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SUMMARY  
 
Genetic interactions have long informed our understanding of the coordinated proteins and pathways that 
respond to DNA damage in mammalian cells, but systematic interrogation of the genetic network underlying 
that system has yet to be achieved. Towards this goal, we measured 147,153 pairwise interactions among genes 
implicated in PARP inhibitor (PARPi) response. Evaluating genetic interactions at this scale, with and without 
exposure to PARPi, revealed hierarchical organization of the pathways and complexes that maintain genome 
stability during normal growth and defined changes that occur upon accumulation of DNA lesions due to 
cytotoxic doses of PARPi. We uncovered unexpected relationships among DNA repair genes, including 
context-specific buffering interactions between the minimally characterized AUNIP and BRCA1-A complex 
genes. Our work thus establishes a foundation for mapping differential genetic interactions in mammalian cells 
and provides a comprehensive resource for future studies of DNA repair and PARP inhibitors. 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2023. ; https://doi.org/10.1101/2023.08.19.553986doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.19.553986
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

1 

INTRODUCTION 

 

A genetic interaction (GI) quantifies the functional relationship between two genes by measuring the effect of 

one gene on the phenotype of another. Effects that are less than expected, as determined by individual 

phenotypes, signify buffering relationships and those that are more than expected represent synergistic effects. 

Many previous studies have shown that careful examination of GIs can reveal fundamental mechanistic 

insights, a classic example of which is the GI between BRCA1 and 53BP1 (TP53BP1).1 These genes 

demonstrate a clear buffering relationship, where toxicity associated with BRCA1 deficiency can be rescued 

by loss of 53BP1. Discovery of this GI led to a deep understanding of homologous recombination (HR), where 

an early nucleolytic processing step is promoted by BRCA1 and suppressed by a host of factors recruited by 

53BP1.2-12 

 

Genetic interactions can also be exploited for therapeutic purposes. Here, too, BRCA1 provides an instructive 

example. Loss-of-function mutations in this gene, as well as other HR genes, predispose individuals to a high 

incidence of breast and ovarian cancer.13 At the cellular level, such perturbations confer sensitivity to loss of 

poly (ADP-ribose) polymerase (PARP),14,15 and observation of these synergistic GIs prompted development 

of clinical PARP inhibitors (PARPi), now used to treat cancer.16 Ostensibly, these drugs kill HR-deficient 

cancer cells by trapping PARP onto DNA, causing replication stress, and overwhelming the diminished DNA 

repair capacity of those cells.17–20 Further illustrating the importance of GIs in this context, preclinical studies 

have suggested that alterations in 53BP1 and downstream genes, which buffer the effect of PARPi on HR 

deficient cells, may underlie clinical resistance.21 There is therefore much interest in GIs relevant to PARPi 

response and how that information may be used to inform new treatment strategies. 

 

Beyond these specific examples, many genetic interactions have informed our understanding of DNA repair 

and provided guidance for therapeutic development. For this reason alone, a large-scale survey of genetic 

interactions among human DNA repair genes would have obvious utility, but while previous studies have 

shown that such efforts are possible,22–51 platforms developed for such analysis in human cells36,43,44,46,48–50 

remain bespoke and have not been extensively applied. Systematic analysis of GIs among human DNA repair 

genes is therefore lacking. Examining GIs between DNA repair genes also presents a particular challenge, 

namely that interactions between these genes are predicted to be enriched for context-specific interactions,51 

which may only be observed after exposure to particular forms of genotoxic stress or in select genetic 

backgrounds. Global analyses of GIs associated with human DNA repair genes will accordingly require large-

scale comparison of such measurements across relevant conditions, demonstration of which has yet to be 
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established. Here, we develop a framework for such work and apply it to map the GI network underlying 

cellular response to PARPi. Given the chemical-genetic relationship between PARPi and DNA repair, as well 

as the deep interest in interactions relevant to PARPi-induced genotoxicity, this condition presented the ideal 

context for the first differential GI map in human cells. 

 

Altogether, we interrogated 147,153 gene pairs under both normal cell growth conditions and in the presence 

of the PARPi niraparib. Our results reveal a rich topology of functional modules and relationships between 

DNA repair genes and demonstrate how those relationships change in response to PARPi-induced cell stress. 

In the context of normal growth, our data provides a high-resolution look at the dense set of relationships 

among genes responsible for RAD51 filament assembly, stability, and function in HR, including a strong set 

of novel interactions between genes encoding the molecular motor protein RAD54L and the PSMC3IP-MND1 

heterodimer. In the PARPi context, we define interactions with genes encoding the molecular targets of 

niraparib, PARP1 and PARP2, and identify a striking set of context-specific interactions with a gene only 

minimally characterized in the context of DNA repair, AUNIP. The interaction maps we present here provide 

a resource for exploring the processes that underlie cellular responses to both PARPi and DNA damage.  

 

 

RESULTS 

 

A dual-sgRNA CRISPRi library targeting pairs of genes involved in PARPi response 

 

We sought to map the network of genes that control genome stability in response to PARP inhibition and 

evaluate the plasticity of that network in the presence and absence of PARP-induced damage (Figure 1A). To 

achieve this goal, we deployed CRISPRi, a technique that uses a catalytically inactive SpCas9 fusion protein 

(dCas9-KRAB) to inhibit transcription at targeted promoters.52,53 CRISPRi offered several advantages for this 

effort. First, among the ~900 human genes implicated in the DNA damage response,54 there are many with 

strong growth phenotypes. CRISPRi generates partial loss-of-function perturbations and thus limits the 

severity of interfering with essential genes, allowing robust measurement of phenotypes associated with those 

genes.55 Second, CRISPRi does not alter the sequence of targeted genes and thus avoids toxicity and variability 

from gene disruption with DNA double-strand breaks.56,57 Finally, large-scale mapping of GIs from a single 

condition across a different set of genes has already been convincingly demonstrated with CRISPRi.48  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2023. ; https://doi.org/10.1101/2023.08.19.553986doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.19.553986
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

3 

 
 
Figure 1. A platform for using CRISPRi to profile context-dependent genetic interactions. 
 
(A) Schematic of approach for large-scale genetic interaction mapping with and without exposure to one PARPi, niraparib. 
(B) Results from genome-scale, single-perturbation CRISPRi screen for genes that cause sensitivity or resistance to niraparib. Genes 
selected for inclusion in our dual-sgRNA, CRISPRi library are indicated (blue, previously detected in published PARPi screens; red, 
detected by our genome-scale screen; black, other). P-values determined by MAGeCK (Table S1).  
(C) Functional annotation of genes included in the dual-sgRNA, CRISPRi library (Table S2; Methods). Genes may appear in multiple 
categories. 
 
 
To nominate genes for our map, we conducted a single-perturbation, genome-scale CRISPRi screen using the 

PARPi niraparib. Results from this screen nominated 247 genes, loss of which caused sensitivity or resistance 

to niraparib, hereafter referred to as PARPi sensitization (ρ) phenotypes (Figure 1B; Table S1). Among 

nominated genes were PARP1, which conferred the strongest resistance effect, and many genes with known 
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roles in forestalling or repairing PARPi-induced DNA damage (e.g., BRCA1, BARD1, DNPH1, and 

PALB2).58,59 To supplement these genes, we also evaluated results from 24 published, single-perturbation 

CRISPR screens performed with various PARP inhibitors5,6,8,60–63, which added another 109 genes. Finally, to 

ensure comprehensive inclusion of genome stability genes, we selected 187 additional genes from a focused 

literature review and enriched pathways (Methods), for a total of 543 genes. These genes covered the full 

spectrum of observed growth phenotypes with and without PARPi exposure, referred to as τ and γ phenotypes 

respectively (Figure S1A), and demonstrated a high level of functional characterization (i.e., 62% were present 

in at least one enriched Reactome pathway;64 Table S2). Critically, our gene set was also enriched for desired 

bioprocesses, including DNA repair, DNA replication, and the cell cycle (Figure 1C; Table S2; Methods).  

 

Data from our niraparib screen also allowed us to identify active CRISPRi sgRNAs against our selected genes. 

From the ~5 sgRNAs per gene present in the genome-scale library, we chose two per targeted gene (1086 

total), specifically selecting those that demonstrated the strongest PARPi sensitization phenotypes with 

consistent direction, in addition to 55 non-targeting controls. Then, using a two-step cloning strategy with a 

dual-expression vector, we assembled pairs of these sgRNAs into a “GI library” (Figure S1B; Methods). 

Notably, because any of our selected sgRNA sequences could appear in either of two positions (A or B) in the 

expression vector, the final library maximally contained 1,301,881 unique constructs targeting 147,153 gene 

pairs. Deep sequencing detected all but 502 of these constructs, representing an impressive 99.96% capture 

rate, with 90% of library elements present within a 6x range and Gini inequality index < 0.28 (Figures S1C 

and S1D).  

