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Abstract

Lymphatic, nervous, and tumoral tissues, among others, exhibit physiology that
emerges from three-dimensional interactions between genetically unique cells. A
technology capable of volumetrically imaging transcriptomes, genotypes, and mor-
phologies in a single de novo measurement would therefore provide a critical view
into the biological complexity of living systems. Here we achieve this by extend-
ing DNA microscopy, an imaging modality that encodes a spatio-genetic map of a
specimen via a massive distributed network of DNA molecules inside it, to three
dimensions and multiple length scales in developing zebrafish embryos.

Genomic mosaicism, the property whereby nucleotide-level differences present across
the genomes of cells within tissues, are critical to organism biology and human health1.
Data sets that have highlighted this intra-organismal and intra-tissue genomic diversity
from the immune system2 to the nervous system3 have showcased the magnitude of miss-
ing detail in coarse gene-counts when they are not read out with DNA and RNA sequences
from the same specimens.

These observations have therefore drawn a line between tissue genomic biology that
is amenable to probe hybridization measurements4, where a gene’s status may be reduced
to presence-versus-absence, and “de novo” sequencing-based assays which access a dif-
ferent level of information entirely. Concerted efforts to mend this blind spot include
2D biological pixelation5 to assign positional markers to DNA and RNA sequences, and
sequencers built around individual samples6. In each of these cases, trade-offs between
depth of focus, depth of capture, signal density, and resolution have placed hard bounds on
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the detail accessible. The genetic landscape of cell microenvironments – fundamentally
phenomena that involve genetically unique three-dimensional neighborhoods – remains
something we can only extrapolate, not image.

DNA microscopy is a distinct imaging modality that encodes an image of a single,
“idiosyncratic” specimen into DNA using a stand-alone chemical reaction. It has pre-
viously been demonstrated in dense 2D multicellular specimens7 and has more recently
been applied to the study of cell-surface protein polarity8. Theoretical variants have also
been proposed9;10.

DNA microscopy begins by randomly tagging biomolecules inside a specimen with
unique DNA-molecular identifiers, or UMIs. It then converts these DNA tags into an
intercommunicating molecular network, where molecular copies of the original products
are allowed to migrate, either by constrained or unconstrained diffusion, and link up.

The resulting linking frequencies encode spatial proximities of the original UMI tags,
in the form of a UEI (unique linking-event identifier) matrix – whose rows and columns
are individual UMI-tagged molecules. A statistical inverse problem is then solved on this
matrix to infer the relative coordinates of the original UMIs. Any DNA or RNA sequence
that these UMIs tagged may then be mapped to their corresponding locations, thereby
assembling a complete spatio-genetic image of the original specimen.

Because DNA microscopy captures images from within a specimen and provides
nucleotide-level readouts, it potentiates fully volumetric de novo (or zero-prior knowl-
edge) spatio-genetic imaging. Two key barriers to broad application of DNA microscopy
in three-dimensional tissues have been (1) high temperature thermal cycling for in situ
PCR, that complicates uniform diffusion within the specimen, and (2) the separation of
length scales that would need to be bridged computationally in order for a network of
intercommunicating molecules/UMIs to inform the reconstruction of gross morphology.

Here, we overcome these barriers first experimentally, by introducing layered in situ
chemistries that encode – at low and constant temperature – multiple length scales si-
multaneously into the output of DNA microscopy reactions. Second, we introduce an in-
ference methodology that reconstructs encoded molecular positions over multiple length
scales. We demonstrate its effectiveness on both earlier and newer data sets.

Results
Encoding multiple length scales into a DNA microscopy data set requires engineering
how UEIs either localize or de-localize from their UMIs of origin. We reasoned that a
separation of UEI length scales could be achieved by initially dispersing UMI copies over
short (<1µm) lengths via constrained diffusion and later dispersing UMI copies over long

2

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 14, 2023. ; https://doi.org/10.1101/2023.08.11.553025doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.11.553025
http://creativecommons.org/licenses/by-nd/4.0/


Figure 1: Volumetric DNA microscopy chemistry begins by in situ synthesis of cDNA ampli-
cons in fixed and permeabilized tissue (A). Pre-circularized UMIs are then added (B) to undergo
RCA (C), which generates tandem copies of UMIs that undergo constrained diffusion about their
points of origin. Oligos bridge adjacent UMIs to a new “UEI” amplicon. cDNA and UEI ampli-
cons together undergo in situ amplification via in vitro transcription (D), with a complementary
ligation reaction simultaneously fusing UMI-containing by-products into a different set of UEI-
links. These data collectively encode proximity and cDNA sequence data (E). Using fluorescent
nucleotides during RCA shows a lack of signal when linear UMIs are used (F) compared to cir-
cularized UMIs in zebrafish embryos permeabilized by methanol alone (G) or with proteinase K
(H, scale bars 100µm). Sequencing rarefaction of UEIs (I), UMIs from UEI amplicons (J), UMIs
from cDNA amplicons (K), and contiguous UEI-matrix sizes (L) are shown.
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(>10µm) lengths via unconstrained diffusion. DNA microscopy7 had previously achieved
the larger of the two length scales, using biocompatible PEG hydrogels formed around the
sample to eliminate convection and limit the range of DNA molecule migration during the
reaction to ~50µm diameters11. We sought to execute this in parallel with ~1µm diameter
DNA dispersion12;6 achieved by rolling circle amplification, or RCA, in which the leading
end of a DNA molecule, polymerizing along a circular template, diffuses while anchored
to its point of origin.

Volumetric DNA microscopy

The multiscale-encoding reaction is depicted in Figs 1 and S1. Briefly, RNA molecules
in fixed cells were reverse-transcribed using random primers into cDNA, and 3’ DNA
overhangs were added (Fig 1A). Pre-circularized DNA molecules, containing ~25nt ran-
domized UMI sequences, were then annealed to the ends of these protruding adapters
(Fig 1B). Like in the first demonstration of DNA microscopy7, two distinct UMI types
(“type I” and “type II”) for purposes of preventing homo-dimerization (the pairing of a
UMI with itself) later in the experiment. A strand-displacing DNA polymerase elongated
the annealed DNA polymer by RCA to create DNA nanoballs with tandem copies of the
same UMI.

The resulting DNA nanoballs physically pressed up against one another (Fig 1C), and
a flanking oligonucleotide containing a randomized UEI sequence was then used to copy
and label each UMI-UMI pairing uniquely. A combined in vitro transcription and ligation
(“IVT-ligation”) reaction then amplified and further dimerized the resulting products (Fig
1D). All of these – abbreviated RCA-UEIs (UEIs generated from nanoball-adjacency),
IVT-UEIs (UEIs generated from IVT-ligation), and cDNA (cDNA-UMI pairs) – were then
further amplified by RT-PCR and sequenced (Fig 1E) for image inference and genome
alignment (Table S1).

