to be enriched in 

sprouting angiogenesis (Fig. 3f), suggestive of potential defects in retinal vascular 

development and a consequential functional deficit in MG, known to play a critical role 

in guiding outgrowing vessels37. MG-2 exhibited enrichment in the structural 

constituent of eye lens function (Fig. 3f). This finding echoes the assertions of previous 

research indicating that MG in both mature and embryonic retina binds antibodies 

generated to a lens fraction enriched for α-crystallin, a key lens protein38. The eGRN 

of the structural constituent of eye lens pathway related-gene is displayed in 

Supplementary Fig. 9 (Supplementary Data 9). We further visualized the eGRN for 

MG-1 and MG-2 (Fig. 3g, Supplementary Data 10). Compared to other methods, 

MarsGT effectively captures differential regulatory networks, successfully identifying 

biologically meaningful rare cell populations that are often missed by RNA-only or other 

tools. 

 

To further assert that MarsGT does not overlook pertinent information in the data while 

identifying rare cell populations, we initially compute the differentially expressed genes 

of the predominant cell populations. We identified top DEGs such as Arr3, Gnat2, and 

Pde6h, which act as marker genes for the Cone. Additionally, hsd7a serves as the 

marker gene for HC, whereas Apoe, Clu, and Slc1a function as marker genes for MG. 

Meg3 is identified as the marker gene for RGC, and Nrl for Rod32 (Supplementary Fig. 

10, Supplementary Data 11). The results validate the accuracy of MarsGT in 

identifying the predominant cell populations. Utilizing the raw gene expression data 

and cell populations, we deduced potential cell-cell communications and subsequently 

constructed communication networks among different cell populations within multiple 

signaling pathways, facilitated by CellChat33. Notably, we discovered a VEGF signaling 

pathway extending from AC, MG, RGC, HC, MG, and Rod towards MG as the target 

(Supplementary Fig. 11, Supplementary Data 12), which is consistent with the 

previous research30.  
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Fig. 3. MarsGT effectively captures differential regulatory mechanisms and uncovers 

biologically meaningful rare cell populations often missed by other tools. a. A UMAP 

visualizing the cell clusters predicted by MarsGT, annotated based on marker genes. b. The 

number of cells in each cell cluster, with the red color signifying a 95% confidence level for rare 

cell populations. c. Dotplot depicts the expression value and proportion of marker genes for the 

cell clusters predicted by MarsGT. d. Dotplot represents the expression value and proportion of 

BC marker genes for the cell clusters predicted by MarsGT. e. The average gene expression 

across each pathway is calculated using differentially expressed genes (DEGs) across various 

BC subpopulations. Pathways within the red box have been validated in the literature. f. 

Pathway enrichment as determined by Gene Set Enrichment Analysis (GSEA), based on the 

DEGs of MG-1 and MG-2. The structural constituent of the eye lens is the pathway enriched in 

MG-2, and Sprouting angiogenesis is the pathway enriched in MG-1. g. The different peak-
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gene networks of MG-1 and MG-2. Rectangles symbolize the peaks, and their colors represent 

the mean accessibility of the peak in the cell population. Accessibility levels ranging from 0 to 

0.1 are denoted as 1, those from 0.1 to 0.5 as 2, from 0.5 to 1 as 3, and anything above 1 is 

denoted as 4. The color of the line and circle represent the cell populations. The orange color 

signifies genes or relationships unique to MG-1, green indicates those unique to MG-2, while 

blue represents genes or relationships shared between MG-1 and MG-2.  

 

MarsGT identifies rare B lymphoma-state-1 that provide the potential for 

preventing B-lymphoma progression 

To underscore MarsGT's robust capability in identifying rare cell populations within 

cancer data, we utilized a matched scRNA-seq and scATAC-seq dataset available on 

the 10X Genomics website (Supplementary Data 1). This data originated from 14,566 

cells obtained from a flash-frozen intra-abdominal lymph node tumor in a patient 

diagnosed with diffuse small lymphocytic lymphoma of the lymph node. MarsGT 

identified 14 distinct cell clusters, which we annotated by visualizing the expression 

levels of curated marker genes (Fig. 4a, b). Notably, four of these clusters were 

annotated as B cells. To differentiate the subpopulations of B cells, we visualized the 

expression levels of both normal B marker genes and B lymphoma marker genes 

across the four subpopulations (Fig. 4c). We designated one subpopulation as normal 

B cell population and three as lymphoma cell populations: B lymphoma-1 (Bsl1), B 

lymphoma-2 (Bsl2), and B lymphoma-3 (Bsl3). Bsl1, a rare cell population, exhibits a 

95% confidence level, as indicated by scPower28. Intriguingly, it was evident that B cell 

subpopulations annotated using solely RNA or ATAC data could not be effectively 

distinguished (Fig. 4c, Supplementary Fig. 12). We also applied other scMulti-omics 

tools to the dataset for comparative purposes. For instance, Seurat39 only identified 

two B cell subpopulations with hard annotation by curated marker genes 

(Supplementary Fig. 13), while our in-house tool DeepMAPS identified only three B 

cell subpopulations16. However, neither tool successfully identified the rare cell cluster 

within the B cells. 

 

A pseudotime analysis on the four B cell clusters (comprising the normal B cell 

populations and three B lymphoma cell populations), using Monocle340, postulated a 

lineage whereby the rare cell population Bsl1 originates from the normal B cell 

populations. It was inferred that Bsl1 predates Bsl2, which in turn predates Bsl3 (Fig. 

4d, e). To substantiate this proposed linear-like developmental trajectory, we computed 

gene signature scores41 reflecting different functions (anti-apoptosis, metastatic, and 

PD-PDL1) across the four B cell populations (Fig. 4f, Supplementary Data 14, 

Supplementary Data 15). These results depict a progressive progression of B 

lymphoma from Bsl1 to Bsl3. Focusing on PDL1, a critical gene in the PD1-PDL1 

pathway that is promoted by STAT1 and HIF1A, we observed more regulatory relations 

and intensity of STAT1 and HIF1A in Bsl3 (Fig. 4g, h, Supplementary Data 16). This 

finding is in line with our inferred linear-like development tendency. Furthermore, BCL2, 

an oncogenic gene that plays an anti-apoptotic role in cancer and drives its 

progression42-45, demonstrated an incrementally enhanced regulatory score from 
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normal B cells to Bsl3 (Fig. 4i, Supplementary Data 17), lending further credibility to 

our inference. Exploring Bsl1 in greater depth, we compared the disparities among the 

four B cell clusters and identified a unique TF for Bsl1, namely, MEF2C, along with 

switch-enhancer corresponding TFs: POU2F2, FOXP1, SPI1, and NFIC. Simulating a 

knockout experiment46 involving these five TFs revealed a shift in B lymphoma cells 

towards normal B cells, suggesting that identifying the rare Bsl1 state could offer 

potential avenues for curbing B-lymphoma progression (Fig. 4j, k, Supplementary 

Fig. 14). It has been reported previously that MEF2C mutations lead to deregulated 

expression of the BCL6 oncogene in B lymphoma47,48, and that POU2F2 reflects the 

survival of B cell malignancies49. Additionally, FOXP1 is known to suppress immune 

response50-53. The roles of SPI1 and NFIC, as inferred by MarsGT, may provide fresh 

insights into therapeutic strategies for B lymphoma. In short, MarsGT can effectively 

identify a rare subset of B cells, Bsl1, provides valuable insights into B-lymphoma 

progression, and opens new avenues for potential interventions, thereby advancing 

our understanding of cellular disease dynamics and fostering innovative medical 

research and treatment strategies.  
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Fig. 4. MarsGT identifies the rare cells in the intermediate transition state on B lymphoma 

data. a. UMAP visualizes cell clusters predicted by MarsGT, annotated based on the marker 

genes. b. Dotplot demonstrates the expression value and proportion of marker genes within 

the cell clusters predicted by MarsGT. c. A stacked violin plot represents the subpopulations 

of B cells, annotated with the marker genes for both normal and tumorous B cells. d. A cell 

development trajectory for the four B cell subpopulations, with the line representing the 

lymphoma development trajectory. e. The pseudotime of the four B cell subpopulations. f. The 

pseudotime of the four B cell subpopulations. Color represents cell clusters, and the Y-axis is 

the enrichment score. g. The regulatory relationship of the PDL1 gene across the four B cell 

subpopulations. The red color signifies the regulatory score for each enhancer of the STAT1 

coding gene across different B cell subpopulations, while blue indicates gene expression. h. 