 

Quantifying genetic interactions in the presence and absence of PARP inhibition 

 

To perform our interaction screen, we transduced our GI library into a K562 CRISPRi cell line,55 selected 

transduced cells, and grew those cells in two replicates with or without exposure to niraparib (Figures 1A and 

S1E). After nine days, cells were collected and the integrated expression cassettes were amplified from 

genomic DNA and sequenced to determine the representation of each dual-sgRNA construct at the beginning 

(T0) and end of the screen (reference and PARPi endpoints) (Figure S1F). Counts from 1,264,760 constructs, 

representing all those remaining after removing poorly represented elements, were then used to calculate three 

metrics: reference growth phenotypes (γ); growth phenotypes modified by PARPi exposure (τ); and PARPi 

sensitization phenotypes (ρ), which directly relate τ to γ (Figure S2A; Methods).65 When evaluated 

individually, as pairs of sgRNAs, or collapsed to gene-level measurements, these phenotypes were highly 

reproducible, both across replicates and reciprocal orientations in the expression construct (X/Y or Y/X), while 
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non-targeting constructs were, as expected, uncorrelated, with minimal to no evidence of phenotypes (Figures 

S2B-S2D). Individual gene phenotypes also correlated with data from our primary screen (Figure S2E).  

 

We next used phenotypes from our screen to calculate sgRNA-level interaction scores using an established 

analytical framework (Methods).48 Interaction scores quantify the extent to which phenotypes from pairs of 

perturbations deviate from expectations set by individual phenotypes. To establish these expectations, we 

modeled the relationships between individual sgRNA phenotypes and corresponding dual-sgRNA phenotypes 

for single “query” sgRNAs (Figure 2A). Calculating the difference between measured phenotypes (observed) 

and model-derived values (expected) then produced GI scores for sgRNA pairs, each of which quantified the 

direction and strength of the underlying interaction, with positive and negative scores representing buffering 

and synergistic interactions, respectively. After quality control filtering (Methods), we applied this framework 

to produce 2,411,208 total sgRNA-level scores, calling those from our reference data γGI scores and those 

from PARPi-treated cells τGI scores. Among these measurements, we observed evidence of known gene-gene 

interactions, including buffering interactions between BRCA1 and 53BP1 as well as synergistic interactions 

between BRCA1 and Fanconi anemia (FA) pathway genes (Figure 2A).66 To generate gene-level scores, we 

then averaged all sgRNA-level GI scores targeting the same genes (Table S3).  

 

A major advantage of studying genetic interactions in high-throughput is the ability to use model-derived 

expectations for combinatorial phenotypes. Compared to low-throughput analyses where expected phenotypes 

are defined only by the two component perturbations, modeling expands the range of observable interaction 

measurements.39,48,67 To clarify this point, consider that our growth-based measurements have an intrinsic 

limit, complete dropout. As the phenotypes of component perturbations become more severe, a correction must 

be applied to calculations of expected combinatorial phenotypes to prevent them from dropping below this 

limit. Plotting phenotypes associated with three sgRNAs for which a simple linear fit properly modeled our 

reference data illustrates this point (Figure S3A). These data show a relationship between the sgRNA 

phenotypes of each query guide and the degree of correction (model slope) that must be applied, with guides 

having more severe phenotypes (e.g., ZNF574) requiring more correction. Expanding this analysis showed that 

calculating expected combinatorial phenotypes from just the component parts (e.g., adding them together) 

generally requires no correction only when one of those phenotypes is close to zero (Figure S3B). Indeed, 

applying this simpler approach to our data and averaging all resulting genetic interaction scores for each gene 

showed stronger expected combinatorial phenotypes than with a model framework, resulting in a bias towards 

calling buffering interactions which increased as gene growth phenotypes became more severe (Figure S3C). 

Use of a modeling framework corrects for this effect and, consistent with previous observations,48 we found 
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that a quadratic model outperformed a linear model for 86% of query sgRNAs (F-test), further highlighting 

the advantage of high-throughput analysis.  

 

Altogether, we recovered 143,354 gene-level GI scores from our reference condition, representing 139,259 

novel GI measurements compared to previous analysis,48 and 145,500 from PARPi-treated cells (>97% of 

targeted gene pairs in each case; Table S3). Our data thus dramatically increases existing knowledge of genetic 

interactions relevant to both conditions. Providing confidence in these measurements, we validated several in 

low-throughput and found a strong correlation with screen values (Figure S3D). Additionally, to guide 

exploration of these data, we examined and annotated technical features associated with each measurement 

(Figures S3E-S3I; Table S3; Methods). Finally, using permutation testing, we determined the null distributions 

of these GI scores and identified 1358 and 1676 high-confidence buffering and synergistic interactions (local 

FDR ≤ 0.01) in the reference and PARPi conditions, respectively, as well as 10,139 and 11,976 significant 

interactions (FDR ≤ 0.05; Table S3; Methods). We call these significant interactions γGIs and τGIs 

(distinguishing from γGI and τGI scores, which refer to measurements regardless of significance).  

 

High-resolution mapping of genome stability genes and related processes 
 
Our GI library measures >1.3 million sgRNA-level interactions per condition but because genetic interactions 

with a buffering or synergistic effect are rare,68 the vast majority of our measurements were not expected to 

show such relationships. Replicate sgRNA- and gene-level interaction scores were thus only mildly correlated 

when evaluated altogether (Figures 2B, S4A, and S4B). Nevertheless, confirming that our data contained 

reproducible signals, replicate correlations sharply increased when restricted to only significant or high-

confidence interactions, which appropriately represented a minority of measured scores (0.9% high-confidence 

γGIs, 7.1% significant γGIs; 1.1% high-confidence τGIs, 8.2% significant τGIs). Genetic interactions are also 

not evenly distributed across genes; indeed, across established networks, a small number of genes have been 

found to have an unusually high number of interactions.33 These genes often encode conserved, 

multifunctional, highly expressed and abundant proteins.39 A handful of genes in our dataset demonstrated 

many more γGIs and τGIs than average; specifically, the 5% most highly interacting genes were involved in 

33% of all significant reference interactions (3,341) and 34% of all significant PARPi interactions (4,084). 

Weak correlation between the number of significant interactions per gene and growth phenotypes also 

suggested that highly interacting genes may be more likely than lowly interacting genes to be essential for 

growth in the corresponding condition (Figures S4C and S4D).  
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Another advantage of measuring genetic interactions in high-throughput is the ability to explore genetic 

interaction profiles; i.e., arrays of interaction measurements made for one gene across many others. These 

profiles serve as quantitative representations of gene function and, when evaluated at scale, can identify groups  
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Figure 2. Genetic interactions determined from reference growth (γ) phenotypes reveal a complex 
interaction landscape among functional DNA repair modules. 
 
(A) Example of quantifying sgRNA-level genetic interactions using model-defined expected phenotypes (red) based on the 
relationship between individual sgRNA phenotypes and the corresponding combinatorial phenotypes with one (BRCA1-targeting) 
query sgRNA.  
(B) Gene-level γGI score measurements for independent replicates. Dotted lines indicate significance bounds corresponding to FDR 
≤ 0.05. Pearson correlations are given for all interactions and for high-confidence interactions.  
(C) Gene-level γGI profile correlations for independent replicates. Fanconi anemia pathway cluster from E was used to define gene 
pairs in blue. Correlations as in B.  
(D) Distribution of γGI profile correlations by confidence. Gray, yellow, and teal indicate confidence in interaction call as determined 
by STRING evidence score (Methods); red indicates high-confidence interactions identified from GI screen.  
(E) Reference growth (γGI) interaction map for genes with at least four high-confidence (local FDR ≤ 0.01), supported (≥ 4 
contributing scores) interactions. Medium and high stringency clustering (Methods) indicated with color bars. Asterisks indicate 
genes with a promoter near that of another gene in the same cluster (< 1 kb) and may represent CRISPRi artifacts. 
 
 
of genes with broadly similar functions and determine how those groups, or gene “modules”, interact. 

Correlations between gene-level γGI profiles from our data were highly reproducible, particularly among gene 

pairs with high-confidence interactions, and tended to be higher between gene pairs encoding physically 

interacting proteins (Figures 2C and 2D; Methods). Notably, while not independent from GI scores, these 

profiles do provide complementary information. For example, while only a minority of gene pairs associated 

with the FA pathway demonstrated significant γGI scores (22 of 91), many FA interaction profiles were among 

the most highly correlated of any pairs in our library (Figure 2C). Our data can thus be used in multiple ways 

to quantify functional and physical relationships, and highlighting the potential for discovery, clustering 

interaction profiles from our reference data revealed many groups of functionally related genes (Table S4). 