We first sought to determine whether RCA polonies in whole mount zebrafish em-
bryos. Zebrafish embryos at 24 hpf were subjected to volumetric DNA microscopy chem-
istry (SI: Experimental method). We compared RCA reactions that incorporated fluores-
cent dUTPs by annealing either linear (Fig 1F) or pre-circularized (Fig 1G) UMIs. We
found, as expected, DNA products generated in the latter but not the former. This signal
was increased further by additional proteinase permeabilization of embryos (SI: Experi-
mental method, Fig 1H). This demonstrated the permeability of the embryo under fixation
conditions to circularized UMIs, enzymes, and other reagents.
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Figure 2: Geodesic Spectral Embeddings (GSE) applied to DNA microscopy simulation and
experiment. Ground truth positions (A-B) are used to simulate UEI-count matrices that sample
the distribution of pairwise proximities of points across the data set (1 × 104 UMIs/1 × 105 UEIs
in 2D; 5 × 104 UMIs/2.5 × 106 UEIs in 3D). Image inference identifies UMI positions produc-
ing expected UEI counts that match those observed (C). Constraining these positions using data
matrix eigenvectors (D) generates sMLE solutions (E-F). Modifying these eigenvectors with the
GSE algorithm improves solutions (G-H). By comparison, UMAP alone produces distortions while
obscuring geometry (I-J). Applying GSE to previous (6.5× 104 UMIs/7.9× 105 UEIs) DNA mi-
croscopy samples (K, scale bar 100µm) whereby UMI-barcoded transcripts undergo unconstrained
diffusion (L) allows sharpening of resulting inferred images (M).
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Next, we performed “end-to-end” in situ reactions on 24 hpf embryos. The resulting
number of distinct UEIs (Fig 1I), accompanying UMIs (Fig 1J), and separately amplified
UMIs on cDNA-amplicons (Fig 1K) could be found increasing with read-counts (the
latter preferentially amplifying with type-I UMIs). The sizes of contiguous UEI-matrices
(Fig 1L), describing the number of UMIs that – through some set of UEI-links – were
mutually connected, also increased with read-depth. Consensus cDNA amplicons were
then mapped to the zebrafish genome (SI: Sequence analysis).

Image inference

Inferring a DNA microscopy image of molecules (simulated positions separated by a UEI-
association “fall-off” length scale: Figs 2A-B) from sequencing data is, at its greatest level
of generality, a problem of calculating which putative molecular positions minimize a sta-
tistical distance (referred to as the “distance objective”) between UEI counts we expect
given these positions and the UEI counts we observe (Fig 2C). This operation is mathe-
matically equivalent to maximizing the probability of observations given these distances
(SI: GSE, Figs S3, S4). Absent constraints, the solution to this problem is prone to both
measurement noise and non-uniqueness.

Spectral maximum likelihood estimation, or sMLE, confines the position-solution to
a linear combination of the top principal components, or eigenvectors, of the UEI matrix,
analogous to a low-pass noise filter in optical imaging7. The optimal linear combination
is determined by incrementally adding d eigenvectors (for a d-dimensional inference) to
this set of eigenvectors in a “projected” gradient descent on the distance-objective until
the solution converges (Fig 2D).

In two- (Fig 2E) and three-dimensions (Fig 2F), these solutions produce good but
blurred approximations to underlying molecular coordinates. The reason for the shortfall
of sMLE is that it uses the top eigenvectors of the “raw” UEI data matrix, which are
solutions to a least-squares problem that weights all UEI counts equally.

In order to generate eigenvectors that account for differences in UEI-length scales
and UMI-density across the data set, we developed a dimensionality reduction approach,
called Geodesic Spectral Embeddings, or GSE. GSE directly approximates long-range
curvature in the underlying manifold swept out by the data matrix in high-dimensional
space. This is achieved by forming a kernel proximity matrix that describes not direct
distances, but the “shortest traversable” distances along local linear tangents and their
meeting points (SI: GSE). GSE eigenvectors are then used in precisely the same that raw-
data eigenvectors are used in sMLE: as a basis for projected gradient descent of the full
DNA microscopy solution.

Deriving GSE eigenvectors requires two parameter choices (SI: GSE). One is the de-
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gree to which the data is tessellated in order to analyze local “neighborhoods” of the UEI
matrix. The second is the number of eigenvectors generated from the raw count matrix to
analyze the curvature of the data manifold. Unless otherwise indicated, in the data shown
we use 10 tessellations and 50 eigenvectors in each data set.

Applying GSE to simulated data (Figs 2G-H) significantly outperformed sMLE and
UMAP13 (Figs 2I-J) in 2D and 3D. This demonstrated the algorithm’s generality in ad-
dressing non-uniform point distributions in higher dimensions.

We next investigated whether GSE could improve upon single length-scale DNA mi-
croscopy reconstructions7. In this earlier experiment, an ensemble of cells in culture is
plated (Fig 2K, photograph from Weinstein et al 2019), and specified gene amplicons are
tagged with UMIs (Fig 2L) that then undergo in situ amplification-reaction, unconstrained
diffusion, and UEI-linking (analogous to the experimental design in Fig 1. The resulting
UEIs are sequenced and the image is inferred. The fluorescent protein gene sequences
read out from DNA microscopy are then compared back to the actual fluorescence mea-
sured in light microscopy of the same specimens.

Applying GSE to this data over a single iteration yielded resolution comparable to that
found using sMLE previously7. Iterating GSE three times, each time treating newly gen-
erated GSE eigenvectors as updated “raw” count matrix eigenvectors (SI: GSE), as well
as increasing the number of data-tessellations from 10 to 20, improved cell boundaries
substantially (Fig 2M).

Whole organism DNA microscopy inference

Having demonstrated GSE’s effectiveness on accurately reconstructing 2D DNA microscopy
data sets and 3D simulations, we sought to evaluate its ability to reconstruct whole organ-
ism data sets, such as those described in Fig 1. An initial sub-sampling of 12.8 million
reads from embryo 1 generated a 7×104-UMI matrix (Fig 3A) with discernible structure.
However, as the depth of sequencing increased and UMI count did so as well, the recon-
struction blurred (Fig 3B), an artifact of the GSE algorithm over-fitting the “jaggedness”
of the densely-populated manifold swept out by the more deeply sampled data (Fig 3C).