The regulatory relationship of the PDL1 gene across the four B cell subpopulations. The red 

color signifies the regulatory score for each enhancer of the HIF1A coding gene across different 

B cell subpopulations, while blue denotes gene expression across these subpopulations. i. 
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The regulatory relationship of the BCL2 gene (an anti-apoptosis promoting gene) across the 

four B cell subpopulations. The red color represents the regulatory score of each enhancer for 

the BCL2 coding gene across different B cell subpopulations, while the blue color represents 

gene expression in these subpopulations. j. Observed and extrapolated future states (depicted 

as arrows) following the POU2F2 knockout in the four B cell subpopulations. The color 

represents the different cell clusters. k. Observed and extrapolated future states (depicted as 

arrows) following the FOXP1 knockout in the four B cell subpopulations. The color represents 

the different cell clusters. 

 

MarsGT identifies MAIT-like rare cell populations and eGRNs in multi-sample 

melanoma scRNA-seq and scATAC-seq 

To broaden MarsGT's scope in multi-sample and rare cell population inference, we 

utilized ten matched scRNA-seq and scATAC-seq samples of peripheral blood 

mononuclear cells (PBMCs) from melanoma patients at baseline (prior to receiving 

anti-PD1 therapy) and healthy donors. Of these, two samples were from healthy 

donors, while the remaining eight were from melanoma patients. MarsGT identified 13 

distinct cell clusters from the integrated dataset of these ten samples, which include 

one CD4+T cell group, three CD8+ T cell groups, two CD14+ monocytes (Mono) cell 

groups, one B cell group, one Nature killing (NK) cell group, one FCGR3A+ Mono cell 

group, and three Dendritic (DC) cell group. These clusters were annotated by 

visualizing the expression levels of curated marker genes in the major cell populations 

(Fig. 5a, b). DEGs for each cell population were calculated and represented in a 

heatmap (Supplementary Fig. 15). Notably, we observed two rare cell populations 

within the CD8+ T cells, namely, Cluster 9 and Cluster 12. The DEGs across these 

three CD8+ T cell populations were computed (Supplementary Fig. 16, 

Supplementary Data 17), leading to the identification of top DEGs such as ZBTB16 

and SLC4A10 in Clusters 9 and 12. These genes act as markers for Mucosal 

Associated Invariant T cells (MAIT), recognized as a crucial rare cell population in 

immune responses. To delve deeper into the cell populations within Clusters 9 and 12, 

we visualized additional MAIT marker genes (Fig. 5c). Given that both MAIT and 

Natural Killer T (NKT) cells are non-canonical T cells and share similarities in their 

functions and partial marker genes, we computed the gene signature enrichment 

scores for MAIT and NKT respectively. The MAIT score was significantly higher than 

the NKT score (Fig. 5d, Supplementary Data 18), leading us to define Cluster 9 as 

MAIT-like 1 and Cluster 12 as MAIT-like 2.  

 

We constructed the eGRN of the three CD8+ T cell populations and found that common 

enhancers and genes in the three cell populations constituted the majority proportion 

(Fig. 5e, f, Supplementary Data 19). Meanwhile, each cell population demonstrated 

unique enhancers and genes, indicating that MAIT-like 1 and MAIT-like 2 represent 

different MAIT-like subpopulations, each endowed with unique functional attributes. To 

support this observation, we inferred the pathways enriched in the MAIT-like cell 

population based on the cell population's active gene expression in the eGRNs (Fig. 

5g). MAIT-like 1 and MAIT-like 2 shared several pathways, including Regulation of I-
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kappaB kinase/NF-kappaB Signaling, which play significant roles in immune 

responses. Unique to MAIT-like 1 were pathways such as Positive Regulation of 

Cytokine Production Involved in Immune Response, Interleukin-12-Mediated Signaling 

Pathway, and Regulation of Type I Interferon Production. The MAPK Cascade pathway 

was unique to MAIT-like 2, further differentiating these two subpopulations. Divergent 

regulatory patterns became apparent when we focused on a single regulon, ZBTB16, 

recognized as a critical transcription factor in MAIT cells. We visualized the expression 

of the genes it regulates, as well as the average accessibility value of the peaks 

associated with these regulated genes (Fig. 5h). We further mapped the regulatory 

relationships of ZBTB16 within the two MAIT-like cell populations (Fig. 5i). Interestingly, 

our results highlight minor differences in expression and accessibility, but more 

substantial variations in regulatory relationships. This supports our hypothesis that 

regulatory information is pivotal in recognizing rare cell populations. 
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Fig. 5. MarsGT identifies MAIT-like rare cell populations and eGRNs in multi-sample 

melanoma scRNA-seq and scATAC-seq. a. UMAP visualizes MarsGT's predicted cell cluster 

results, annotated based on marker genes. b. Dotplot depicts the expression value and 

proportion of marker genes within the cell clusters predicted by MarsGT. c. UMAPS showcases 

the marker genes of MAIT cells. d. showcasing the marker genes of MAIT cells. The p-value is 

calculated by the Mann-Whitney U test with one-sided. e. The upset plot illustrates the peaks 

present in CD8+ T cell subpopulations. f. The upset plot demonstrates the genes found in CD8+ 

T cell subpopulations. g. Pathway enrichment across different MAIT-like cell populations. 

Colors represent distinct cell populations, while the size of the dots indicates the ratio of 

enriched genes. h. The expression and accessibility of ZBTB16-regulated genes across various 

MAIT cell populations. i. The regulatory relations of ZBTB16 in different MAIT-like cell 
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populations. Green means the common regulatory relations between MAIT-like 1 and MAIT-like 

2. Light blue means the regulatory relations unique in MAIT-like 1. Dark blue means the 

regulatory relations unique in MAIT-like 2.   

 

MarsGT reveals the mechanism for different survival of PD1-blocking 

immunotherapy 

The above ten sample datasets we analyzed incorporated immunotherapy data from 

eight melanoma patients, grouped according to their Interferon-I response capacity 

(IRC). Four patients exhibited high IRC, as determined by the levels of Interferon-I 

stimulated proteins measured by mass cytometry, while the remaining four 

demonstrated low IRC (Supplementary Fig.17). The source study inferred that a 

hyporesponsive IRC effectively predicted extended survival following PD1-blocking 

immunotherapy, while high responsiveness strongly associated with treatment failure 

and reduced survival duration. Interestingly, we observed that in both MAIT-like 1 and 

MAIT-like 2 cells, samples with low IRC represented a majority, accounting for 83.57% 

and 70.18%, respectively, a figure significantly higher than those with high IRC (Fig. 

6a). Given the potential significance of MAIT-like 1 cells in understanding the survival 

mechanisms underpinning PD1-blocking immunotherapy, we decided to investigate 

this cell population further (MAIT-like 2, with only 69 cells, was excluded due to potential 

low confidence). We found 176 MAIT-like 1 cells in the high IRC group, compared to 

895 cells in the low IRC group (Fig. 6b). Additionally, the count of DCs in the low IRC 

group exceeded those in the high IRC group. We compared the expression of IFN-I 

stimulated genes (ISGs) between high and low IRC patients.  

 

Contrary to the IRC assignments, ISG expression in low IRC patients was significantly 

higher than in high IRC patients (Fig. 6c). Upon calculating the unique enhancers in 

the eGRNs of high IRC and low IRC groups, respectively, we found that transcription 

factors TCF1 and BCL6 were exclusively present in the low IRC group. Previous 

studies have demonstrated that the TCF1-Bcl6 axis counteracts type I interferon to 

repress exhaustion and maintain T cell stemness54. Then we calculated the effector 

and exhaustion gene signature scores for MAIT cells in high IRC and low IRC groups, 

respectively (Fig. 6d, Supplementary Data 20). MAIT-like 1 cells in the high IRC group 

appeared exhausted, while those in the low IRC group appeared effective. This 

observation may explain the varying IRC across samples and the improved prognosis 

for low IRC patients following PD1-blocking immunotherapy.  