 

To aid exploration of gene clusters within our data, we subset our reference data to include only genes (200) 

with an excess number of supported, high-confidence gene-level γGI scores, which we defined as ≥ 4 such 

scores, the median number among genes with at least one (Figure 2E; Methods). This subsetting captured 73% 

of high-confidence γGIs (996) and maintained sufficient information to obtain clustering similar to the full 

data set while also reducing information density for visualization (Figure S4E). High stringency clustering 

identified seven clusters, including ones composed of RAD51 accessory genes, FA pathway genes, S-phase 

checkpoint genes, DNA end resection genes, and one with genes loosely connected through roles in repair 

after replication stress. Reducing stringency expanded the number of genes within these modules and added 

three groups, including one containing genes associated with the BLM dissolvasome complex. Altogether, 

clusters revealed interrelatedness among and within gene modules. Genes within the FA pathway cluster, for 

example, were largely synergistic with those in the replication-associated repair cluster, while structure within 

the FA cluster highlighted functional differentiation among member genes, including separating out FAAP24 

(C19orf40) and FANCM, reflecting the modularity of FA subcomplexes.69–71 Notably, we also observed 
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interactions between groups of genes not primarily associated with DNA repair, for example, buffering 

relationships between EGFR and Ras-MAPK signaling genes,72 and interactions between individual genes and 

modules, such as a novel synergistic relationship between COP9 signalosome genes and the kinetochore-

associated CENPF (Figure 2E; Tables S3 and S4).73 Clustering applied to our complete reference map 

identified 24 total modules (Table S4), forming a complex network of interactions across a range of biological 

processes, but with specific focus on DNA repair mechanisms relevant to normal cell growth. 

 

Quantifying a dense set of functional relationships among homologous recombination genes 

 

One of the gene modules identified within our subsetted reference map, the RAD51 accessory cluster, was 

composed primarily of genes with accessory functions in homologous recombination (Figure 2E). HR is a 

complex repair process that uses template-dependent DNA synthesis to repair broken DNA and rescue stalled 

replication forks.74 The RAD51 recombinase, which polymerizes on single-stranded DNA exposed at DNA 

lesions, promotes the search for and invasion of an intact homologous template. This protein is therefore 

essential for homologous recombination but, indicative of the complexity of HR, does not act alone. Rather, 

RAD51 is aided by various accessory proteins. High stringency clustering of our subsetted γGI profiles isolated 

genes encoding such proteins with remarkable precision. Within a single module, we observed genes whose 

encoded products (a) recruit RAD51 to breaks (BRCA2, PALB2);75 (b) facilitate and stabilize RAD51 

nucleoprotein assembly (RAD51B, RAD51C, RAD51D, XRCC2, SWI5, SFR1, RAD54L);76–79 (c) stabilize 

filaments of RAD51 and its paralog DMC1 in meiosis (PSMC3IP, MND1);80,81 (d) promote formation of the 

three-stranded displacement loop (D-loop) formed after invasion of the homologous DNA template 

(PSMC3IP, MND1, RAD54L, WDR48);82,83 and (e) facilitate RAD51 removal after D-loop formation 

(RAD54L).84  

 

Demonstrating the relatedness of genes within this cluster, many were observed to encode subunits of different 

protein complexes, including the SWI5-SFR1,77,85 PSMC3IP-MND1,86 and BCDX2 (RAD51B, RAD51C, 

RAD51D, XRCC2) complexes.87 Examination of experimentally validated physical interactions (from 

STRING)88 among cluster genes, however, revealed far less relatedness then our γGIs, which connected 72% 

of gene pairs with a significant, negative γGI (56 of 78), overall suggesting wide-spread, functional redundancy 

between RAD51 accessory proteins and complexes (Figures 3A and 3B). Among these interactions were γGIs 

between RAD54L and PSMC3IP-MND1 (Figure 3C), two of the ten strongest synergistic relationships in the 

entire dataset (Table S3). These interactions were of particular interest as PSMC3IP and MND1 have only 

recently been implicated in somatic recombination.89–92 Validation experiments in two cell lines (K562 and 
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diploid, non-transformed RPE1 cells) confirmed that, while individual loss of PSMC3IP, MND1, or RAD54L 

minimally affects cell growth, combined loss of RAD54L with either PSMC3IP or MND1 causes strong growth  

 

 
 
Figure 3. Analysis of a dense set of genetic interactions among RAD51 accessory genes. 
 
(A) Network of genetic interactions among RAD51 accessory genes. Edges indicate significant (thin) and high-confidence (thick) 
interactions; all interactions are synergistic. 
(B) Network of physical interactions among RAD51 accessory genes. Edges indicate medium- (yellow), high- (yellow), and highest-
confidence (teal) interactions defined by STRING (Methods).  
(C) Observed reference growth (γ) phenotypes for MND1 (yellow), PSMC3IP (red), RAD54L (green), as well as observed (black) 
and model-defined, expected combinatorial phenotypes (gray). sgRNA-level phenotypes (individual or combinatorial) contributing 
to each gene-level phenotype are shown as dots. 
(D-E) Growth-based validation experiments in K562 CRISPRi (D) and RPE1 CRISPRi (E) cells for MND1, PSMC3IP, and RAD54L 
interactions (Methods). Experiments were performed in triplicate, and in each replicate, expected combinatorial phenotype (double) 
were defined as the sum of the individual contributing phenotypes. Lines indicate replicate averages. Colors as in C. 
(F) Genetic interactions from reference map (γGI) among genes within an expanded RAD51 accessory module and the BLM 
dissolvasome complex. Included genes were identified by a medium stringency clustering of all genes in the GI library (Methods; 
Table S4). The lower left triangle of the heatmap shows only significant interactions, with the strength of significance indicated by 
size.  
(G) Roles of RAD51 accessory factors and BLM dissolvasome complex.  
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defects (Figures 3D, 3E, and S4F), supporting a role for PSMC3IP-MND1 in somatic recombination and 

demonstrating a strong relationship with RAD54L, a DNA-dependent ATPase that regulates RAD51 at the 

different stages of filament stabilization, D-loop formation, and removal from paired strands.93  

 

We next examined our expanded cluster of RAD51 accessory genes from less stringent clustering of our full 

data set (Figure 3F; Table S4; Methods). Among genes added to the module from this analysis were two 

associated with the human Shu complex, SWSAP1 and SPIDR. Similar to other RAD51 accessory factors, the 

Shu complex promotes RAD51 filament assembly, but unlike others, these factors support recombination 

between homologous chromosomes and not intra-chromosomally.94,95 Indicative of a difference in function, 

we observed few significant interactions between SWSAP1 or SPIDR and other RAD51 accessory genes; 

however, examining full γGI profiles revealed buffering interactions with BLM dissolvasome associated 

genes, similar to other RAD51 accessory cluster genes (Figures 3F, S4G, and S4H).96,97 The BLM 

dissolvasome processes recombination intermediates, and loss of the complex leads to increased sister 

chromatid exchanges, interhomolog crossing over, and cellular toxicity.98 Physical and functional interactions 

between the BLM helicase and specific RAD51 accessory factors (RAD51D, XRCC2, XRCC3, SWS1, 

SWSAP1, SPIDR, RAD54L) have been reported previously,95,99–103 with buffering interactions attributed to a 

combination of promoting and forestalling the creation of toxic recombination intermediates (Figure 3G). Our 

data highlights such antagonism between cluster genes. Moreover, novel relationships with SMC5-SMC6 

complex components SMC6 and NSMCE3 (NDNL2)104 support a role for this complex in limiting toxic 

recombination intermediates alongside the BLM dissolvasome in human cells. Altogether, the known and 

unknown relationships revealed by these results demonstrate the depth of functional information provided by 

our data. 

 

Differential genetic interactions reveal a complex landscape of PARPi-induced damage 

 

DNA repair mechanisms respond to DNA damage in a lesion-specific way,54 with dedicated sensors and 

effectors activated by various chemical and structural irregularities. Assuming that lesions arising during 

normal cell growth differ from those induced by genotoxic stress in either form or frequency, then genetic 

interactions among DNA repair genes should also be different. To quantify interactions that differ in the 

presence and absence of niraparib, we initially turned to PARPi sensitization (ρ) phenotypes and applied a 

model-based framework as described above for γ and τ phenotypes. Compared to γ phenotypes, however, these 

models generally had poorer explanatory power, which we attribute primarily to the increased variability from 

using two endpoint measurements (Figures S2B and S2C), though sgRNAs with strong individual ρ 
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phenotypes were particularly susceptible to poor model performance and also contributed to overall model 

degradation (Methods). Moving away from using ρ phenotypes and taking inspiration from approaches applied 

in yeast,34,38,51 we defined differential interaction scores, termed νGI scores, for each sgRNA pair by 

subtracting its γGI scores from the corresponding τGI scores. We then averaged those values to produce νGI 

scores for each gene pair (Table S3; Methods). Compared to τGI scores called from PARPi-treated cells alone, 

νGI scores isolate PARPi-specific effects from those of gene perturbation under reference conditions in a way 

analogous to the underlying phenotypes, where ρ phenotypes separate effects due to PARPi sensitization 

(Figure S2A). 