To solve this, for each data set, we sub-sampled data to several small 104 UMI data sets
(Fig 3D). For each of these “sub-solutions” (here numbering 25), a linear interpolation
was then performed to estimate the locations of all UMIs not included in that specific
sub-solution (Fig 3E). Performing PCA on the UMI covariances then gave a new set
of eigenvectors/components to construct the global solution by an incremental projected
gradient descent, on the original probability function that modeled the DNA microscopy
reaction, as before.

Taking the original embryos (Figs 3F-G), whole organism inferences were generated
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Figure 3: Large-scale 3D inference for whole-organism DNA microscopy. Low-depth se-
quencing and GSE-inference produces granular detail (A) that blurs at higher sequencing depth
(B), which can be qualitatively explained by GSE’s sensitivity to data “jaggedness” on deeper sam-
pling (C). To solve this, sub-sampled data-sets (~104 UMIs) generate granular “sub-solutions” (D)
from which a putative reconstruction of all 106 UMIs for each can be found by linear interpolation
(E) and collated by PCA. UEI data from the original embryos 1 and 2 (F and G, respectively; scale
bars 200µm) are subjected to this image inference to give final GSE embeddings for the full 106-
UMI data sets (H and I, respectively, both showing two perspective angles of the same embryo).
Distinct colors are arbitrarily assigned to distinct spectral clusters/segments. Axes in GSE plots
indicate scales at different locations, with arrows having length of 3 GSE-units (1/e-association
fall-offs).
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(Figs 3H-I). Spectral clustering (SI: Clustering) similar to that previously used for seg-
menting cells in DNA microscopy7 was applied to identify segments within the data,
where a segment was defined as including UMIs that communicated discernibly more fre-
quently with one another with others that were otherwise nearby. The resulting images,
with colors introduced to visualize distinct clusters, recapitulated gross embryo morphol-
ogy, highlighting a “lobed” structure to the head and a well-defined tail/caudal region.
We next sought to examine the differential representations of gene transcripts across the
inferred 3D images.

Genomic sequence distribution analysis

We began by establishing a means to identify embryonic regions, by first aggregating
UEIs between distinct segments colorized in Figs 3H-I, then taking the first eigenvector
of the resulting UEI graph and bisecting points at its median. The resulting division of
genome-mapped UMIs is depicted by distinct colors for embryos 1 and 2 in Fig 4A and
B, respectively.

Next, we aggregated all genome-mapped UMIs together, and constructed contingency
tables for each gene, that described the number of UMIs detected for that gene on each
side of the median-location versus all other mapped UMIs. These contingency tables
allowed us to calculate two-sided Fisher’s Exact Tests, each provided an effective upper-
bound on the p-values for the null hypothesis whereby all genes had the same distribution
along the cephalic-caudal axis.

Although a large number of statistical differences were detected across the genome,
we narrowed our focus to the five most head-enriched genes with p < 10−5 (Fig 4C). Of
these five at 24hpf, two (znf29614 and ptprn215) had been found exclusively in the brain
by previous in situ hybridization (ISH) studies, one (map1sa16) had been found predomi-
nantly expressed in the head region and had a predicted role in neuronal physiology, and
two (paip2b16 and abr16) were predicted more generally to be active in protein translation
and cellular connections. Taken collectively, these were consistent with matching gene
expression characteristics to the anatomical structures in the head and brain.

We next sought to highlight the spatio-genetic image’s recapitulation of known expres-
sion patterns still further by examining a distinct set of 20 genes commonly expressed in
the head-region at 24hpf and 14 genes commonly expressed in the tail-region at 24hpf16

(Table S2). To do this, we implemented a joint spatial-genetic embedding scheme similar
to a joint-embedding scheme previously used for immunoglobulins2.

Specifically, for each embryo, 1 × 105 UMI “neighborhoods” were assigned by ran-
domly choosing genome-mapped UMIs throughout the data set, and finding the 5000
nearest-neighbors of each (within the GSE embedding) that also mapped to the genome.
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These neighborhoods, sometimes overlapping (Fig 4D) formed a new high-dimensional
data set (this time in gene expression space). The resulting vectors then underwent di-
mensionality reduction with UMAP (generated here using 100 PCs and 100 nearest-
neighbors).

The cephalic and caudal clusters of both embryos (Figs 4E, S2A-D) partitioned in
a manner consistent with GSE alone (Figs 4A-B: same colorscale, with neighborhoods
including UMIs from both cephalic and caudal clusters assigned an average color). Sum-
ming the expression of all 14 caudal (Fig 4F, Table S2) and all 20 cephalic (Fig 4G) genes
drawn from previously measured ISH patterns yielded distinctive patterns consistent with
the inferred locations along the caudal-cephalic axis.

Having established the recapitulation of gross morphology with DNA microscopy, we
next sought to examine the application of such whole organism images to sub-cellular
localization of molecular species. To do this, we summed UEI-counts between distinct
genes/biotypes, rather than distinct UMIs.

The resulting graphs for embryos 1 and 2, depicted in relation to rRNA, MT-rRNA,
and gDNA in Fig 4H, preferentially formed UEIs on a per-gene basis with gDNA, which
was reduced when normalized to the UEI-sums of each of these three molecular species
(Fig S2E-F). In the context of the full gene-gene connectivity matrix (using its top 100
eigenvectors, SI: Clustering), protein-coding genes showed closest proximity to rRNA
(Fig 4I), consistent with their expected sub-cellular distribution.

Discussion
We have demonstrated here the capability for a massive (>106) distributed molecular net-
work to volumetrically image a biological specimen from the “inside-out”. The implica-
tions of this work are threefold.