    

High IRC suppressed MAIT-like 1 cells response by triggering high interleukin-10 (IL-

10) production by DC, which subsequently inhibited the secretion of IL-15, IL-18 which 

are costimulatory cytokines for MAIT-like 1 cell activation (Fig. 6e). The effector 

functions of MAIT-like 1 cells are mediated through the production of IFN-II, GzmB, 

and Perforin. This observation is supported by the expression levels of the genes 

coding for these cytokines and their respective receptors (Fig. 6f, g). Our attention 

then turned to the regulatory mechanisms of IFN-II, GzmB, and Perforin in the high 

and low IRC contexts. In low IRC, IFN-I signaling is relayed by Tyk2-NFKB to regulate 
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IFNG (the coding gene of IFN-II), and relayed by Jak1-STAT1 to regulate GZMB. IL-

15 signaling is relayed by Jak1/Jak3-STAT1 to regulate GZMB, while IL-18 signaling is 

relayed by JNK-NFKB to regulate IFNG and by JNK-FOS/JUN to regulate GZMB and 

PRF1 (the coding gene of Perforin). In contrast, high IRC sees only IL-18 signaling 

relayed by JNK-FOS/JUN to regulate PRF1 (Fig. 6i). The complete GRNs of IFNG, 

GZMB, and PRF1 are depicted in Supplementary Fig. 18. Interestingly, we observed 

a higher number of positive regulatory relations in low IRC compared to high IRC. This 

suggests a critical role for low IRC in facilitating the elimination of tumor cells. In other 

words, compared to samples with high IRC, those with low IRC stimulate the 

expression of cytokine and cytolytic molecule coding genes in CD8+ T cells via various 

costimulatory factors and pathways. This leads to the enhanced secretion of IFN-γ, 

TNF-α, Granzyme B, and Perforin, which in turn boosts the cytotoxic function of CD8+ 

T cells, promoting more effective tumor destruction. 

 

 

Fig. 6. MarsGT reveals the good prognosis with high IFN-I response impairs MAIT cell 

responses by increasing IL10 and inducing IL15 and IL12 from DC. a. The number of cells 
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in MAIT-like cell populations in different melanoma patients. b. The number of cells in MAIT 

cells and DC cells in high IRC and low IRC. c. Enrichment score of MAIT effective gene 

signature and exhausted gene signature across varying IRC. d. The expression of critical genes 

(including ISGs, receptor coding genes, and the coding gene of secretion) in different IRC in 

MAIT cells. e. Expression of IFN-I receptor coding genes in MAIT cells across different IRC. f. 

Expression of critical cytokine genes in DC cells across varying IRC. g. The expression of 

secreted factors coding genes in MAIT cells across different IRC. h. The mechanism of MAIT-

like cells with different IRC samples. i. The regulatory mechanism of IFN-II, GzmB, and Perforin 

in high IRC and low IRC. Green means the common regulatory relations between high IRC and 

low IRC. Dark blue means the regulatory relations are unique in low IRC. All the p-values are 

calculated by the Mann-Whitney U test with one-sided. 

 

Discussion 

MarsGT is an end-to-end deep learning model capable of inferring and identifying rare 

cell populations from scMulti-omics data using a heterogeneous graph transformer. To 

model and represent the scMulti-omics data, a heterogeneous graph is constructed, 

comprising nodes of cells, genes, and peaks. This configuration allows for the updating 

of joint embeddings of cells, genes, and peaks, facilitated by a multi-head attention 

mechanism. An end-to-end model benefits rare cell identification as it integrates 

scMulti-omics data with minimal information loss. The graph transformer can enhance 

the signal-to-noise ratio, addressing the high dropout feature of single-cell 

technologies, which in turn reduces the false positive rate in rare cell identification. 

Crucially, MarsGT employs a novel probability-based subgraph-sampling technique 

during model training, which allows the selective highlighting of cell-gene and cell-peak 

relationships that are relevant to rare cells. In parallel, the model determines peak-

gene relations and rare cell populations from the subgraphs, undergoing iterative 

updates during the training process. Consequently, MarsGT is well equipped to identify 

rare cell populations and their corresponding gene regulatory networks within the 

entire heterogeneous graph. 

 

MarsGT's performance remains consistent across data types (snRNA-ATAC-seq or 

scRNA-ATAC-seq), health statuses (healthy or diseased), and species (human or 

mouse). In the mouse retina case, MarsGT identified not only six major cell populations 

but also a rare sub-cell population of Müller glia cells, a discovery unachievable by 

alternative computational tools and unreported in the original study. In the human small 

lymphocytic lymphoma case, MarsGT pinpointed a rare B cell lymphoma population, 

with unique transcription factors and binding enhancer changes indicating potential 

regulatory mechanisms, functional differences, and a possible precursor state for B 

cell lymphoma. This finding could lead to early detection or prevention strategies for B 

cell lymphoma progression. In the melanoma case, MarsGT identified two CD8+ 

Mucosal-associated invariant T (MAIT)-like rare subpopulations and revealed that high 

IFN-I response hinders these MAIT-like cell responses by upregulating IL10 and 

inducing IL15 and IL12 from DC in patients who responded to immune checkpoint 

blockade. These examples underscore the prowess of MarsGT in uncovering new 
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biological insights, as well as generating new biomarkers for guiding immunotherapy. 

 

While MarsGT shows impressive performance in identifying rare cells and uncovering 

novel biological insights, there is room for improvement. Statistical significance is 

crucial for rare cell identification to ensure that detected rare cell populations genuinely 

exist, rather than being random false positives. In this study, we utilized scPOWER to 

maintain high-confidence rare cell populations. It is necessary to develop a new 

method for significance testing. More complex scenarios, such as senescent cells that 

exhibit high heterogeneity even within the same cell type, also need to be considered. 

For multi-sample datasets, batch correction is necessary prior to the MarsGT 

application. Thus, developing an algorithm that can perform batch correction during 

training could enhance the utility of MarsGT. Moreover, the model's dependency on 

GPU computations might challenge reproducibility. While our benchmark tests 

demonstrate negligible variance across multiple runs, the small number of rare cell 

populations identified suggests that the focus should be on significant findings for 

analysis. In conclusion, MarsGT represents a novel tool for the identification of rare 

cell populations and the elucidation of microenvironmental and immunotherapeutic 

mechanisms. It sets a promising trajectory for precision medicine by enabling the 

discovery of disease-associated rare cell populations and uncovering intrinsic 

regulatory mechanisms that could inform immunotherapy strategies. 

 

Online Methods 

Data preprocessing 

MarsGT initiates by inputting the raw count matrices derived from matched scRNA-seq 

𝑋𝑅 = {𝑥𝑖𝑘
𝑅 |𝑖 = 1,2,… ,𝑀1;  𝑘 = 1,2,… ,𝑁}  and scATAC-seq 𝑋𝐴 = {𝑥𝑗𝑘

𝐴 |𝑗 =

1,2,… ,𝑀2;  𝑘 = 1,2,… ,𝑁} . For the scRNA-seq data matrix, we organize it such that 

rows represent genes, whereas cells constitute the columns. Conversely, the scATAC-

seq data matrix is structured with regulatory regions (peaks) as rows and cells as 

columns. Any row or column in each data matrix containing less than 0.1% non-zero 

values is excluded from further analysis. Quality control measures for the data are 

conducted utilizing Seurat v355, encompassing criteria like total read counts and 

mitochondrial gene ratios.  

 

We then construct the regulatory score matrix  𝑋𝑅𝐴 = {𝑥𝑖𝑗
𝑅𝐴|𝑖 = 1,2, … ,𝑀1;  𝑗 =

1,2,… ,𝑀2} based on MAESTRO56. In this matrix, 𝑥𝑖𝑗
𝑅𝐴 signifies the regulatory potential 

of peak 𝑗  relative to gene 𝑖 . This potential is determined in accordance with the 

genomic distance between peak 𝑗 and gene 𝑖. 

𝑥𝑖𝑗
𝑅𝐴 =

{
 
 

 
 

0, 𝑑𝑖𝑗 > 150kb or peak j  located in any nearby genes

2
− 
𝑑𝑖𝑗
𝑑0

𝐿𝑒𝑛𝑔𝑡ℎ(𝑒𝑥𝑜𝑛)
, peak 𝑗 located at the exon regions of the gene 𝑖

2
− 
𝑑𝑖𝑗
𝑑0 , else

       (1) 

The distance between the center of peak 𝑗 and the transcription start site of gene 𝑖 is 

denoted as 𝑑𝑖𝑗. The half-decay of the distance, 𝑑0, is set to be 10kb. As indicated by 
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formula (1), the regulatory potential score 𝑥𝑖𝑗
𝑅𝐴 of peak 𝑗 relative to gene 𝑖 is typically 

calculated by 2
− 
𝑑𝑖𝑗

𝑑0    For peaks with 𝑑𝑖𝑗 > 150𝑘𝑏 , we conveniently assign the 

regulatory potential score of 0, considering that it will be less than 0.0005. For peaks 

located within the exon region where 𝑑𝑖𝑗 is 0, 𝑥𝑖𝑗
𝑅𝐴 is computed as 

1

𝐿𝑒𝑛𝑔𝑡ℎ(𝑒𝑥𝑜𝑛)
 as per 

the formula. 