 

As with γGI and τGI measurements, we used permutation testing to assign significance to νGI scores, defining 

“hit” νGIs, or simply νGIs, as those with FDR ≤ 0.2 to account for increased noise from comparing across 

conditions (Methods). These calculations identified 960 νGIs, 439 positive and 521 negative (Figure 4A; Table 

S3). Examining these differential interactions, we found that the number of νGIs per gene moderately 

correlated with the magnitude of sensitivity or resistance to PARPi (Figure S4I), indicating that genes with 

many νGIs are more likely to be central to PARPi response. Affirming this observation, genes implicated in 

preventing the formation of PARPi sensitizing DNA lesions (e.g., DNPH1, POLB, LIG3)59,105–107,20 or 

promoting repair of the toxic consequences of PARP trapping (e.g., FANCA, RBBP8, RAD18)108–110 were 

among the most highly interacting genes in the νGI space.  

 

Next, guided by information from all measurements, we classified νGI hits into four types: “novel”, “masked”, 

“reversed”, or “modified” (Figure 4B).51 Novel interactions were those with a significant τGI score but no 

significant γGI score. These interactions quantify relationships observed only in the presence of PARPi. 

Masked interactions were the opposite of novel, meaning that they quantified relationships disrupted by the 

presence of PARPi. Reversed interactions were those with significant γGI and τGI scores of opposite signs 

such that the nature of those relationships (i.e., buffering or synergistic) flipped across conditions, and modified 

interactions were those with significant γGI and τGI scores of the same sign but modified magnitude. In 

addition to these classifications, many gene pairs demonstrated significant γGI and τGI scores that were 

unchanged across conditions according to our thresholds. We interpret these “unmodified” interactions as those 

not affected by the presence of PARPi. Finally, to aid exploration of interactions that were not νGI hits but for 

which either a significant γGI or τGI score was observed, we added categories of “possibly novel”, “possibly 

masked”, and “possibly reversed” (Figure S5A; Tables S3 and S5). 
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For several genes, examining νGI scores across all partner genes allowed inference of gene function in relation 

to PARP inhibition (Figure 4C). A clear example was PARP1, a molecular target of niraparib. Loss of PARP1 

prevents PARPi-induced trapping of the encoded enzyme on DNA and thus forestalls cellular toxicity. Any 

perturbation conferring sensitivity to PARPi through PARP1 trapping should therefore have a buffering 

interaction with PARP1 in the presence of the drug but not necessarily in the absence. Suggesting that such 

perturbations were common in our library, an overwhelming number of νGIs associated with PARP1 were 

positive and novel (92 of 135). Moreover, we found that τGI scores associated with PARP1 were inversely 

 

  
 
Figure 4. Differential interaction scores reveal context-dependent gene-gene interactions. 
 
(A) Topology of γGI and τGI scores with differential interactions indicated (νGI, pink). Dotted lines indicate significance bounds 
corresponding to FDR ≤ 0.05. Letters indicate regions corresponding to different interaction categories defined in B. 
(B) Schematics of νGI categories. A small number of νGI hits were uncharacterized (21), with no significant γGI or τGI (Methods). 
(C) Topologies of γGI and τGI scores for individual genes. Points associated with the indicated gene are colored by the PARPi 
sensitization phenotype (ρ) of the corresponding partner gene; points not associated with the indicated gene are gray; points 
representing scores of the indicated genes paired with PARP1 are black (excepting the PARP1 panel). Dotted lines indicate 
significance bounds corresponding to FDR ≤ 0.05 for γGI and τGI, with the diagonal set indicating bounds defining νGI hits at FDR 
≤ 0.20. Pearson correlations are shown between individual ρ phenotypes and τ interaction scores.  
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correlated with the PARPi sensitization (ρ) phenotypes of partner genes. A second example was DNPH1, 

which, in contrast to PARP1, had mainly novel and negative νGIs (30 of 36; Figure 4C). The interaction 

topology of DNPH1 showed little connection to other library genes during normal growth but many synergistic 

relationships in the presence of PARPi, consistent with the characterized function of DNPH1 in forestalling 

PARPi-trapping by preventing incorporation of aberrant nucleotides into the genome. These observations 

further suggest that such nucleotides, on their own, do not elicit replication stress.59 Notably, τGI scores 

associated with DNPH1 also correlated with the PARPi sensitization of partner genes, which, as illustrated by 

these two examples, was often true for novel interaction enriched genes (Table S5). In other examples of νGI 

topologies, we observed ones enriched for other types of interactions, such as BRCA2 with masked interactions 

across S-phase checkpoint genes (i.e., RAD17, HUS1, RAD9A, and RAD1), RIF1 with unmodified interactions 

with FA pathway genes, and more complex topologies indicative of a diversity of functional relationships, 

such as FANCA. Examining these topologies also revealed specific interactions of particular interest, several 

of which we explore in greater depth below. 

 

Combined loss of RNase H2 and PARP2 synergistically kills cells with and without PARPi 

 

While many PARP1 associated νGIs could be attributed to loss of PARP1 trapping, as described above (Figure 

4C), we observed relatively few interactions for PARP2, which is responsible for ~10% of cellular break-

induced PARylation relative to the ~90% from PARP1 (Figure S5B). 111 Because the catalytic domains of 

PARP1 and PARP2 share a high degree of homology, most PARP inhibitors, including niraparib, have a 

similar potency against both enzymes.17,112 Niraparib has also been reported to retain both PARP1 and PARP2 

on DNA, with the effect on PARP2 described as PARP1-independent.113 Mechanistic inferences from the 

apparent lack of PARP2 associated GIs would require careful consideration of the relationship between gene 

dosage, PARylation, and enzyme trapping, but examination of the νGI topology nevertheless revealed 

interactions of relevance to both enzymes, specifically unmodified GIs between PARP2 and three genes 

previously connected to PARP1, namely RNASEH2A, RNASEH2B, and RNASEH2C (Figures 5A-5C; Table 

S3).61  

 

RNASEH2A, RNASEH2B, and RNASEH2C encode three subunits of RNase H2, an enzymatic complex 

responsible for removing misincorporated ribonucleotides and RNA/DNA hybrids from the genome.114 A 

synthetic lethal chemical-genetic interaction was previously demonstrated between loss of this complex and 

PARPi.61 This interaction was attributed to toxicity from trapping PARP1 on DNA lesions generated in the 
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Figure 5. Combined loss of RNase H2 and PARP2 synergistically kills cells with and without PARPi. 
 
(A) Topology of γGI and τGI scores highlighting interactions between RNASEH2A, RNASEH2B, and RNASEH2C with PARP1 
(yellow), PARP2 (green), or themselves (red). Dotted lines as in Figure 4C. 
(B-C) Phenotypes (γ, τ, ρ) associated with single or combinatorial perturbation of RNASEH2C and PARP1 (B) or RNASEH2C and 
PARP2 (C). Model-defined, expected combinatorial phenotypes are shown for γ and τ.  
(D) Previously established model for the chemical-genetic interactions between RNase H2 and PARPi.61 
(E-F) Validation of PARP1:RNASEH2C (top) and PARP2:RNASEH2C (bottom) interactions in K562 CRISPRi (E) and RPE1 
CRISPRi (F) cell lines. As in Figure 3D. 
(G) Validation of PARP2:RNASHE2C interaction in two PARP2 knockout RPE1 CRISPRi clones treated with vehicle (DMSO, top) 
or PARPi (bottom). As in Figure 3D. 
(H) PARP2 and Rnase H2 are synthetic lethal due to parallel, redundant function. 
 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2023. ; https://doi.org/10.1101/2023.08.19.553986doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.19.553986
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

16 

absence of RNase H2 at sites of ribonucleotide misincorporation (Figure 5D). Consistent with this model, we 

found that loss of RNase H2 sensitized cells to niraparib (Figure 5B). We also observed a negative, synergistic 

relationship between RNASEH2C and PARP1 during normal growth, as would be expected if PARP1 

contributes to repair of RNase H2-suppressed lesions. Further, reflecting the switch to a toxic relationship 

between the presence of PARP1 and loss of RNase H2 in the context of PARP inhibition, the interaction 

between these genes reversed with niraparib (Figures 5A and 5B). By contrast, interactions between PARP2 

and RNase H2 genes were unmodified by niraparib, such that the relationship between these genes appeared 

unchanged by the inhibition and/or trapping of either enzyme (Figures 5A and 5C).  

 

Focused experiments in two different cell lines (K562 and RPE1) validated the γGI results from our screen, 

specifically confirming synergism between RNASEH2C and PARP2, as well as a mild interaction of 

RNASEH2C with PARP1 (Figures 5E, 5F, S5C, and S5D). Notably, efficient repression by PARP1-targeting 

sgRNAs showed that the weaker interaction observed for PARP1 was not due to insufficient knockdown 

(Figure S5E). However, as discussed above (Figure S3C), since PARP1 and RNASEH2C individually 

demonstrated cell growth phenotypes, the additive approach used here potentially overestimated the expected 

combinatorial phenotypes and thus lessened the calculated interaction strength (Methods). We next reasoned 

that, due to partial knockdown from CRISPRi, the synergistic increase in cellular toxicity from loss of PARP2 

and RNase H2 could represent either parallel loss of redundant functions or exacerbated loss of the same 

activity. Consistent with this logic, genes encoding subunits of RNase H2 demonstrated unmodified 

interactions with each other, probably due to synergistic destabilization of the complex (Figure 5A).114–116 To 

distinguish between pathway architectures, we generated two PARP2-knockout clones in RPE1 cells and 

evaluated growth with and without perturbation of RNASEH2C (Figures 5G and S5F). Here again, we observed 

a synergistic increase in cellular toxicity, showing the related functions of PARP2 and RNase H2 either work 

in parallel or do not completely overlap (Figure 5H). These data showcase the complex roles of PARP genes 

in supporting cell growth and implicate PARP2 in an important, but as yet uncharacterized, cellular process 

with RNase H2. 