First, we have shown that DNA is capable of encoding massive images and that these
images are capable of being decoded without the use of any specialized instrumentation
beyond a DNA sequencer. This lays a critical foundation for the economy of scale this
technology provides, and a broader democratization of 3D spatio-genetic imaging. This
provides a clear path toward use in clinical settings, in which the impact of somatic mu-
tation and genomic “idiosyncracy” in tumors1, lymphocytes2, the brain3 and the gut mi-
crobiome, play a critical role. Still further, the fact that all readouts are “zero-knowledge”
opens up unexplored spatio-genetic complexity in non-model organisms.
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Figure 4: Spatio-genetic maps of embryos at multiple length scales. Spectral clustering allows
embryos to be divided between cephalic/head and caudal/tail domains (A-B). Performing two-
sided Fisher’s Exact Test on each mapped gene using this separation (fold-differences displayed
relative to the averaged value) allows for the identification of gene enrichment (C). Performing
UMAP-embedding on gene-counts in 105 GSE-neighborhoods (D) provides a joint spatial-genetic
embedding (E; color scale the same as in A-B) of embryos 1 (top) and 2 (bottom). Plotting a heat
map on top of this embedding shows differences between summed expression of genes commonly
expressed outside of the head region (F) and those predominantly expressed in the head region (G).
The relative proximity of protein-coding genes to rRNA, MT-rRNA, and gDNA can be visualized
either by direct UEI-connectivity, with genes shown as columns (H, only genes with ≥ 10 UEIs
summed across all three categories are shown; colors scaled as number of UEIs normalized to
column mean), or by relative proximities in the subspace formed by the top eigenvectors of the
gene-gene interaction matrix, with genes shown as points (I).
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Second, the inferred images here exhibit an inherent tension between being both con-
nectivity maps and representations of Cartesian coordinates. We have shown that in sim-
ulation and practice, the implementation of a distinct methodology for dimensionality
reduction – Geodesic Spectral Embeddings, or GSE – provides a scalable and reliable
solution to reconciling these two disparate properties that is complementary to other com-
mon dimensionality-reduction methods. GSE may have broader application to other large
data sets requiring similar reconciliation between the connectivities of nodes and their
low-dimensional representations.

Third and finally, continued improvements to volumetric DNA microscopy chemistry
and inference will provide a platform – distinct from and potentially complementary to
conventional light and electron microscopy – for the analysis of biological circuits. The
effective resolution of DNA microscopy follows a dependence on UEI-counts similar to
stochastic super-resolution light microscopy’s dependence on photon-counts7, with the
diffusion length scale (whether unconstrained, or constrained in the case of RCA) divided
by the square root of the number of UEIs belonging to the resolved UMI. A 1µm size of
RCA polonies with the 3 to 4 UEIs per UMI highlighted in Figure 1 therefore avails us of
roughly the same length in resolution. Sequencing deeper, and increasing reaction yield
would, however, push us well below the sub-micron regime.

In this work, we have demonstrated the ability for volumetric DNA microscopy to
capture both RNA and DNA, and looking forward we anticipate acquiring proteomic
details via oligo-antibody conjugates. As efforts accelerate to perform system-wide maps
of neuronal circuitry in particular, the need to supplement these insights with those from
molecular genetics, from gene expression, to genomic mosaicism, to spatio-proteomic
measurement will take on increasing importance. We view volumetric DNA microscopy
as poised to form a critical foundation for this broader undertaking.
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Supplementary Information

Data availability
Code and documentation can be found at https://github.com/wlab-bio/vdnamic. Raw se-
quencing data is available at SRA PRJNA1004618.

Experimental Method
All reagents used are enumerated in Table S3 and all oligonucleotides are enumerated in
Table S4.

Zebrafish embryos preparation

AB-wildtype zebrafish were kept and crossed in accordance with the approved proto-
cols and ethical guidelines of the University of Chicago Institutional Animal Care and
Use Committee. Embryos were collected at 24 hours post fertilization (hpf), dechori-
onated with 1mg/ml pronase 5min at 28C. Dechorionated embryos were fixed in 4%
paraformaldehyde in 1xPBS at 4C overnight. After dehydration in 100% methanol for
15-30min at room temperature, the embryos were stored at -80C for at least 2hrs before
use. Embryos were successively rehydrated with 75%, 50% and 25% methanol in 1xPBS
for 5min each and washed 4x with 1xPBST (1xPBS + 0.1%Tween-20), 5min per wash at
room temperature. The embryos were then permeabilized with 0.5-1 x 10−4 U/ul Thermo-
labile proteinase K for 12min at room temperature. The Proteinase K was then inactivated
at 55C for 15min. Samples were then washed 4x in PBST, 5min per wash.

RT (Reverse transcription)

After permeabilization, embryos were incubated at 4C for 1hr under slow rotation (10rpm)
followed by 10min of 65C incubation in a pre-RT buffer comprising 20% formamide,
0.5U/ul Superase-In, 4.4mM DTT, 0.5 ug/ul rBSA, in 1xPBS and then cooled down to 4C
immediately. After one water rinse, reverse transcription mix (1x FS buffer, 4.4mM DTT,
400uM dNTP, 32uM aminoallyl-dUTP, 0.5ug/ul rBSA, 1U/ul Superase-In, 10U/ul Super-
script III, and 1uM 21.068C-8N RT-primer) was added and underwent 4C incubation for
1hr, 60C 3min, and 37C overnight under slow horizontal orbital rotation, followed by 1hr
of 50C incubation. After RT, embryos were washed 3x in PBST and 1x with water, incu-
bated in ExoI mix (1x ExoI buffer, 1.43U/ul ExoI) at 4C 1hr under slow rotation, followed
by 37C 1hr to remove the RT primer and displaced cDNA. Embryos were again washed
3x in PBST and 1x with water.
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Tagmentation

Transposomes were assembled according to manufacturer protocol. Briefly, oligos 22tn5.003A
and 22tn5.MOS-3p were resuspended to 100uM individually in annealing buffer (40mM
Tris-HCl pH8, 50mM NaCl). These were annealed at equal molar ratio at 95C 2min,
followed by 1 degree-C decrements per minute for 70min. Transposome assembly mix
(25uM of the annealed oligo-duplex, 1ug/ul tagmentase) was then mixed and incubated at
23C for 30min. Glycerol was then added to 50% and stored until use at -20C. Following
reverse-transcription of samples transposome-glycerol stock was diluted 3:10 in tagmen-
tase dilution buffer. This diluted solution was then added at a further 1:50 dilution to
transposome reaction mix containing 5mM MgCl2, 10mM Tris-HCl (pH7.5), 10% N,N-
Dimethylformamide, 9% PEG8000, and 850uM ATP. This mix was added to samples,
and incubated at 4C 1hr under slow rotation followed by 55C 1hr. Samples were then
washed 2x in PBST and 1x in PBS.

Cross-linking and transposome denaturation

BS(PEG)5 mix was prepared in 1xPBS to 5mM concentration and added to samples for
incubation at room temperature for 1hr under slow rotation. Samples were then rinsed
with 1M Tris pH 8, and quenched in this buffer 30min at room temperature. 4xSSC was
then added, samples were incubated at 4C for 10min under slow rotation, and then at 70C
for 15min. 10% formamide/2xSSC was then added, the samples were incubated at 4C
under slow rotation for 10min, and then incubated at 50C for 10min. Samples were then
washed 3x in PBST, 5min each.