 

Multiple datasets integration 

In our specific case analysis, we handled matched scRNA-seq and scATAC-seq across 

multiple samples. For batch effect correction in multiple scRNA-seq datasets, we 

employed Harmony57, resulting in an integrated matrix. For multiple scATAC-seq 

datasets, we adopted a binning approach with a length of 5,000 base pairs to 

amalgamate different samples. The counts of peaks falling within the same bin were 

aggregated. Subsequently, multiple scATAC-seq datasets were integrated into a single 

matrix, where rows represented bins and columns denoted cells.   

 

MarsGT model’s construction 

Heterogeneous graph construction. To integrate matrices 𝑋𝑅  and 𝑋𝐴 , we 

construct a gene-cell-peak heterogeneous graph 𝐺, consisting of three node types 

and four edge types. We define the heterogeneous graph as 𝐺 = (𝑉, 𝐸, 𝐹) with node 

set 𝑉 = 𝑉𝐶 ∪ 𝑉𝐸 ∪ 𝑉𝐺, where 𝑉𝐶 = {𝑣𝑘
𝐶|𝑘 = 1,2, … ,𝑁} denotes all cells, 𝑉𝐸 = {𝑣𝑗

𝐸|𝑗 =

1,2,… ,𝑀2} denotes all peaks, 𝑉𝐺 = {𝑣𝑖
𝐺|𝑖 = 1,2, … ,𝑀1} denotes all genes. The edge 

set 𝐸  is constituted as {(𝑣𝑖
𝐺 , 𝑣𝑘

𝐶), (𝑣𝑘
𝐶 , 𝑣𝑖

𝐺), (𝑣𝑗
𝐸 , 𝑣𝑘

𝐶), (𝑣𝑘
𝐶 , 𝑣𝑗

𝐸)|𝑖 = 1,2,… ,𝑀1, 𝑗 =

1,2,… ,𝑀2, 𝑘 = 1,2, … ,𝑁} , with edge weight 𝑤  defined as follows. To eliminate 

information redundancy between node initial embeddings and the edge weights, we 

utilize unweighted edges when constructing the heterogeneous graph. For 𝑋𝑖𝑘
𝑅 > 0,

𝑤(𝑣𝑖
𝐺 , 𝑣𝑘

𝐶) = 𝑤(𝑣𝑘
𝐶 , 𝑣𝑖

𝐺) = 1,  otherwise, 𝑤(𝑣𝑖
𝐺 , 𝑣𝑘

𝐶) = 𝑤(𝑣𝑘
𝐶 , 𝑣𝑖

𝐺) = 0 . For 𝑋𝑗𝑘
𝐴 > 0 , 

𝑤(𝑣𝑗
𝐸 , 𝑣𝑘

𝐶) =  𝑤(𝑣𝑘
𝐶 , 𝑣𝑗

𝐸) = 1 , otherwise,  𝑤(𝑣𝑗
𝐸 , 𝑣𝑘

𝐶) =  𝑤(𝑣𝑘
𝐶 , 𝑣𝑗

𝐸) = 0 . Lastly, we 

establish the initial feature vectors 𝐹 for nodes in 𝐺 as follows:  

𝐹𝑘
𝐶 = 𝑋∙,𝑘

𝑅 , 𝑘 = 1,2, … ,𝑁; 

𝐹𝑗
𝐸 = (𝑋𝑗,∙

𝐴)𝑇, 𝑗 = 1,2,… ,𝑀2  

𝐹𝑖
𝐺 = (𝑋𝑖,∙

𝑅)𝑇, 𝑖 = 1,2,… ,𝑀1  

where 𝑋𝑖,∙  and 𝑋∙,𝑘  represent the 𝑖𝑡ℎ  row vector and the 𝑘𝑡ℎ  column vector of 𝑋 , 

respectively. 

 

Sub-sampling of a heterogeneous graph. To enhance the efficiency of MarsGT 

when dealing with an expansive heterogeneous graph, it is necessary to select 

subgraphs prior to model training. It is reasonable to suggest that a ubiquitously highly 

expressed gene or highly accessible enhancer may not play a significant role in 

identifying rare cells. Consequently, for cell 𝑘0 , we selected a number (with 20 as 
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default) of highly expressed genes (for 𝑥𝑖𝑘0
𝐺 > 𝑎) 𝑣𝑖𝑘0

𝐺  within the cell according to a 

defined probability which is as follows: 

prob(𝑣𝑖𝑘0
𝐺 ) =

𝑥𝑖𝑘0
𝑅

∑ 𝑥𝑖𝑘
𝑅

𝑘

                                                           (2) 

where 𝑎 is a threshold set to the first quartile of the expression value. As 𝑋𝐴 trends 

towards binarization, we select a predetermined number (with 20 as default) of highly 

accessible peaks 𝑣𝑗𝑘0
𝐸  within the cell according to a probability that is defined as 

follows: 

prob(𝑣𝑖𝑘0
𝐺 ) =

𝑥𝑗𝑘0
𝐴

∑ 𝑥𝑗𝑘
𝐴

𝑘

                                                                 (3) 

Each subgraph incorporates 30 cells randomly along with their selected neighbor 

nodes. MarsGT is trained using multiple mini-batches, each represented by a subgraph. 

 

MarsGT embedding update. Let H𝑙 represent the embedding of the 𝑙𝑡ℎ layer (𝑙=1, 

2, …, 𝐿). The embedding of 𝑣𝑖
𝐺, 𝑣𝑗

𝐸, 𝑣𝑘
𝐶 on the 𝑙𝑡ℎ the layer is denoted as H𝑙[𝑣𝑖

𝐺], 

H𝑙[𝑣𝑗
𝐸] , and  H𝑙[𝑣𝑘

𝐶] , respectively. The initial embeddings are denoted as H0[𝑣𝑖
𝐺]  = 

𝐹𝑖
𝐺, H0[𝑣𝑗

𝐸] = 𝐹𝑗
𝐸, and H0[𝑣𝑘

𝐶]  = 𝐹𝑘
𝐶. To align the features of different types of nodes 

into the same dimension, we apply a linear projection function 𝑊 to map initial node 

embeddings into a lower dimension, which we set at 256: 

H1[𝑣𝑖
𝐺] =  𝑊𝐺(H

0[𝑣𝑖
𝐺])                          (4) 

H1[𝑣𝑗
𝐸] =  𝑊𝐸(H

0[𝑣𝑗
𝐸])                          (5) 

H1[𝑣𝑘
𝐶] =  𝑊𝐶(H

0[𝑣𝑘
𝐶])                          (6) 

Subsequently, we apply a multi-head mechanism to divide H1[𝑣] evenly into ℎ heads. 

Within the 𝑙𝑡ℎ layer for the ℎ𝑡ℎ head, three linear projection functions, query (𝑄), key 

(𝐾), and value (𝑉). For each node 𝑣 within the graph, the embeddings following the 

linear transformation are denoted as follows:  

𝑄ℎ(𝑣) = 𝑄ℎ(H1[𝑣])                           (7) 

𝐾ℎ(𝑣) = 𝐾ℎ(H1[𝑣])                           (8) 

𝑉ℎ(𝑣) = 𝑉ℎ(H1[𝑣])                           (9) 

To calculate the mutual attention between node 𝑣 and its neighbor 𝑁(𝑣) within the 

ℎ𝑡ℎ, we introduce the attention operator. This operator estimates the importance of 

each neighboring node 𝑣𝑛𝑒  in 𝑁(𝑣)  relative to 𝑣  using 𝐾ℎ(𝑣𝑛)𝑊𝑡(𝑣𝑛,𝑣)
𝐴𝑇𝑇 𝑄ℎ(𝑣)𝑇 , 

where 𝑊𝑡(𝑣𝑛,𝑣)
𝐴𝑇𝑇  is a transformation matrix designed to capture edge features, while 𝑡(. ) 

denotes the edge type. (. )𝑇 signifies the transposal function. The attention coefficient 

within the head ℎ0 is then calculated as follows: 

att (𝑣𝑛𝑒 , 𝑣, ℎ0) = (𝐾ℎ0(𝑣𝑛𝑒)𝑊𝑡(𝑣𝑛𝑒,𝑣)
𝐴𝑇𝑇 𝑄ℎ0(𝑣)𝑇) ∀𝑣𝑛𝑒∈𝑁(𝑣)