 

Differential genetic interactions extensively connect AUNIP to the PARPi response 

 

While PARP1 had by far the largest number of differential interactions in our dataset (135 νGIs), a second 

gene, AUNIP, stood out both in terms of number of νGIs (57, 8 positive, 49 negative) and strength of those 

measurements; indeed, among the 26 gene pairs with the strongest negative νGIs (top 5%), AUNIP was 

involved in 12 (46%) (Figures 6A and 6B). We interpret the magnitude of νGIs to reflect the extent to which 
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individual functional relationships differ between conditions. As such, observation of many strong νGIs, 

backed by a relative dearth of unmodified interactions (7), suggests that in relation to other genes, the role of  

AUNIP changed dramatically upon PARP inhibition. Even compared to genes with highly similar PARPi  
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Figure 6. AUNIP has a PARPi-specific buffering interaction with the BRCA1-A complex. 
 
(A) Distribution of νGI scores for all gene pairs (top) and for pairs involving RAD54L, FANCA, or AUNIP. Dotted line corresponds 
to the top 5% of strongest negative νGI hits; rug plots show individual interactions in each distribution. Individual gene ρ phenotypes 
are shown in the top right, with black dots corresponding to individual contributing sgRNA ρ phenotypes. 
(B) Topology of γGI and τGI scores for AUNIP. As in Figure 4C.  
(C) Topology of γGI and τGI scores for AUNIP with enriched complexes indicated (Table S2; Methods). 
(D) Validation of interaction between AUNIP and BRCA1-A complex genes in K562 (top) and RPE1 (bottom) cell lines by targeted 
dual-sgRNA CRISPRi screen. Reference growth γ and drug sensitization ρ phenotypes were calculated for each treatment arm as in 
the full GI screen (Methods). Expected combinatorial phenotypes were determined by adding individual contributing phenotypes. 
Individual measurements from dual-sgRNA pairs contributing to each gene-level phenotype are shown by circles. 
(E) γGI, τGI, and νGI scores between AUNIP, the BRCA1-A complex, Fanconi anemia-associated genes, and genes within the 
53BP1-Shieldin-CST pathway. BRCA1-A complex and 53BP1-Shieldin-CST pathway genes were identified through literature 
review, while FA associated genes were determined by unbiased clustering performed in Figure 2E. ρ phenotypes for each gene are 
displayed below, with individual contributing sgRNA phenotypes shown by circles. 
(F) Model of antagonistic relationship between AUNIP and BRCA1-A complex operating in parallel to more canonical DNA repair 
genes. Gene names in gray were not included in our map. 
 
 
sensitization phenotypes, AUNIP had a larger number of strong νGI (Figure 6A). Thus, AUNIP stands out 

among PARPi-sensitizing genes as being particularly context-specific. Similar to PARP1 and DNPH1 νGIs 

topologies (Figure 4C), many AUNIP-associated νGIs were novel (43, 75%) and τGI scores were correlated 

with the single-gene ρ phenotypes of partner genes (Figure 6B); however, different than the inferred function 

of PARP1 and DNPH1, we reason that the many novel νGIs observed for AUNIP are likely explained by a role 

in context-specific repair, as AUNIP demonstrated high-confidence γGIs with several FA genes (7).  

 

To more systematically explore AUNIP-interacting genes, we identified protein complexes enriched among 

those genes (73 total; Figure 6C; Table S2; Methods). These enrichments confirmed relationships with FA 

pathway genes—some unmodified and some with greater synergism in presence of PARPi (9 νGIs)—and 

established connections with the ATR-ATRIP, 9-1-1 checkpoint, and BRCA1-A complexes. Interactions with 

the BRCA1-A complex, one of several cellular complexes formed with BRCA1, were of particular interest. 

AUNIP showed novel and possibly novel νGIs with most BRCA1-A complex genes targeted by our library 

(i.e., buffering τGIs with no γGI), specifically ABRA1 (FAM175A), RAP80 (UIMC1), BABAM1 (MERIT40), 

and BRCC3 (Figures S6A and S6B). Notably, this trend did not hold for BRCA1, which, similar to other FA 

genes, instead demonstrated a negative τGI with AUNIP (Figure 6C).117 We next performed a set of focused, 

growth-based experiments in K562 and RPE1 cells. Resulting phenotypes, which were reproducible across 

replicates and related conditions (Figures S6C and S6D), confirmed that loss of BRCA1-A genes buffered 

PARPi sensitivity caused by loss of AUNIP (Figure 6D), even with a wider range of single-gene phenotypes 

observed in RPE1 cells.118,119 Additionally, further demonstrating context-dependence of gene function, 

perturbation of AUNIP alone sensitized cells to all three PARP inhibitors but not hydroxyurea, which causes 

replication fork stress through a different mechanism (Figure 6D). 
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A reasonable explanation for the buffering interactions between AUNIP and BRCA1-A genes is functional 

antagonism between promoting and suppressing repair at specific PARPi-induced DNA lesions. Although only 

minimally characterized, AUNIP has been shown to recruit CtIP to DNA lesions to promote DNA end 

resection,120 and the BRCA1-A complex has been separately reported to inhibit that process,121,122 with loss of 

complex genes resulting in an increased accumulation of CtIP-dependent nuclease activity at breaks. An 

antagonistic relationship between these genes could explain both phenotypes. We note that such relationships 

are canonically involved in regulating DNA repair processes. For example, as mentioned above, BRCA1 

promotes DNA end resection,123 but when absent, gene products from the 53BP1-Shieldin-CST pathway 

prevent resection and potentiate the toxicity of PARP inhibitors.3–12 Accordingly, 53BP1-Shieldin-CST genes 

in our dataset124–127 demonstrated buffering τGIs and positive νGI scores with BRCA1, as well as FA pathway 

genes (Figure 6E). Examining GIs among these more canonical PARPi response factors, and with AUNIP and 

BRCA1-A genes, revealed three broad observations: first, 53BP1-Shieldin-CST genes minimally interacted 

with AUNIP in the νGI space, where interactions with RIF1, which appears to have secondary function in this 

context, and the upstream regulator 53BP1 were the primary νGI hits; second, positive νGI scores of BRCA1-

A complex genes (excluding BRCA1) with AUNIP were generally stronger than those between the same 

BRCA1-A complex genes and the FA pathway set; third, while we observed many negative νGI hits between 

AUNIP and FA/BRCA1 genes (10 of 14) there were relatively few when looking at relationships of the latter 

set of genes with themselves (2 of 91). Altogether, these observations suggest that AUNIP and BRCA1-A 

control repair of specific PARPi-induced lesions similar to, but distinct from, more canonical PARPi response 

factors (Figure 6F). 

 

 

DISCUSSION 

 

Here we present a large-scale analysis of differential genetic interactions in human cells. Using a DNA-repair 

focused CRISPRi sgRNA library targeting 147,153 gene pairs, we generated two static GI maps, a reference 

map from normally growing cells and one from cells exposed to niraparib. Next, we developed the analytical 

framework to compare these maps, thereby defining how gene-by-gene interactions change in the presence of 

PARPi-induced stress. These results reveal the complex landscape of coordinated gene functions required for 

genome stability maintenance normally and under one condition of genotoxicity. From this landscape, we 

reveal individual mechanistic insights and realize three broad achievements. 
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First, we show that measuring genetic interactions among similar genes can produce a high-resolution map of 

related processes. Specifically, despite biased representation of gene function within our library, we resolved 

functionally distinct gene modules, exploration of which then allowed inference of functional relationships at 

multiple levels; i.e., between and within associated pathways and complexes. A clear example of this 

informational hierarchy is provided by our analysis of RAD51 accessory genes. Comprehensive inclusion of 

these genes within our map captured a remarkable level of within-module information, most predominantly 

functional redundancy between factors responsible for assembly, stabilization, and function of the RAD51 

filament. Simultaneously, interactions between these genes and ones within a separate module (i.e., BLM 

dissolvasome-associated genes) highlighted a general buffering relationship between more disparate, but still 

generally related, gene functions. Such informational density offers a rich resource for mechanistic exploration. 

To that end, we highlight that our data allows both the identification of specific gene-by-gene interactions and 

placement of those interactions within a broader context. For example, on their own, the intriguingly strong 

interactions between RAD54L and PSMC3IP-MND1 warrant further study, but interactions between the latter 

and other RAD51 accessory genes also place those particular genes at the center of a process to which they 

have only recently been linked, somatic recombination.  