3’ adapter ligation and circDNA annealing

After rinsing with water, 3’ adapter ligation mix (500nM 22tn5.005, 500nM 22tn5.006,
1.25U/ul SplintR ligase, 1x SplintR Reaction buffer containing ATP) was added to sam-
ples, which were incubated at 4C 1hr followed by 23C overnight. After ligation, samples
were washed 3x in PBST for 5min each wash, then rinsed with water, and 3’ phosphates
on the ligated oligos were removed with 0.5U/ul Quick CIP in 1x CutSmart buffer by
incubation at 4C 1hr under slow rotation followed by 37C 1hr. Samples were then again
washed 3x in 2xSSCT, 5min per wash. Circ6G1 and Circ7G1 were prepared using T4
DNA ligase and short splint oligos[a] (splint6F5 and splint7F5, respectively) and purified
using a Zymo Oligo Concentrator spin column. Products were checked for size and pu-
rity via TBE-urea gel. CircDNA annealing mix (100nM Circ6G1, 100nM Circ7G1, in 1x
hybridization buffer, containing 2x SSC, 10% formamide, 0.1% Tween-20) was added to

[a]An, Ran, et al. Nucleic Acids Research 45.15 (2017): e139-e139.
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samples and incubated overnight at 40C under slow rotation. Samples were then washed
in hybridization buffer at 40C for 30min under slow rotation, and then washed in 2xSSCT,
1xSSCT, and finally 1xPBST, at 5min per wash.

Circular DNA annealing and RCA (rolling circle amplification)

Samples were rinsed with water and RCA mix (25ng/ul T4 gene 32, 1x phi29 reaction
buffer, 0.5ug/ul rBSA, 250uM dNTP, 0.2U/ul phi29 polymerase) was added, incubated
at 4C 1hr under slow rotation, and then 30C overnight. In cases where fluorescence was
to be observed, RCA mix was supplemented with 20uM fluorescein-12-dUTP. Samples
were washed 3x in 2xSSCT.

UEI oligos annealing and T4 DNA extension/ligation

UEI annealing mix (100nM 21.004G1/2-BC oligo mix, 100nM 21.073pt, 100nM 21.074B,
2xSSC, 5% formamide, 0.1% Tween-20) was added to samples, incubated at 4C 1hr
under slow rotation, and then 50C 2hrs. After bringing to room temperature, samples
were washed in UEI-hybridization buffer (2xSSC, 5% formamide, 0.1% Tween-20) 1hr
at 50C, followed by washes in 2xSSCT, 1xSSCT, and then 1xPBST. After water rinse, ex-
tension/ligation mix (1x T4 ligase buffer including ATP, 1mM dNTP, 0.15U/ul T4 DNA
polymerase, 20U/ul T4 DNA ligase) was added and incubated 1hr under slow ration at
4C, followed by room temperature incubation 40min. Samples were then washed 3x in
PBST, followed by a water rinse.

IVT (In vitro transcription)

IVT-ligation mix was prepared by adding to final concentrations together, in order, oligo
21.075 (100nM), 21.066C3 (1uM), 1x IVT reaction buffer, 7.5mM rNTP mix, 100ng/ul
T4g32, 0.5U/ul T4 RNA ligase 2, 0.25U/ul RppH, 10% T7 Enzyme Mix, 73.6ug/ul 4arm-
PEG20K-Vinylsulfone, and 6.4ug/ul 3-arm Thiocure-333 (PEG reagents being thawed
from -80C immediately prior to reaction). Mixes were added to individual zebrafish em-
bryos at a total volume of 30ul. Hydrogel was allowed to form around samples for 2hrs
at room temp. Reaction was then incubated at 37C 20hrs. Afterward, hydrogels were
denatured via addition of 12ul denaturation solution (457.5mM KOH, 100mM EDTA,
42.5mM DTT) for 2hrs at 4C. Denaturation was stopped by addition of 12ul stop solu-
tion (600 mM Tris-HCl pH7.5, 0.4N HCl). After mixing, 30ul proteinase K mix (0.28%
Tween-20, 0.09U/ul proteinase K, 8.6 mM Tris-HCl pH7.5) was added to the 54ul sam-
ples for a total of 84ul. This was incubated at 50C 1hr.
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RNA isolation and cDNA synthesis

RNA was purified by addition of 1.2x RNAClean XP beads, following manufacturer pro-
tocols, and eluted into water. DNase I digestion was performed (final concentration of
0.8U/ul Superase-In, 0.1U/ul DNase I, 1x DNase I reaction buffer) at 37C for 30min.
RNA was again purified via 1.2x RNAclean XP, and eluted into water. Reverse tran-
scription was carried out in a final concentration of 500nM each of RT primers (21.077
and 21.085), 500uM dNTP, 1x FS buffer, 5mM DTT, 1U/ul Superase-In, and 10U/ul Su-
perscript III. Primers and dNTP were added first to RNA/water-eluent and incubated at
65C 5min, after which the mixture was placed promptly on ice. The rest of the reaction
mixture was then added, and samples were then incubated 1hr at 50C, followed by inacti-
vation 15min at 70C, and kept at 4C. ExoI enzyme was then added directly to the product
to final concentration of 3.3U/ul. After mixing, this was incubated at 37C for 30min,
followed by heat-inactivation at 80C for 20min.

Library preparation

cDNA products (from IVT products) were then amplified in two separate PCR reac-
tions. “cDNA-amplicons” were amplified by adding ExoI-digested product at a final
1:80 dilution into 4 separate reactions (per embryo) containing final concentrations of
300nM 21.046G1-BC primer, 300nM 21.081b primer, 1x HiFi PCR buffer, 200uM dNTP,
2mM MgSO4, and 0.02U/ul Platinum Taq HiFi. This reaction was thermocycled 95C
2min, 5x(95C 30s, 56C 30s, 68C 2min), 20x(95C 30s, 68C 2min), 68C 5min, 4C. “UEI-
amplicons” were amplified by adding ExoI-digested product at a final 1:40 dilution into
2 separate reactions (per embryo) containing final concentrations of 300nM 21.077-G1
primer, 300nM 21.076BB primer, 3.3uM each of 4E4.interf1 and 4E.interf2 (3’P-capped
oligos to interfere with PCR recombination7;[b]), 5% DMSO, 1x HiFi PCR buffer, 200uM
dNTP, 2mM MgSO4, and 0.02U/ul Platinum Taq HiFi. This was thermocycled 95C 2min,
1x(95C 30s, 66C 30s, 68C 2min), 18x(95C 30s, 68C 2min), 68C 5min, 4C. PCR products
were then purified using a 0.75x volume of Ampure XP beads, following manufacturer
protocol. Products were quantified and sequenced on an Illumina NextSeq 500 instrument
using 150-cycle kits (112nt read 1, 44nt read 2), including the sequencing primer sbs3b
as a custom spike-in according to manufacturer protocol.