Softmax                      (10)  
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The concatenation of attention heads yields the attention coefficients, represented as 

follows: 

att (𝑣𝑛𝑒 , 𝑣) = (att (𝑣𝑛𝑒 , 𝑣, ℎ))ℎ
||

                                             (11)  

The message from 𝑣𝑛𝑒  that can be relayed to 𝑣  within head ℎ  is given by 

𝑉ℎ(𝑣𝑛𝑒)𝑊𝑡(𝑣𝑛𝑒,𝑣)
𝑀𝑆𝐺 . 𝑊𝑡(𝑣𝑛𝑒,𝑣)

𝑀𝑆𝐺  is also a transformation matrix. Then, the results from 

different message heads should subsequently be concatenated: 

mes (𝑣𝑛𝑒 , 𝑣) = 𝑉ℎ(𝑣𝑛𝑒)𝑊𝑡(𝑣𝑛𝑒,𝑣)
𝑀𝑆𝐺

ℎ
||

                                             (11)  

To update the embedding of node 𝑣, the final step within the 𝑙𝑡ℎ layer to update the 

embedding of the node in the H𝑙−1[𝑣] and H𝑙′[𝑣] into the node's embedding. 

H𝑙′[𝑣] = att (𝑣𝑛𝑒 , 𝑣)mes (𝑣𝑛𝑒 , 𝑣)                                    (12)∀𝑣𝑛𝑒∈𝑁(𝑣)
Aggregate

 

H𝑙[𝑣] = αReLU(H𝑙
′
[𝑣]) + (1 − α)H𝑙−1[𝑣]                                       (13) 

where α  represents a trainable parameter, while ReLU  functions as the activation 

function. The final embedding of 𝑣 is obtained by layer-wise stacking of information. 

 

MarsGT subgraph training. For the sake of generality, we continue using the 

aforementioned notation for subgraphs. Following the calculation of embeddings, all 

nodes (genes, cells, and peaks) acquire new embeddings, denoted as {H𝑙[𝑣]|𝑣 ∈

𝑉𝐶 ∪ 𝑉𝐸 ∪ 𝑉𝐺}. The update embeddings of cells H𝑙[𝑣]|𝑣 ∈ 𝑉𝐶 is denoted as 𝑃 after 

Softmax operation. Each row of 𝑃 represents a cell, each column of 𝑃 represents a 

reduced dimension set manually, and each element signifies the probability that a cell 

belongs to a specific cell cluster. We establish an initial number of cell clusters that 

align with the number of cell embeddings. A cell is assigned to the cell cluster where 

the corresponding dimension yields the highest value relative to all other dimensions. 

Thus, MarsGT does not require pre-specification of the number of cell clusters. 

Similarly, we construct the initial embedding of links between genes and peaks for each 

cell cluster by concatenating gene and peak embeddings, denoted as 𝑄. The row of 

𝑄 represents a peak-gene link, and the column of 𝑄 represents the cell cluster. By 

applying a linear layer and a ReLU layer, the dimension of 𝑄 is reduced to match the 

number of initial cell clusters. The output is the probability that a peak-gene link 

belongs to each cell cluster which is denoted as 𝑂̂. The base peak-gene relations are 

determined based on 𝑋𝑅𝐴 and adjusted according to the corresponding gene 

expressions and chromatin accessibility of all cells in a cell cluster, denoted as 𝑂. 

 

In our model training, we devise a multi-faceted loss function, which consists of four 

critical components.  

(i) We employ a Kullback-Leibler (KL) divergence score to assess the disparity 

between the original input expression/accessibility matrices and the 

reconstructed matrices. These reconstructed matrices are derived from the dot 

product of the updated embeddings of genes/peaks and cells. As the KL 
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divergence diminishes, less information is lost during heterogeneous graph 

transformer (HGT) learning.  

(ii) Cosine similarity serves to gauge the similarity among cells within the same 

cell cluster, which is derived from the cell embeddings. A higher similarity score 

indicates superior clustering efficacy.  

(iii) We utilize another KL divergence score to evaluate discrepancies between 

predicted and baseline peak-gene links within each cell cluster. The baseline 

peak-gene associations are determined based on proximity to the nearest 

genes. Further, we calculate an activity score founded on regulatory potential, 

employing MAESTRO, and adjust this score according to the corresponding 

gene expressions and chromatin accessibility across all cells within a cell 

cluster.  

(iv) We calculate an entropy score to contrast the differences between the base 

and predicted cell clustering outcomes. The base cell clusters are ascertained 

by implementing the Louvain clustering method on the initial cell embeddings. 

It's imperative to ensure that the quantity of peak-gene links in the predictions 

does not exceed known links.  

 

This entropy score functions as a regularizing term in our loss function, which is defined 

as follows: 

𝐿𝑜𝑠𝑠 = 𝐾𝐿cluster  + 𝐶𝑜𝑠loss + 𝐾𝐿(𝑂̂, 𝑂) + 𝑅𝑒𝑔loss                           (14) 

where 𝐾𝐿cluster =  𝐾𝐿(𝐻
𝑙[𝑉𝐺] ∗ 𝐻𝑙[𝑉𝐶]𝑇 , 𝑋𝑅). 

The Cosine similarity in cluster 𝐶0 is defined as:  

𝐶𝑜𝑠𝑙𝑜𝑠𝑠 = ∑ 𝐶𝑜𝑠𝑖𝑛𝑒∀ 𝑘𝑎,𝑘𝑏∈𝐶0 (𝐻𝑙[𝑉𝑘𝑎], 𝐻𝑙[𝑉𝑘𝑏])                            (15)  

The regular term is defined as:  

𝑅𝑒𝑔𝑙𝑜𝑠𝑠 = 𝑆𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔_𝑐𝑟𝑜𝑠𝑠(𝑃, 𝐿, 𝜀)                                         (16)  

where 𝐿 = {𝑙𝑘|𝑙𝑘 ∈ {1, 2, … , 𝑇} } is the cell cluster results by Louvain with scRNA-seq, 

𝑇 is the number of cell clusters by Louvain, 𝜀 is a smoothing factor.  

Smoothingcross(𝑃,𝐿,𝜀) =  {
(𝜀 − 1)∑ 𝑙𝑘𝑙𝑜𝑔𝑝𝑘

𝑁
𝑘=1  𝑖𝑓(𝑙𝑘 = 𝑝𝑘)

−𝜀 ∑ 𝑙𝑘𝑙𝑜𝑔𝑝𝑘
𝑁
𝑘=1         𝑖𝑓(𝑙𝑘 ≠ 𝑝𝑘)

           (17) 

where 𝑝𝑘  represents the predicted cell clustering result for cell 𝑘 . Our algorithm 

concurrently updates the cell clustering outcomes and the peak-gene links within each 

set of cell cluster prediction results. The model is designed to iterate until it reaches a 

state of convergence, at which point we obtain the cell clusters and all peak-gene links 

specific to each cluster. Following this, the peak-gene links within each cell cluster are 

obtained.   

 

MarsGT predicts cell clusters and eGRN in the whole graph. Upon completing the 

two phases of training, a robustly trained model is generated. To ensure that every cell 

is mapped to its corresponding predicted cluster, and every gene and peak is 

associated with cell cluster-specific peak-gene regulatory information, we apply the 

trained model to the entire graph. By covering all cells through the chosen union of 

subgraphs, the trained model, when applied to the entire graph, can also have a good 

performance. The cell cluster predictions encompass all cells. Regarding cell cluster-
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specific peak-gene link, we use the final predicted cell cluster results to calculate all 

genes and peaks, eschewing the use of a subgraph. In order to quantify the specific 

degree of each peak-gene link, we determine the peak-gene score based on gene 

expression, peak accessibility, and the regulatory potential of peaks to genes. The 

peak-gene link score (PGS) is defined as: 

𝑃𝐺𝑆(𝑖, 𝑗, 𝐶𝑇) = {𝑥𝑖×𝑗,𝐶𝑇 =
∑ 𝑥𝑖𝑘

𝑅 ×𝑥𝑖𝑗
𝑅𝐴×𝑥𝑗𝑘

𝐴|𝐶𝑇|
𝑘

|𝐶𝑇|
|𝑖 = 1,2, … ,𝑀1, 𝑗 = 1,2, … ,𝑀2, 𝑘 = 1,2, … , 𝑁}  (18) 

where |𝐶𝑇| is the cell number in cell cluster 𝐶𝑇. Then the cell cluster corresponding 

peak-gene links are inferred. To infer eGRN, we need to introduce the TF information. 