 

Second, we developed a framework to evaluate differential genetic interaction networks in mammalian cells. 

Applying a categorization framework developed for yeast,51 we then cataloged context-specific roles for a host 

of genes after exposure to PARPi-induced cell stress. The utility of quantifying and categorizing these 

interactions at scale and across conditions is illustrated by the many context-specific interactions identified for 

AUNIP. This gene demonstrated relatively few interactions in our reference map, but together with a strong 

PARPi sensitization phenotype, the unusual number of AUNIP associated νGIs suggest a central role in 

managing PARPi-induced stress. Moreover, by exploring interactions between AUNIP and well characterized 

DNA repair genes, we proposed a model wherein AUNIP-promoted repair is suppressed by the BRCA1-A 

complex. Moving forward, we expect that our framework for mapping differential GIs will be applied across 

many conditions, within and outside of the field of DNA repair. Further illustrating the power of our chosen 

condition, though, the genetic network underlying PARPi response is itself context specific, with different 

gene-gene relationships expected in different genetic backgrounds. Applying our custom GI library tailored to 

the study of PARP inhibitors in different cell lines and cancer models will therefore also be instructive. 

 

Third, we establish an important resource with clinical value. PARP inhibitors, including niraparib, are 

clinically approved drugs used to treat ovarian, breast, pancreatic, and prostate cancers. The identification of 

genes that modulate desired and undesired cellular activities of these drugs are thus of great interest. Our work 
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provides a resource for exploring such genes across a wide range of genetic backgrounds; indeed, from one 

perspective, our differential GI map represents many parallel single-perturbation PARPi screens performed 

across 543 genetic backgrounds. Additionally, with respect to insights of potential clinical relevance, we found 

genetic interactions with PARP2. Hematological toxicities, such as thrombocytopenia, are some of the most 

common toxicities observed among patients treated with PARPi128–131 and are potentially exacerbated by 

PARP2 inhibition given its role in various hematopoietic processes.132–135 Our data identifies functional 

relationships with PARP2 that support cell viability, thus providing key insight for future study of PARP2 

mechanisms. 

 

In sum, we have shown that measuring differential genetic interactions at large-scale can provide a remarkably 

deep view of cellular processes that respond to changing stress environments. We expect that insights from the 

PARPi and genome stability interaction networks presented here will serve as a valuable resource for 

hypothesis generation and validation in future research. To aid such use of this resource, we have developed a 

web application for interactive exploration of the data (https://parpi.princeton.edu/map). 
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METHODS 
 
RESOURCE AVAILABILITY 
 
Lead contact. Further information and requests for resources and reagents should be directed to and will be 
fulfilled by the Lead Contact, Britt Adamson (badamson@princeton.edu). 
 
Material availability. Plasmids and dual-sgRNA CRISPRi libraries (lDS001 and lYJ001) generated in this 
study will be deposited to Addgene. 
 
Data and code availability. Processed data from primary genome-scale screen and genetic interaction screen 
are available as supplementary tables to this manuscript. Raw sequencing data from all screens will be 
deposited to the NCBI GEO repository. Scripts used to process data from the GI screen using R, as well as to 
reproduce manuscript figures, will be available on Github at 
https://github.com/simpsondl/PARPi_interactions. Data from both the reference and PARPi genetic interaction 
screens can also be accessed interactively through our accompanying web application located at 
https://parpi.princeton.edu/map.  
 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 
 
Cell lines used in this study were Lenti-X 293T, K562 CRISPRi, and RPE1 CRISPRi cell lines. K562 CRISPRi 
and RPE1 CRISPRi cells expressing dCas9-BFP-KRAB (pHR-SFFV-dCas9-BFP-KRAB; Addgene, 46911) 
were described previously.136 Lenti-X 293T cells were purchased from Takara (#632180). K562 CRISPRi and 
RPE1 CRISPRi cell lines were authenticated by analysis of short tandem repeats as exact matches to the 
corresponding line, CCL-243 (K562, female) and CRL-4000 (hTERT RPE1, female) from ATCC. Lenti-X 
293T cell lines were authenticated by analysis of short tandem repeats as a similar match to the corresponding 
line CRL-3216 (293T) from ATCC. Cells tested negative for micoplasma. K562 CRISPRi cells were grown 
in RPMI 1640 with L-glutamine and 25 mM HEPES (Corning or Gibco) supplemented with 10% FBS (Gibco 
#10437-028), 100 U/mL penicillin, 100 μg/mL streptomycin, and 0.292 mg/mL L-glutamine. 293T cell lines 
were grown in DMEM with 4.5 g/L glucose and sodium pyruvate without L-glutamine (Corning) 
supplemented with 10% FBS (Gibco #10437-028), 100 U/mL penicillin and 100 μg/mL streptomycin. RPE1 
CRISPRi cells were grown in DMEM/F12 with L-glutamine and 15 mM HEPES (GIBCO) supplemented with 
10% FBS (Gibco #10437-028), 100 U/mL penicillin and 100 μg/mL streptomycin. Cells were grown at 37°C 
with 5% CO2 in standard tissue culture incubators. Niraparib, veliparib, talazoparib, and HU were dissolved in 
DMSO. 
 
METHOD DETAILS 
 
Plasmid construction. Our dual-sgRNA CRISPRi library was built based on two sgRNA expression vectors 
(pJL051 and pJL052) which were modified from published sgRNA lentiviral plasmids (pLG_GI2 and 
pLG_GI3).48 Modifications were made by replacing the sequence between restriction sites AvrII and NsiI in 
pLG_GI2 with intended restriction sites (NsiI and AscI) and by replacing the sgRNA cassette between XhoI 
and BamHI in pLG_GI3 with a new cassette containing a different sgRNA constant region and the intended 
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restriction sites (SbfI and AscI) at the 3′ end. The resulting sgRNA expressing cassettes have a modified mouse 
U6 promoter (pJL051) or a modified human U6 promoter (pJL052) followed by a sgRNA protospacer and a 
constant region CR1 (pJL051) or CR3 (pJL052; Figure S1B).137 Both vectors have BlpI and BstXI restriction 
sites flanking the sgRNA sequence for cloning. The vectors also co-express the puromycin resistant gene and 
BFP from an EF-1α promoter. 
 
For the arrayed validation experiments, individual sgRNAs were delivered using pU6-sgRNA EF1Alpha-puro-
T2A-GFP (Addgene, 111596)48 or pU6-sgRNA EF1Alpha-puro-T2A-BFP (Addgene, 60955).55  
 
Virus preparation. Lentivirus was produced in Lenti-X 293T cells by co-transfection of transfer plasmids 
(single or library) and packaging plasmids for expression of HIV-1 gag/pol, rev, and VSV-G envelope protein 
using TransIT®-LT1 Transfection Reagent (Mirus) with ViralBoost Reagent (Alstem, Inc.). Virus-containing 
supernatants were collected and stored frozen. Viral titers were determined by testing transductions prior to 
screening.  
 
Genome-scale PARPi screen. K562 CRISPRi cells were transduced with the hCRISPRi-v2 top 5 library 
(Addgene #83969)138 with 840X representation. Transduction was supplemented with 8 μg/mL polybrene and 
conducted in many wells of multiple 6 well plates with centrifugation (~2 hours at 1000 x g). After 
centrifugation, cells were pooled and resuspended in fresh, complete RPMI to ~0.5e6 cells per mL and 
maintained in an Multitron Incubation Shaker (Infors HT) at appropriate speeds throughout the screen. 3 days 
post transduction, cells were 25% BFP+ (sgRNA library marker) and were selected with 1 μg / mL puromycin 
until selection was complete. On day 10 post transduction, treatment started (T0). T0 samples were collected 
and remaining cells were split into four populations with two dosed with niraparib (4.5μM, ~IC30) and two 
treated with vehicle (DMSO). Cells were typically maintained at densities between ~0.5e6 and ~1e6 cells per 
mL (splitting as necessary). A 2000X representation was maintained for each replicate during the treatment. 
13 days post transduction, cells were spun down and resuspended in drug-free media. 19 days post 
transduction, cells were collected (endpoint) and cell pellets were processed to generate sequencing libraries 
as follows. Genomic DNA was extracted using the NucleoSpin® Blood XL, Maxi kit for DNA from blood 
(Macherey-Nagel). The sgRNA loci were amplified with an indexing 5′ primer (5′-
aatgatacggcgaccaccgagatctacacgatcggaagagcacacgtctgaactccagtcacNNNNNN gcacaaaaggaaactcaccct) and a 
common 3′ primer (5′-CAAGCAGAAGACGGCATACGAGATCGACTCGGTGCCACTTTTTC). Each 
reaction (100 μL total volume) contained 10 μg of genomic DNA (measured by Nanodrop) and 1 μM of each 
primer and was run on a thermocycler with the following program: 1 cycle of 30 seconds at 98°C; 22 cycles 
of 10 seconds at 98°C, followed by 75 seconds at 65°C; 1 cycle of 5 minute at 65°C; 4°C hold. Between 410 
to 570 reactions were set up for each arm to obtain 1800X coverage. The resulting products were purified for 
sequencing using SPRIselect Reagent (Beckman Coulter) in a double-sided 0.65X-1X reaction followed by 
1X reaction twice. Indexed samples were pooled in equal molar ratio prior to sequencing. 
 