[b]Turchaninova, Maria A., et al. European journal of immunology 43.9 (2013): 2507-2515.
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Sequence Analysis
Sequence analysis was performed using the pipeline previously described7, with code
updated for the larger scale of data available at https://github.com/wlab-bio/vdnamic.

Briefly, sequencing reads were demultiplexed via the barcodes depicted in Figure S1.
Subsequently, for each amplicon type, sequence elements (UMI type I, UMI type II, UEIs,
and cDNA inserts) were separately clustered using a 1bp difference-criterion using the
EASL algorithm7.

For UEI data sets, each UEI was assigned a UMI-pair by plurality (relevant only if a
specific UEI appeared to show two different pairings of UMIs – a signature of PCR recom-
bination). The resulting “consensus pairings” were then pruned, with each UMI required
to be associated with 2 UEIs, and each association (unique UMI-UMI pair) required to
be associated by at least 2 reads. The largest contiguous matrix (found via single-linkage
clustering, with rarefaction depicted in Figure 1J) was retained for image inference.

For cDNA insert sequence data, reads grouped by the same UMI had a sequence-
consensus generated by majority-vote. These sequences were then trimmed to eliminate
sequence adapters. Those inserts retaining at least 25bp of non-artificial sequences (at
least among known artificial sequences) were then counted toward the cDNA-insert UMIs
(depicted as rarefaction in Figure 1I). These consensus inserts were then inputted into
STAR alignment[c] using the Danio Rerio genome assembly GRCz11. Gene-assignments
were performed using GTF annotations, with mappings ties (in edit-distance) between
genes receiving equal weight, and priority assignment to rRNA in case of an ambiguous
match with the genome.

The UMIs from genome-mapped cDNA-insert libraries (Table S1) were then matched
back to the UMIs in the UEI amplicon libraries of the corresponding specimen. The
gene-calls were then applied to label UMIs in the UEI-inferred image.

Simulations
All simulations were performed by taking the raw coordinates depicted in Figs 2A,E and
calculating Gaussian “point-spread functions”. For UMI i and UMI j at ground truth
positions x⃗i and x⃗j , respectively, and with N being the sum-total of all counts in the
simulated data set, we assigned a raw count nij ← NegativeBinomial(mean = µij, p)
where µij ← Ne−||x⃗i−x⃗j ||2/

∑
ij e

−||x⃗i−x⃗j ||2 and p← 0.8.

[c]https://github.com/alexdobin/STAR
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Clustering
The preliminary segmentation analysis of GSE inferences (Figs 3H-I) was performed by
taking UEI-associations collectively – and an equivalent total number of nearest neigh-
bors (such that for k nearest neighbors, k ← NUEIs/mUMIs) – and calculating diffusion
kernels within the GSE embedding coordinates {x⃗i}: νij ← e−||x⃗i−x⃗j ||2/2σ2

ijσ−d
ij where

σij ← n−1
i· + n−1

j· . The symmetrized normalized Graph Laplacian matrix formed by the
“pseudo-linkages” then underwent spectral clustering as previously described7 down to a
conductance threshold of 0.2, requiring a minimum segment size of 50 UMIs.

Inter-segment UEI counts then defined a new UEI-count matrix that was row-normalized.
The top eigenvector – specifically, its median – provided the boundary for memberships
visualized in Figs 4A-B of cephalic vs caudal.

For gene-gene UEI matrices (Fig 4I), a similar summation of categories was per-
formed as with segments above. The symmetrized normalized Graph Laplacian was used
to generate 100 eigenvectors from which proximities to each of the molecular species,
rRNA, MT-rRNA, and gDNA. For a gene i relative to any one of these molecular species,
here designated c, this proximity was estimated through the Gaussian kernel e−||y⃗i−y⃗c||2/s2

with s2 ≡ 1
3
(||y⃗i − y⃗rRNA||2 + ||y⃗i − y⃗MT-rRNA||2 + ||y⃗i − y⃗gDNA||2). A linear transform

was then applied to affix the locations of each rRNA, MT-rRNA, and gDNA to the ver-
tices of each ternary plot.

Embryo 1 Embryo 2
Total cDNA UMIs (with inserts >=25bp) 8379427 8819189
Total genome mapped cDNA-inserts 5395011 5531597

rRNA 155559 222599
MT-rRNA 759518 682481
Protein-coding/mRNA 2946938 2885390
Genomic (non-CDS) 1436384 1654004
Other 96612 87123

UEI-data matched cDNA-inserts 1135105 1120439
Total in UEI-matrix (largest contig) 293352 300369
Type I UMIs in UEI-matrix (largest contig) 2118976 2252619
Type II UMIs in UEI-matrix (largest contig) 1644364 1776217
Total UEIs in UEI-matrix (largest contig) 8730431 9012629

Table S1: UMI/UEI statistics for embryos 1 and 2.

[d]"The Zebrafish Information Network (ZFIN)." The Zebrafish Information Network, https://zfin.org.
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Cephalic genes Caudal genes
rfx2 neurod6b mnx1 pmp22b
six3b crlf1a wnt5b meox1
mdkb barhl2 admp tlcd5a
pax6a fezf2 f2r msgn1
npb eomesa hoxd12a
sox2 dlc fn1a
otx1 tbr1b hoxa11a
stra6 dlx1a tbx16l
pigh emx2 eve1
fabp4a dpf1 creb3l1

Table S2: Cephalic and caudal genes used in Fig 4F-G. Cephalic genes were generated
by performing a database search 16;[d]. Cephalic genes were collected by filtering for
“telencephelon” and selecting those genes with clear evidence of predominant expression
in the head in 24hpf embryos in ISH images. Caudal genes were collected by filtering for
“caudal fin” and “tail bud” and selecting those genes with clear evidence of predominant
expression in the caudal region in 24hpf embryos in ISH images.

sMLE/UMAP/GSE comparisons
In Figs 2E-J, hyperparameters were chosen as follows. The top eigenvectors of the UEI
matrix were applied to both sMLE (top 50, to undergo projected gradient descent) and
UMAP (following common practice and to better constrain, the top 30 eigenvectors were
used, with nearest neighbors set to 100). GSE used the top 50 eigenvectors (E = 50),
along with 10 data tessellations. The total GSE eigenvectors used in the final projected
gradients descent totaled 200.