We retrieved the genome browser track file from JASPAR, which stores all known 

TF binding sites of each TF. A p-value score was provided in JASPAR. We removed 

TF binding sites with p-value scores more than 0.05. And then, if a TF binding site 

overlaps with any peak regions in the predicted peak-gene link, it will be kept, 

otherwise, removed. Finally, the TF-peak relations will be obtained, and the eGRNs 

in each cell cluster also are inferred. 

 

Benchmark of rare cell population identification 

Simulated single-cell multi-omics data 

We evaluated the performance of rare cell identification based on the algorithm's 

capability to distinguish between two known rare populations. We assessed the 

algorithm's efficacy using 400 simulated datasets with eight different designs from two 

different data types. The first data type consisted of cell line data (549 cells) 

characterized by low intra-class heterogeneity, available at     

https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?study=SRP136421. This data 

contained five cell line types: PDX1, PDX2, HeLa.S3, K562, and HCT116. The second 

type was the immune population dataset (17,243 cells) with high intra-class 

heterogeneity, obtainable from  

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE194122. In the cell line 

dataset, we selected PDX1 (176 cells) and PDX2 (167 cells) as the common cell 

populations, while HeLa.S3 (42 cells) and K562 (74 cells) were chosen as the rare 

population in the simulated data. Two types of simulated datasets were created based 

on the cell line data (Supplementary Table S1). Each dataset consisted of 50 datasets, 

each containing 300 cells that were randomly subsampled from each cell type. 

Similarly, for PBMC cells, we utilized NK, CD4+T naïve, CD8+T (common), 

Erythroblast, Plasma, HSC, and ID2-hi myeloid prog cells (rare) to establish six types 

of simulated datasets (Supplementary Table S1). There were 50 datasets of 500 cells 

generated by randomly subsampling from each cell type. 

 

To assess the proportion of rare cells detected by different software, datasets were 

created to include from 970 to 995 common cells and 30 to 5 rare cells. For instance, 

the smallest common dataset was comprised of 970 common cells and 30 rare cells 

(3%), while the largest included 995 common cells and 5 rare cells (0.5%). Six datasets 

of 1000 cells, with differing rare cell proportions, were generated by random 

subsampling from each cell type. The first five datasets tested rare cell population 
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identification, while the sixth assessed the false-positive rate of each algorithm. All 

algorithms were applied to these datasets with default or suggested settings. The 

results were visualized using UMAP for Scanpy and colored by predicted results. 

 

Simulated datasets benchmarking quantification 

To optimize the default parameters of MarsGT, we conducted a grid-search test on 

seven simulated datasets. The parameters considered in this optimization included 

weighted decay (0, 0.1, 0.3), learning rate (0.001, 0.0005), and label smoothing (0, 0.1, 

0.3), which are important parameters to prevent overfitting and ensure convergence 

speed. This resulted in a total of 18 unique parameter combinations. We randomly 

selected one dataset from each type of simulation as a training set. The most effective 

parameter combination was weighted decay = 0.1, learning rate = 0.001, and label 

smoothing = 0.3. This set was subsequently adopted as the default parameter 

combination. The remaining simulation datasets were processed using these default 

parameters.  

  

Real datasets benchmarking quantification 

To assess the generalizability of our model, we applied the same parameter 

combinations that we used with the simulated datasets to three benchmark (PBMC-

bench-1, 2, 3) real datasets. We subsequently employed the default parameters for an 

independent test dataset (PBMC-test).   

 

The ability of rare cell identification  

Typically, a cell type is classified as rare if it constitutes less than 3% of the total cell 

count. However, truly rare cell types often represent much less than this threshold. To 

evaluate the capacity of various tools to identify these rare cells, we designated cell 

types representing 0.5%, 1%, 2%, and 3% of the total cell count as rare in the 

independent test dataset. We then calculated the F1 score, precision, and recall score 

for each category. 

 

Reproducibility test  

To evaluate the stability and reproducibility of MarsGT, we executed the algorithm 20 

times on the independent test dataset, utilizing the default parameters. We then 

computed the variance of several key metrics, including the F1 score, precision, recall 

score, Normalized Mutual Information (NMI), purity, and entropy. 

 

Baseline tools parameter set 

To evaluate the performance of MarsGT relative to other tools for identifying rare cells, 

we conducted a comparative analysis between MarsGT and other established 

methods. 

(i) FIRE4 (v 1.0.1, https://github.com/princethewinner/FIRE, data pre-processing, 

and feature extraction uses the function “ranger_preprocess”).  

(ii) GapClust13 (v 0.1.0, https://github.com/fabotao/GapClust, genes that were 

expressed in less than three cells were excluded, and cells expressing <200 genes 
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were also excluded, the normalization procedure was accomplished using the 

scran (R package).  

(iii) CellSIUS26 (v 1.0.0, https://github.com/Novartis/CellSIUS, cells were filtered based 

on the total number of detected genes, total UMI counts, and the percentage of 

total UMI counts attributed to mitochondrial genes, genes have to present with at 

least 3 UMIs in at least one cell. After this initial QC, the remaining outlier cells were 

identified and removed using the plotPCA function from the scatter (R package with 

detect_outliers set to TRUE). Data were normalized using scran (R package), 

including a first clustering step as implemented in the “quickCluster” function).  

(iv) RaceID2 (v 0.2.3, https://github.com/dgrun/RaceID3_StemID2_package).  

(v) GiniClust15 (v 3.0, https://github.com/rdong08/GiniClust3, the “neighbors” para

meter of the function “clusterGini” is set to 10 (the recommended value is fr

om 5 to 15), other parameters at the default values).  

(vi) SCMER1 (v 0.1.0a3, https://github.com/KChen-lab/SCMER, data pre-processing is 

carried out using Scanpy (Python package)). 

For each benchmarking tools, grid tests were also applied to a combination of 

parameters (Supplementary Data 5).  

 

Evaluation index  

To assess the precision of various rare cell identification algorithms, we employed 

metrics quantifying the purity of the clustering output. We evaluated two categories of 

algorithms: the first encompassing clustering methods capable of differentiating all cell 

populations, such as SCMER1, GiniClust15, and RaceID2, and the second consisting of 

classification methods that can distinguish only between rare cell and major cell 

populations. For evaluating clustering methods, we utilized purity, entropy, and 

Normalized Mutual Information (NMI). For assessing classification methods, we 

applied recall, precision, and F1-score metrics.  

 

Purity is based on the frequency of the most abundant class in the predicted clusters. 

Let 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑠} be the set of predicted clusters, and 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑇} be the set 

of true labels. The purity index is defined as: 

𝑝𝑢𝑟𝑖𝑡𝑦(𝑆, 𝑇) =
∑ 𝑚𝑎𝑥𝑡|𝑠𝑠∩𝑡𝑡|𝑠

𝑁
                      (19)  

where 𝑠𝑠 (𝑡 = 1,… , 𝑆) is the set of cells in the predicted clusters. 𝑡𝑡 (𝑡 = 1,… , 𝑇) is the 

set of cells in the true labels. 𝑁 is the number of cells. The value of purity ranges from 

0 to 1, where 1 provides the best clustering effect.  

 

Entropy uses Shannon entropy to evaluate cluster accuracy by measuring the 

expected amount of information from the clusters. Let 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑠} be the set of 

predicted clusters, and 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑇} be the set of true labels. The entropy of each 

predicted cluster 𝑠 is defined as: 

𝐻(𝑠𝑠) = −∑
|𝑠𝑠𝑡|

|𝑠𝑠|
𝑙𝑜𝑔

|𝑠𝑠𝑡|

|𝑠𝑠|
𝑠                       (20) 

𝑠𝑠𝑡 = 𝑠𝑠 ∩ 𝑡𝑡                           (21) 
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Then, the entropy for all clusters is defined as: 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑆, 𝑇)= ∑
|𝑠𝑠|

𝑁
𝐻(𝑠𝑠)𝑠                                                (22) 

Lower entropy means higher clustering accuracy. 

 

NMI measures the normalized dependency of the true labels on the predicted cluster. 