Design of dual-sgRNA CRISPRi library. A total of 543 genes were included in our dual-sgRNA CRISPRi 
library (Table S1). To choose genes for our map with roles in DNA repair and associations with PARP inhibitor 
response, we used a combination of results from our genome-scale niraparib screen, a thorough literature 
review, and supplementary pathway enrichments. As the first step in our literature review, we collected data 
from 24 previously published single-perturbation CRISPR screens reported to identify genes that confer 
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sensitization or resistance to PARP inhibition.5,6,8,60–63 These screens used different PARP inhibitors, cell lines, 
perturbation strategies, and screening protocols, but evaluation of the reported data with a consensus approach 
identified a high-priority set of 177 genes, defined as those that identified as hits in at least three screens. 
Concurrently, we performed our own single-perturbation, genome-scale CRISPRi screen using an 
understudied PARPi, niraparib. Using data from this screen, we selected 247 genes (Table S1), 68 of which 
were also identified by the literature review. As the second step in our literature review, we identified and 
supplemented our selected genes with a further 62 genes known or suspected to be involved in PARPi response. 
For example, PARP2 does not have a PARPi sensitization phenotype and as such was not identified by either 
our screen or review of previous screens (Figure 1B). However, the gene is one of two molecular targets of 
niraparib, and we therefore included it in our library at this stage. Finally, we completed our gene set with a 
selection of 125 genes annotated to top pathways enriched among the previously identified set of 418 genes 
using Reactome pathway database (Table S2). 
 
For each gene, we chose sgRNAs with the largest magnitude of phenotype and consistent sign (i.e., both 
sensitizing or resistance) observed in our genome-scale screen. Our final library included 1086 gene-targeting 
sgRNAs (2 for each gene) and an additional 55 non-targeting controls for a total of 1141 sgRNAs (Table S1). 
All spacer sequences were of the form G[N19]. Among sgRNAs included in the library, reference growth 
phenotypes (γ) ranged from -0.45 to 0.06 in the genome-scale screen, and growth phenotypes measured with 
PARPi treatment (τ) were -0.66 to 0.26 (Figure S1). Due to the cloning process used, each of the 1141 guides 
could appear in either position in our library vector, resulting in up to 1,301,881 (1141 x 1141) distinct 
“construct” combinations, representing 147,153 (543 choose 2) gene pairs. 
 
Cloning of dual-sgRNA CRISPRi library. sgRNA targeting sequences were ordered as a Twist oligo pool 
containing two subpools with different previously verified primer binding regions55 and different constant 
region fragments for cloning into the pJL051 and pJL052 vector backbones. Each subpool was structured 
similarly with primer amplification binding regions on the 5′ (5′-ATTTTGCCCCTGGTTCTT for pJL051; 5′-
TCACAACTACACCAGAAG for pJL052) and 3′ (5′-CCAGTTCATTTCTTAGGG for pJL051; 5′-
GCAACACTTTGACGAAGA for pJL052) ends and BstXI (5′-CCACCTTGTTG) and BlpI (5′-
GTTTAAGAGCTAAGC for pJL051; 5′-GTTTCAGAGCTAAGC for pJL052) restriction enzyme sites 
flanking the sgRNA targeting sequence. Twist oligo subpools were PCR amplified using 2X Phusion Master 
Mix, 0.5μM forward primer (5′-ATTTTGCCCCTGGTTCTTCCAC for pJL051; 5′-
TCACAACTACACCAGAAGCCAC for pJL052), 0.5μM reverse primer (5′-
CCCTAAGAAATGAACTGGGCTT for pJL051; 5′-TCTTCGTCAAAGTGTTGCGCTT for pJL052), and 
0.1pmol resuspended Twist oligo pool with the following conditions: 1 cycle of 30 seconds at 98°C; 15 cycles 
of 15 seconds at 98°C, followed by 15 seconds at 56°C, followed by 15 seconds at 72°C; 1 cycle of 10 minutes 
at 72°C; 7°C hold. Two PCR reactions were run for each subpool, then PCR products were aggregated and 
purified using Machery-Nagel NucleoSpin Gel and PCR Clean-up kit and quantified using Nanodrop. Each of 
our two vector backbones (pJL051 and pJL052) and the two amplified oligo pools were subject to a BstXI-
BlpI double digest, then the fragments were gel extracted and ligated at room temperature for 15 minutes using 
T4. Ligation products were electroporated using Mega-X cells resulting in an averaged >1000 transformants 
for each library element. The sgRNA loci were amplified from plasmid libraries for validation with an indexing 
5′ primer (5′-
AATGATACGGCGACCACCGAGATCTACACGATCGGAAGAGCACACGTCTGAACTCCAGTCACG
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CCAATGCACAAAAGGAAACTCACCCT for pJL051; 5′-
AATGATACGGCGACCACCGAGATCTACACGATCGGAAGAGCACACGTCTGAACTCCAGTCACA
TCACGGGACTATCATATGCTTACCGTAAC for pJL052) with accompanying 3′ primers (5′-
CAAGCAGAAGACGGCATACGAGATCGACTCGGTGCCACTTTTTC for pJL051; 5′-
CAAGCAGAAGACGGCATACGAGATGGCGGTAATACGGTTATCCA for pJL052). Intermediate 
sgRNA libraries were sequenced on Illumina Miseq at >450X coverage (see “Sequencing”) and confirmed 
that 90% of library elements are within ~3x coverage of each other (95th percentile coverage/5th percentile 
coverage = 3.14 for pJL051; 95/5 = 3.62 for pJL052) for both libraries.  
 
Intermediate sgRNA libraries were then combined to form the dual-sgRNA CRISPRi library lDS001. pJL051 
was digested using NsiI and AscI, while pJL052 was digested using SbfI and AscI, as these form isocaudamer 
pairs resulting in overhangs that can be ligated together. The digested libraries were gel-extracted and ligated 
at room temperature for 15 minutes using T4. Multiple T4 ligations (32) were combined and then cleaned of 
excess salts using Machery-Nagel NucleoSpin Gel and PCR Clean-up kit to generate an adequate concentration 
of ligated DNA. The resulting vector contains the individual library cloned into pJL051 in the first position 
(position A) and the individual library cloned into pJL052 in the second position (position B). This 
concentrated ligation product was electroporated with Lucigen Endura electrocompetent cells, which we found 
increased electroporation efficiencies by 6-fold over Mega-X electrocompetent cells for the lentivirus 
backbones used in this screen, and resulted in >100 transformants for each library element. Cultures were 
grown at scale to generate large amounts of the final dual-sgRNA library which was validated using an Illumina 
Novaseq 6000 at >100x coverage with the sequencing approach outlined in Figure S1C (see “Sequencing”). 
Sequencing confirmed the presence of 99.96% of library elements in the cloned plasmid library (1,301,379 
constructs), with individual positions showing a similar distribution of sgRNAs to that of the corresponding 
sub-libraries (95/5 = 3.17 for position A; 95/5 = 3.08 for position B). Additionally, the Gini inequality 
coefficient, which measures the degree of inequality in a frequency distribution on a scale of 0 (all frequencies 
equal) to 1 (all frequencies equal to 0 except one), showed a relatively low degree of inequality in our 
constructed dual-sgRNA CRISPRi library (Figure S1D), backed by a 95/5 ratio of 5.79.  
 
For the pooled validation experiments in Figure 6, individual sgRNAs were first cloned into pJL051 and 
pJL052. Constructs with selected sgRNAs were then pooled to create arrayed sub-libraries. pJL052 sub-
libraries were digested with SbfI and AscI and the extracted fragments were ligated into corresponding pJL051 
sub-libraries digested with NsiI and AscI to form intended sgRNA combinations. Ligation products were 
transformed into Stbl3 chemically competent cells and isolated using column-based purification. The resulting 
dual-sgRNA sub-libraries were pooled in equal amounts for each sgRNA pair and validated by Illumina 
sequencing. 
 