GSE (Geodesic Spectral Embeddings)
GSE begins by “de-indentifying” type I and type II UMIs in our data set (Fig S3A): taking
the rectangular mI × mII UEI-count matrix of mI type I UMIs and mII type II UMIs
and converting it into a square m × m symmetric matrix, consisting of m = mI + mII
UMIs. UMI-UMI interactions are modeled statistically as illustrated in Fig S1B. There,
the observed UEI matrix counts nij – associating UMI i with UMI j – are generated
stochastically according to probabilities, wij , that go up the closer UMI i is to UMI j in
the embedding space and go down the further apart they are in the embedding space. The
set of all UMI/point positions which collectively best comports with this model is what
we will call the optimal GSE embedding.
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Evaluating embedding positions in this way, however, most of all requires a way to
estimate the distance between them, given the original count data. Most commonly, this
is done by taking the subspace formed by the top E eigenvectors of the data matrix and
finding a straight-line Euclidean distance between two points[e][f][g] with the goal of iden-
tifying and focusing on nearest-neighbor relations. GSE does this as an initial processing
step, but uses the resulting putative nearest neighbors only to form local tangent spaces
about each point. These tangent spaces will allow us to estimate the geodesic distances
along the d-dimensional surface (sitting in the full m-dimensional data space) we wish to
represent in the final embedding.

These tangent spaces may involve the E “global” eigenvectors of the full symmetric
count matrix in Fig S3A. However, global eigenvectors that describe the dominant axes
of variance for the full data set may – on their own – be insufficient to differentiate the
tangent spaces of neighboring points. To avoid this problem, GSE augments the global
eigenvector subspace by performing several random, distinct tessellations of this subspace
(Fig S3C). Each tessellation partitions the original points into ∼

√
m sectors of ∼

√
m

points each.
The choice of

√
m here is motivated by the fact that the total computational complex-

ity of analyzing all sectors together will ultimately scale as the product of the number of
tessellations and the number of points per tessellation, ie the total number of points in
the data set

√
m ·
√
m = m. Each of these sectors now possesses smaller “local” count

matrices generated by collapsing and summing the matrix elements belonging to all other
sectors, as illustrated in Fig S3D. Each of these smaller matrices, because they include
∼
√
m points and ∼

√
m sectors, will be of size ∼ (2

√
m)× (2

√
m).

GSE then appends the E eigenvectors generated from these local matrices to the origi-
nal E-dimensional global eigenvector subspace, forming a fuller subspace spanned by 2E
eigenvectors describing each point’s local neighborhood. These local neighborhoods are
then used to find putative 2E nearest neighbors (the minimum to span the full eigenvector
subspace) for each point in the data set (Fig S3E) using a standard kNN algorithm. The
2E nearest-neighbors for each point are then shuffled between tessellations, in order to
allow each point – within each tessellation – to have a local neighborhood that extends
beyond the boundaries of the sector into which it was assigned.

Although each sector now has a locally defined eigenvector subspace, this eigenvec-
tor subspace contains coordinates for the collapsed counts of all other sectors. These
collapsed-sector coordinates can then be used to bridge the coordinates of points that
have been assigned to different sectors (Fig S3F).

[e]Coifman, Ronald R., and Stéphane Lafon. App and comp harmonic analysis 21.1 (2006): 5-30.
[f]Van der Maaten, Laurens, and Geoffrey Hinton. Journal of machine learning research 9.11 (2008)
[g]McInnes, Leland, John Healy, and James Melville. arXiv preprint arXiv:1802.03426 (2018).
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GSE then uses each point’s 2E nearest neighbors from before to perform a local PCA
analysis, giving each point its own d basis vectors – where d is the low-dimensionality of
the intended embedding – that constitute the local tangent spaces for the high-dimensional
surface (Fig S4A). For point i, we use these basis vectors to construct a tangent space
projection matrix Mi. Projecting the original counts associating different data points onto
these tangent spaces then allows calculation of d × d count covariance matrices Σi (Fig
S4B). For any vector z⃗, we can then write the re-scaled square-distance z⃗TΣ−1

i z⃗ with a
diffusion-distance metric Σ−1

i in the neighborhood of point i.
For any given pair of points i and j at positions z⃗i and z⃗j , respectively, GSE uses the

procedure described so far to estimate a geodesic distance between them in two steps.
First, the shortest connecting path between z⃗i and z⃗j is estimated by adding difference-
vectors projected onto their respective tangent spaces to give the intermediate points z⃗i +
αMi(z⃗j − z⃗i) and z⃗j + βMj(z⃗i − z⃗j). The scalar values α and β are then adjusted to
minimize the Euclidean distance between the resulting vector sums (Fig S4C), which
uniquely specifies a piecewise linear path from z⃗i to z⃗j . Second, the geodesic distance
is estimated as the diffusion-distance traversed by this path, calculated using distance
metrics Σ−1

i and Σ−1
j (Fig S4D).

GSE then collates these distances across all random tessellations (from Fig S3) and
incorporates them together into a single geodesic similarity matrix that determines – for
every point – the half of data points that are closer to it than the other half along the d-
dimensional surface swept out by the tangent spaces calculated earlier (Fig S4E). GSE
approximates this geodesic similarity matrix in a sparse matrix W̃ by, for every point i,
randomly and uniformly selecting a set of other points across the data set, estimating their
geodesic distances to point i, and retaining the lowest 1/2d fraction of these distances.
These retained points, along with the nearest-neighbors found in the original eigenvector
subspace, are inserted into the corresponding row in the form of a sparse set of Gaussian
proximities.

GSE uses the geodesic similarity matrix W̃ as part of what we call the “GSE matrix”
W̃GSE: a mathematical description of how the original count matrix ought to be embedded
across the d-dimensional tangent spaces used to construct W̃. The top eigenvectors of this
matrix are considered to be putative solutions to the d-dimensional embedding problem.
In serving this purpose W̃GSE will be a projection of the count data into the geodesic
similarity matrix so that W̃GSE ← W̃N.