Mutual information is defined as: 

𝐼(𝑆, 𝑇) =∑∑
|𝑠𝑠𝑡|

𝑁
𝑙𝑜𝑔

𝑁|𝑠𝑠𝑡|

|𝑠𝑠||𝑡𝑡|
𝑡

                                             

𝑠

(23) 

To compare mutual information across different clusters, 𝐼(𝑆, 𝑇) is normalized to the 

[0, 1], which is bounded by min [H(𝑆), H(𝑇)], where 

𝐻(𝑆) = −∑
|𝑠𝑠|

𝑁
𝑙𝑜𝑔

|𝑠𝑠|

𝑁𝑠
                                            (24) 

𝐻(𝑇) = −∑
|𝑡𝑡|

𝑁
𝑙𝑜𝑔

|𝑡𝑡|

𝑁𝑡
                                            (25) 

 

Then, NMI is defined as: 

𝑁𝑀𝐼(𝑃, 𝑇) =
𝐼(𝑆, 𝑇)

min[𝐻(𝑆), 𝐻(𝑇)]
                                           (26) 

Higher NMI means higher clustering accuracy. 

 

Precision represents the ability of the model to correctly predict rare cells among all 

rare cell predictions. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                     (27) 

 

Recall represents the model's ability to correctly predict rare cells from actual rare cells.  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                        (28) 

 

F1-score can be interpreted as a weighted average of precision and recall. F1-score 

ranges from 0, poor classification, to 1, perfect classification: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
𝑇𝑃

𝑇𝑃 + 0.5 ∗ (𝑇𝑃 + 𝐹𝑁)
                                   (29) 

𝑇𝑃 means the number of cells predicted to be rare in real rare cells. 𝐹𝑃 means the 

number of cells predicted to be rare in real common cells. 𝐹𝑁 means the number of 

cells predicted to be common cells in real rare cells  

  

Data availability 

All data used for benchmarking and case studies are collected from the public domain 

and can be retrieved using links or accession numbers provided in Supplementary 

Data 1. 
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Code availability 

MarsGT is a user-friendly, efficient package developed in Python, leveraging the 

capabilities of PyTorch. The source code and vignettes of MarsGT are freely available 

at https://github.com/mtduan/marsgt. The source code is also available on Zenodo at 

https://zenodo.org/record/8160180. 

 

Acknowledgments 

This work was supported by awards R01DK138504, P01CA278732, and U54-

AG075931 from the National Institutes of Health (NIH). This work was also supported 

by the Pelotonia Institute of Immuno-Oncology (PIIO). The content is solely the 

responsibility of the authors and does not necessarily represent the official views of the 

NIH and PIIO.  

 

Contributions 

Q.M. and B.L. conceived the basic idea. X.W. designed the algorithm, conducted the 

case study, and wrote the manuscript. M.D. carried out benchmark experiments and 

wrapped the code. A.M. and M.D. participated in the case analysis. J.L. collected the 

data and pre-processed the data. A.M. led the figure design. Z.L. provided 

immunological knowledge. D.X. provided deep learning knowledge. All authors 

participated in the interpretation and writing of the manuscript.  

 

Ethics declarations 

Competing interests 

The authors declare no competing interests. 

 

References 

1 Liang, S. H. et al. Single-cell manifold-preserving feature selection for detecting 

rare cell populations. Nat Comput Sci 1, 374-384, doi:10.1038/s43588-021-

00070-7 (2021). 

2 Grun, D. Revealing dynamics of gene expression variability in cell state space. 

Nature Methods 17, 45-+, doi:10.1038/s41592-019-0632-3 (2020). 

3 Wen, L. & Tang, F. Computational biology: How to catch rare cell types. Nature 

525, 197-198, doi:10.1038/nature15204 (2015). 

4 Jindal, A., Gupta, P., Jayadeva & Sengupta, D. Discovery of rare cells from 

voluminous single cell expression data. Nat Commun 9, doi:ARTN 4719 

10.1038/s41467-018-07234-6 (2018). 

5 Arvaniti, E. & Claassen, M. Sensitive detection of rare disease-associated cell 

subsets via representation learning. Nat Commun 8, 14825, 

doi:10.1038/ncomms14825 (2017). 

6 Belarif, L., Vanhove, B. & Poirier, N. Full antagonist of the IL-7 receptor 

suppresses chronic inflammation in non-human primate models by controlling 

antigen-specific memory T cells. Cell Stress 2, 362-364, 

doi:10.15698/cst2018.12.168 (2018). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 17, 2023. ; https://doi.org/10.1101/2023.08.15.553454doi: bioRxiv preprint 

https://github.com/mtduan/marsgt
https://zenodo.org/record/8160180
https://doi.org/10.1101/2023.08.15.553454
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 Hu, X. et al. Application of user-guided automated cytometric data analysis to 

large-scale immunoprofiling of invariant natural killer T cells. Proc Natl Acad Sci 

U S A 110, 19030-19035, doi:10.1073/pnas.1318322110 (2013). 

8 Hong, Y. et al. The impact of donor characteristics on the invariant natural killer 

T cells of granulocyte-colony-stimulating factor-mobilized marrow grafts and 

peripheral blood grafts. Transpl Immunol 48, 55-59, 

doi:10.1016/j.trim.2018.02.012 (2018). 

9 Martinez-Lopez, J. et al. Monitoring of the Minimum Residual Disease and 

Depth of Response in Multiple Myeloma. Haematologica 104, 150-150 (2019). 

10 Pruess, M. et al. A High Sensitivity, Tumor-Informed Liquid Biopsy Platform, 

Designed to Detect Minimum Residual Disease at Part Per Million Resolution. 

J Immunother Cancer 10, A21-A21, doi:10.1136/jitc-2022-ITOC9.38 (2022). 

11 Kotliar, D. et al. Identifying gene expression programs of cell-type identity and 

cellular activity with single-cell RNA-Seq. Elife 8, doi:10.7554/eLife.43803 

(2019). 

12 Janssens, J. et al. Decoding gene regulation in the fly brain. Nature 601, 630-

+, doi:10.1038/s41586-021-04262-z (2022). 

13 Fa, B. T. et al. GapClust is a light-weight approach distinguishing rare cells from 

voluminous single cell expression profiles. Nat Commun 12, doi:ARTN 4197 

10.1038/s41467-021-24489-8 (2021). 

14 Schwartz, G. W. et al. TooManyCells identifies and visualizes relationships of 

single-cell clades. Nature Methods 17, 405-+, doi:10.1038/s41592-020-0748-5 

(2020). 

15 Jiang, L., Chen, H. D., Pinello, L. & Yuan, G. C. GiniClust: detecting rare cell 

types from single-cell gene expression data with Gini index. Genome Biology 

17, doi:ARTN 144 

10.1186/s13059-016-1010-4 (2016). 

16 Ma, A. et al. Single-cell biological network inference using a heterogeneous 

graph transformer. Nat Commun 14, 964, doi:10.1038/s41467-023-36559-0 

(2023). 

17 Yi, H. C., You, Z. H., Huang, D. S. & Kwoh, C. K. Graph representation learning 

in bioinformatics: trends, methods and applications. Brief Bioinform 23, 

doi:10.1093/bib/bbab340 (2022). 

18 Yun, S. et al. Graph Transformer Networks: Learning meta-path graphs to 

improve GNNs. Neural Netw 153, 104-119, doi:10.1016/j.neunet.2022.05.026 

(2022). 

19 Zheng, Y. et al. A Graph-Transformer for Whole Slide Image Classification. 

IEEE Trans Med Imaging 41, 3003-3015, doi:10.1109/TMI.2022.3176598 

(2022). 

20 Chu, T., Nguyen, T. T., Hai, B. D., Nguyen, Q. H. & Nguyen, T. Graph 

Transformer for Drug Response Prediction. IEEE/ACM Trans Comput Biol 

Bioinform 20, 1065-1072, doi:10.1109/TCBB.2022.3206888 (2023). 

21 Vaswani, A. et al. Attention Is All You Need. Advances in Neural Information 

Processing Systems 30 (Nips 2017) 30 (2017). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 17, 2023. ; https://doi.org/10.1101/2023.08.15.553454doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.15.553454
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 Hu, Z., Dong, Y., Wang, K. & Sun, Y. in Proceedings of The Web Conference 

2020    2704-2710 (2020). 

23 Mei, X., Cai, X., Yang, L. & Wang, N. Relation-aware Heterogeneous Graph 

Transformer based drug repurposing. Expert Systems with Applications 190, 

doi:10.1016/j.eswa.2021.116165 (2022). 