Because we consider the top eigenvectors of W̃GSE to fit the data to the global curva-
ture of the data set, we now apply an incremental projected gradient descent on a global
objective function (Fig S4F). The objective function we use here is the Kullback-Leibler
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divergence

DKL ≡
∑
ij

(
nij

n··

)
log

(
nij/n··

wij/w··

)
This is a statistical distance between the data counts nij and the proximities in the embed-
ding space wij ≡ e−||x⃗i−x⃗j ||2+Ai+Aj , where x⃗i is the d-dimensional embedding coordinate
of point i and where the amplitude Ai ← log n

1/2
i· . Here and elsewhere in this paper,

subscript “·” denotes index summation, such that ni· ≡
∑

j nij .
Note that minimizing DKL is equivalent to maximizing the log-likelihood L of the

multinomial that uses UEI-counts as “independent trials” on the space of all possible
UMI-pairings – the framing in earlier DNA microscopy work7. This is because L =∑

ij nij logwij/w·· + constant, which is the same as minus-the-expression for DKL once
constant coefficients are factored out.
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Figure S1: Experimental flow of volumetric DNA microscopy. “XXXXXX” corre-
sponds to sample barcodes (arbitrary 6nt identifiers).
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Figure S2: Spatio-genetic visualizations. GSE-UMAP plots from different perspective
angles for embryos 1 (A-B) and 2 (C-D), with coloration as in Fig 4A-B,E. UEI connec-
tivities in embryos 1 (E) and 2 (F) to molecular species rRNA, gDNA, and MT-rRNA, as
in Fig 4H, but where UEI-counts are first normalized to the sum of each row, and are only
then normalized to the mean for each protein-coding gene (columns).
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Figure S3: Assigning global and local subspace coordinates to UEI-count matrix observ-
ables. GSE begins by taking an arbitrary count matrix and transforming it into a block-symmetric
matrix describing a bipartite graph (A). It asserts that the counts in this matrix describe the over-
laps between diffusion “fields” of the rows and columns of this matrix in an embedding space
(B). The GSE procedure begins by forming several random tessellations of the top eigenvectors
of the m ×m count matrix (C), with each tessellation consisting of multiple sectors (illustrated
as sizes m1 +m2 +m3 = m). The top eigenvectors of each sector are calculated by collapsing
the other sectors into single rows/columns of “local” count matrices (D). These eigenvector sub-
spaces, combined with eigenvectors from the “global” count matrix, are used to calculate nearest
neighbors on a per-sector/per-tessellation basis (E). The coordinates of any pair of points across
the data set can then be compared by analyzing the eigenvector subspace dimensions they share
(F).
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Figure S4: GSE’s numerical procedure to estimate the geodesic distance between any two
points begins by constructing local tangent spaces within the eigenvector subspaces in Fig S3 to
construct local tangent spaces (A). Projecting each point’s counts onto its own local tangent space
then allows the calculation of count covariance matrices, labeled as “count-diffusion metrics” (B).
Then, taking any two points in the data set, a shortest piecewise-linear path is constructed using
knowledge of tangent spaces alone (C). This path is then inputted into a rescaled distance that
applies the count-diffusion metrics from earlier (D). This geodesic estimate can then be applied
both to a point’s already established 2E nearest neighbors (from Fig S3) and to a random selection
of 2dK ′ other points – where here we set K ′ ← 10d – across the data set. Both sets of distances
are sorted independently, and the lowest K ′ distances from each set are retained and placed in a
Gaussian kernel matrix (E). This kernel matrix is then used to generate a “geodesic kernel matrix”,
W̃GSE, whose eigenvectors are then used to construct the solution to the embedding problem (F).
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TABLE S3
Reagents Manufacturer Catalog number

Pronase Sigma-Aldrich 10165921001

Water Invitrogen 10977023

PBS (10x, pH7.4) Invitrogen AM9624

Paraformaldehyde (16%) Thermo Scientific 28906

Methanol Sigma-Aldrich 34860-100ML-R

Tween-20 Sigma-Aldrich P9416-100ML

Thermolabile Proteinase K (0.12U/ul) NEB P8111S

Formamide Sigma-Aldrich 47671-250ML-F

rBSA (20 ug/ul) NEB B9200S

Superase-In (20 U/μL) Invitrogen AM2696

dNTP Thermo Scientific R0181

Aminoallyl-dUTP (50 mM) Thermo Scientific R1101

SuperScript III Reverse Transcriptase (200 U/μL) Invitrogen 18080085

ExoI (20U/ul) NEB M0293L

Tris-HCl (1M, pH8.0) Fisher Scientific BP1758-500

NaCl (5M) Invitrogen AM9760G

Tagmentase (2ug/ul) Diagenode C01070010-20

Glycerol Sigma-Aldrich G5516-100ML

Tagmentase dilution buffer Diagenode C01070011

Tris-HCl (1M, pH7.5) Fisher Scientific BP1757-500

MgCl2 (1M) Invitrogen AM9530G

N,N-Dimethylformamide Sigma-Aldrich D4551-250ML

PEG8000 (50%) NEB B0216L

ATP (10mM) NEB B0216L

BS(PEG)5 Thermo Scientific A35396

Tris (1M, pH8.0) Invitrogen AM9855G

SSC (20x) Invitrogen AM9770

SplintR ligase (25U/ul) NEB M0375S

Quick CIP (5U/ul) NEB M0525S

Zymo Oligo Concentrator Zymo Research D4060

TBE-urea Gels (15%) Invitrogen EC68855BOX

T4 gene 32 (10ug/ul) NEB M0300S

Phi29 polymerase (10U/ul) NEB M0269L

Fluorescein-12-dUTP (1mM) Thermo Scientific R0101

T4 DNA polymerase (3U/ul) NEB M0203L

T4 DNA ligase (400U/ul) NEB M0202L 

4arm-PEG20K-Vinylsulfone Sigma-Aldrich JKA7025-1G

3-arm Thiocure-333 Bruno Bock

T4 RNA ligase 2 (10U/ul) NEB M0239L

RppH (5U/ul) NEB M0356S

rNTP (25mM each) NEB N0466L

MEGAscript T7 Transcription Kit (T7 enzyme mix) Invitrogen AM1334

KOH (1M) Honeywell 319376-500ML

EDTA (0.5M) Sigma-Aldrich 03690-100ML

DTT (1M) Thermo Scientific P2325

HCl (1N) Sigma-Aldrich H9892-100ML

Proteinase K (0.8U/ul) NEB P8107S

RNAClean XP beads Beckman Coulter A63987

DNase I (2U/ul) NEB M0303S

Platinum Taq HiFi (5U/μL) Invitrogen 11304029

Ampure XP beads Beckman Coulter A63881

Nextseq 500/550 Mid-Output v2.5 Kit (150 cycles) Illumina 20024904

Nextseq 500/550 High Output Kit v2.5 (150 Cycles) Illumina 20024907
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