24 Gu, H. et al. scGNN 2.0: a graph neural network tool for imputation and 

clustering of single-cell RNA-Seq data. Bioinformatics 38, 5322-5325, 

doi:10.1093/bioinformatics/btac684 (2022). 

25 Wang, J. et al. scGNN is a novel graph neural network framework for single-

cell RNA-Seq analyses. Nat Commun 12, 1882, doi:10.1038/s41467-021-

22197-x (2021). 

26 Wegmann, R. et al. CellSIUS provides sensitive and specific detection of rare 

cell populations from complex single-cell RNA-seq data. Genome Biology 20, 

doi:ARTN 142 

10.1186/s13059-019-1739-7 (2019). 

27 SenNet, C. NIH SenNet Consortium to map senescent cells throughout the 

human lifespan to understand physiological health. Nat Aging 2, 1090-1100, 

doi:10.1038/s43587-022-00326-5 (2022). 

28 Schmid, K. T. et al. scPower accelerates and optimizes the design of multi-

sample single cell transcriptomic studies. Nat Commun 12, 6625, 

doi:10.1038/s41467-021-26779-7 (2021). 

29 Sun, W., Li, Y.-N., Ye, J.-F., Guan, Y.-Q. & Li, S.-J. MEG3 is involved in the 

development of glaucoma through promoting the autophagy of retinal ganglion 

cells. European Review for Medical & Pharmacological Sciences 22 (2018). 

30 Bai, Y., Ma, J.-X. & Le, Y.-Z. The Role of Retinal Müller Cell-Produced VEGF in 

Ischemia Induced Vascular Leakage. Investigative Ophthalmology & Visual 

Science 50, 5899-5899 (2009). 

31 Yan, W. et al. Mouse Retinal Cell Atlas: Molecular Identification of over Sixty 

Amacrine Cell Types. J Neurosci 40, 5177-5195, 

doi:10.1523/JNEUROSCI.0471-20.2020 (2020). 

32 Chen, Y. et al. Single-Cell Transcriptomic Profiling in Inherited Retinal 

Degeneration Reveals Distinct Metabolic Pathways in Rod and Cone 

Photoreceptors. Int J Mol Sci 23, doi:10.3390/ijms232012170 (2022). 

33 Jin, S. Q. et al. Inference and analysis of cell-cell communication using 

CellChat. Nat Commun 12, doi:ARTN 1088 

10.1038/s41467-021-21246-9 (2021). 

34 Sarin, S. et al. Role for Wnt Signaling in Retinal Neuropil Development: 

Analysis via RNA-Seq and In Vivo Somatic CRISPR Mutagenesis. Neuron 98, 

109-126 e108, doi:10.1016/j.neuron.2018.03.004 (2018). 

35 Shekhar, K. et al. Comprehensive Classification of Retinal Bipolar Neurons by 

Single-Cell Transcriptomics. Cell 166, 1308-1323 e1330, 

doi:10.1016/j.cell.2016.07.054 (2016). 

36 Dou, J. et al. Bi-order multimodal integration of single-cell data. Genome Biol 

23, 112, doi:10.1186/s13059-022-02679-x (2022). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 17, 2023. ; https://doi.org/10.1101/2023.08.15.553454doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.15.553454
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 Luhmann, U. F. et al. Role of the Norrie disease pseudoglioma gene in 

sprouting angiogenesis during development of the retinal vasculature. Invest 

Ophthalmol Vis Sci 46, 3372-3382, doi:10.1167/iovs.05-0174 (2005). 

38 Moscona, A. A., Fox, L., Smith, J. & Degenstein, L. Antiserum to lens antigens 

immunostains Muller glia cells in the neural retina. Proc Natl Acad Sci U S A 

82, 5570-5573, doi:10.1073/pnas.82.16.5570 (1985). 

39 Hao, Y. H. et al. Integrated analysis of multimodal single-cell data. Cell 184, 

3573-+, doi:10.1016/j.cell.2021.04.048 (2021). 

40 Trapnell, C. et al. The dynamics and regulators of cell fate decisions are 

revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32, 381-

386, doi:10.1038/nbt.2859 (2014). 

41 Andreatta, M. & Carmona, S. J. UCell: Robust and scalable single-cell gene 

signature scoring. Comput Struct Biotechnol J 19, 3796-3798, 

doi:10.1016/j.csbj.2021.06.043 (2021). 

42 Youle, R. J. & Strasser, A. The BCL-2 protein family: opposing activities that 

mediate cell death. Nat Rev Mol Cell Biol 9, 47-59, doi:10.1038/nrm2308 (2008). 

43 Kapoor, I., Bodo, J., Hill, B. T., Hsi, E. D. & Almasan, A. Targeting BCL-2 in B-

cell malignancies and overcoming therapeutic resistance. Cell Death Dis 11, 

941, doi:10.1038/s41419-020-03144-y (2020). 

44 Czabotar, P. E., Lessene, G., Strasser, A. & Adams, J. M. Control of apoptosis 

by the BCL-2 protein family: implications for physiology and therapy. Nat Rev 

Mol Cell Biol 15, 49-63, doi:10.1038/nrm3722 (2014). 

45 Klanova, M. & Klener, P. BCL-2 Proteins in Pathogenesis and Therapy of B-

Cell Non-Hodgkin Lymphomas. Cancers (Basel) 12, 

doi:10.3390/cancers12040938 (2020). 

46 Kamimoto, K. et al. Dissecting cell identity via network inference and in silico 

gene perturbation. Nature 614, 742-751, doi:10.1038/s41586-022-05688-9 

(2023). 

47 Jingjing, Z. et al. A novel MEF2C mutation in lymphoid neoplasm diffuse large 

B-cell lymphoma promotes tumorigenesis by increasing c-JUN expression. 

Naunyn Schmiedebergs Arch Pharmacol 393, 1549-1558, 

doi:10.1007/s00210-019-01764-6 (2020). 

48 Ying, C. Y. et al. MEF2B mutations lead to deregulated expression of the 

oncogene BCL6 in diffuse large B cell lymphoma. Nat Immunol 14, 1084-1092, 

doi:10.1038/ni.2688 (2013). 

49 Hodson, D. J. et al. Regulation of normal B-cell differentiation and malignant B-

cell survival by OCT2. Proc Natl Acad Sci U S A 113, E2039-2046, 

doi:10.1073/pnas.1600557113 (2016). 

50 Yu, B. et al. FOXP1 expression and its clinicopathologic significance in nodal 

and extranodal diffuse large B-cell lymphoma. Ann Hematol 90, 701-708, 

doi:10.1007/s00277-010-1124-9 (2011). 

51 Brown, P. J. et al. FOXP1 suppresses immune response signatures and MHC 

class II expression in activated B-cell-like diffuse large B-cell lymphomas. 

Leukemia 30, 605-616, doi:10.1038/leu.2015.299 (2016). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 17, 2023. ; https://doi.org/10.1101/2023.08.15.553454doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.15.553454
http://creativecommons.org/licenses/by-nc-nd/4.0/


52 Wlodarska, I. et al. FOXP1, a gene highly expressed in a subset of diffuse large 

B-cell lymphoma, is recurrently targeted by genomic aberrations. Leukemia 19, 

1299-1305, doi:10.1038/sj.leu.2403813 (2005). 

53 Gascoyne, D. M. & Banham, A. H. The significance of FOXP1 in diffuse large 

B-cell lymphoma. Leuk Lymphoma 58, 1037-1051, 

doi:10.1080/10428194.2016.1228932 (2017). 

54 Wu, T. et al. The TCF1-Bcl6 axis counteracts type I interferon to repress 

exhaustion and maintain T cell stemness. Sci Immunol 1, 

doi:10.1126/sciimmunol.aai8593 (2016). 

55 Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-

cell transcriptomic data across different conditions, technologies, and species. 

Nature Biotechnology 36, 411-+, doi:10.1038/nbt.4096 (2018). 

56 Wang, C. F. et al. Integrative analyses of single-cell transcriptome and 

regulome using MAESTRO. Genome Biology 21, doi:ARTN 198 

10.1186/s13059-020-02116-x (2020). 

57 Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data 

with Harmony. Nature Methods 16, 1289-+, doi:10.1038/s41592-019-0619-0 

(2019). 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 17, 2023. ; https://doi.org/10.1101/2023.08.15.553454doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.15.553454
http://creativecommons.org/licenses/by-nc-nd/4.0/