Large-scale interaction screen. K562 CRISPRi cells were transduced with the dual-sgRNA CRISPRi 
lentiviral library with a 350X representation per construct at a low MOI (~0.25) as described above. Two 
biological replicates were performed. Cells were maintained at 0.5e6 to 0.6e6 per mL in the multitron incubator 
and were selected with 3 μg/mL puromycin 2 days post transduction. 9 days post transduction, treatment started 
(T0). T0 samples were collected (500X representation) from each replicate and the remaining cells of each 
replicate were divided into two populations, one of which was dosed with niraparib (2 μM, roughly the LC30 
determined for cells transduced with the interaction sgRNA library) and the other with vehicle (DMSO). A 
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950X representation was maintained for each arm throughout the treatment. Cells were maintained at densities 
between 0.5-0.6e6 cells per mL during the treatment (splitting as necessary). Treatment lasted for 3 days, after 
which cells were spun down, resuspended in drug-free media and were allowed to grow for an additional 6 
days (Figure S1E). 18 days post transduction, cells were collected (500X representation) from the niraparib-
treated arms (PARPi endpoint samples) and DMSO-treated arms (reference endpoint samples), respectively.  
Cell pellets were processed to generate sequencing libraries as follows. Genomic DNA was extracted using 
the NucleoSpin® Blood XL, Maxi kit for DNA from blood (Macherey-Nagel) and treated by DNase-free 
RNase A followed by ethanol precipitation. The sgRNA loci were amplified with an indexing 5′ primer (5′-
AATGATACGGCGACCACCGAGATCTACACNNNNNNNNCAGCACAAAAGGAAACTCACC) and an 
indexing 3′ primer (5′-
CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNN
NNNGGCGGTAATACGGTTATCCA). Each reaction (100 μL total volume) contained 10 μg of genomic 
DNA (measured on Invitrogen Qubit 4 Fluorometer) and 1 μM of each primer and was run on the Bio-Rad 
C1000 thermal cycler with the following program: 1 cycle of 30 seconds at 98 °C; 20 cycles of 10 seconds at 
98 °C, followed by 75 seconds at 65 °C; 1 cycle of 5 minute at 65 °C; 4 °C hold. At least 450X coverage was 
maintained for each sample during PCR amplification. Aliquots of the PCR products were purified for 
sequencing using SPRIselect Reagent (Beckman Coulter) in two double-sided 0.45X-0.8X reactions and two 
0.8X reactions. Indexed samples were pooled in equal molar ratio prior to sequencing. 
 
Generation and validation of knock-out cell lines. spCas9 from Integrated DNA Technologies (Alt-R® 
spCas9 Nuclease V3, 1081059) were complexed with PARP2 single guide RNAs from IDT (predesigned Alt-
R® CRISPR-Cas9 crRNA Hs.Cas9.PARP2.1.AA and Alt-R® CRISPR-Cas9 tracrRNA). 2.5e5 RPE1 
CRISPRi cells were nucleofected with 3μM RNP complex using an SE Cell Line 4D X Kit S (Lonza 
Bioscience) on a 4D-Nucleofector (Lonza Bioscience) according to manufacturer’s instructions (program EA-
104). 3 days post electroporation, single cells were sorted into 96-well plates using FACS cell sorter (BD 
Biosciences FACSAria Fusion). Single cell clones were grown and expanded for 3 to 4 weeks before being 
frozen down. Genomic DNA from each clone was extracted and the PARP2 locus was amplified with primers 
oJL392 (5′-TGGAGTTCAGACGTGTGCTCTTCCGATCTGGTCTAAGGAAAGACCAGG) and oJL393 
(5′-ACACTCTTTCCCTACACGACGCTCTTCCGATCTGGATGCTCTCTGAGATATCC). The PCR 
products of individual clones were indexed (with primers 5′-
CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACGTGTGCTCTTC and 
5′-AATGATACGGCGACCACCGAGATCTACACNNNNNNNNACACTCTTTCCCTACACGAC), 
pooled, and sequenced. The sequencing results were analyzed using CRISPResso2.139 
 
Arrayed validation experiments. Performed with CRISPRi. Two single-perturbation sgRNA vectors targeting 
different genes marked with either GFP or BFP were co-transduced into K562 CRISPRi or RPE1 CRISPRi 
cells. Four populations of the transduced cells were detected on a flow cytometer: BFP- GFP- (uninfected), 
GFP+ BFP-, BFP+ GFP-, and BFP+ GFP+. Starting from 6 days post transduction, cells were recorded for the 
percentage of the four populations by flow cytometer every 2 or 3 days until day 15 or day 21. The change in 
percentage of each population over time was normalized to the uninfected population and converted to log2 
fold change. Expected dual-sgRNA phenotypes were obtained by adding two single-sgRNA phenotypes. 
Triple replicates were performed for each experiment. Interaction effect sizes used in Figure S3D were 
calculated using Cohen’s D, or standardized mean difference, between the distributions of expected and 
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observed combinatorial phenotypes, implemented in R package effsize.140 Performed with knockout cell lines. 
Individual sgRNAs targeting RNASEH2C or non-targeting sgRNAs marked with BFP were transduced into 
WT or PARP2 KO RPE1 CRISPRi cells in triplicate. 9 days after transduction, each replicate was split into 2 
arms, with one treated with niraparib (1 μM) and the other with vehicle (DMSO), and the percentage of BFP+ 
and BFP- populations in each sample was recorded by flow cytometer every 3 days until day 21. The change 
in percentage of each population over time was normalized to the uninfected population and converted to log2 
fold change.  
 
Pooled validation experiments. K562 CRISPRi or RPE1 CRISPRi cells were transduced with the focused 
sgRNA library at ~0.2 MOI and were selected with puromycin starting 2 or 3 days post transduction (3 μg/mL 
for K562, 8 μg/mL for RPE1). 9 days post transduction, T0 samples were collected and remaining cells were 
aliquoted and treated with drugs or vehicle (DMSO) in triple replicates. The drug dosage were 1 μM, 5 nM, 4 
μM, and 100 μM for niraparib, talazoparib, veliparib, and HU, respectively, in RPE1 CRISPRi cells and 2 μM, 
10 nM, 9 μM, and 25 μM for niraparib, talazoparib, veliparib, and HU, respectively, in K562 CRISPRi cells. 
3 days later, media was replaced with drug-free media and cells were allowed to grow for an additional 6 days, 
except for HU-treated K562 CRISPRi samples where cells were dosed with 100 μM HU again. 18 days post 
transduction, cells were collected and cell pellets were processed to generate sequencing libraries as described 
for the large-scale interaction screen, except for the following differences: RNase A treatment was done during 
cell lysis before genomic DNA was extracted; each 100 μL PCR reaction contained about 1 μg or 2 μg of 
genomic DNA and PCRs were run for 22 cycles; PCR products were purified using SPRI in one double-sided 
0.45X-0.8X reaction and three 0.8X reactions. 
 
Quantitative RT-PCR. Cells were transduced with single sgRNA vectors as described above, selected by 
puromycin, and harvested 6 days post transduction. Total RNA was isolated using the Quick-RNA Miniprep 
Kit (Zymo Research). Quantitative RT-PCR reactions were assembled using the Power SYBR Green RNA-
to-CT 1-Step Kit (Invitrogen) according to the manufacturer’s instructions. Reactions were run on a ViiA 7 
real-time PCR system (Thermo Fisher). Primer sequences are listed in Table S7. 
 
Sequencing. Single-perturbation genome-scale screen. Sequencing was performed on an Illumina NovaSeq 
6000 System with 20% phiX spike-in with single-end reads: I1 = 6 nt, sample index; R1 = 50 nt, sgRNA 
identity. Custom primer was used for the R1 read (Table S7). Validation of dual-sgRNA position-specific 
sgRNA libraries. Individual component libraries cloned into pJL051 and pJL052 backbones were validated 
using an Illumina MiSeq system with 10% phiX spike-in with a single-end read: I1 = 8 nt, sample index; R1 
= 50 nt, sgRNA identity. Custom primer was used for R1 read (Table S7). dual-sgRNA library validation and 
interaction screen. Library of the large-scale interaction screen was sequenced on an Illumina NovaSeq 6000 
System with a 15%-25% phiX spike-in with paired end reads: I1 = 40 nt, sgRNA at position B; I2 = 8 nt, 
sample index; R1 = 40 nt, sgRNA at position A; R2 = 8 nt, sample index (Figure S1C). Custom primers were 
used for I1, I2, and R1 reads, as well as for phiX spike-in (Table S7). Pooled validation experiments. 
Sequencings were performed on an Illumina MiSeq system with 25% phiX spike-in with paired-end reads: I1 
= 40 nt; I2 = 8 nt; R1 = 40 nt; R2 = 8 nt. Same custom primers as the interaction screen were used for I1 and 
R1 reads. Validation of knock-out cell lines. Sequencing of PARP2 knock-out clones was performed on an 
Illumina MiSeq System with 10% phiX spike-in with single-end reads: I1 = 8 nt; I2 = 8 nt; R1 = 300 nt. 
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Flow cytometry. Flow cytometry data was collected with an Attune NxT Flow Cytometer (Thermo Fisher).  
 
STATISTICAL ANALYSIS 
 
Sequence alignment and count generation. Single-perturbation genome-scale library. Reads were aligned to 
a reference index using BWA,141 those with mapping quality ≤ 10 were filtered, and counts were determined 
for each sgRNA using the surviving reads (Table S1). dual-sgRNA libraries. To ensure high quality read 
assignment, we used a two-step aligning and filtering process. Reads consist of 19 nt corresponding to an 
sgRNA target sequence followed by 21 nt from the associated sgRNA constant region. First, we analyzed the 
constant region in each read using bowtie2142 to soft trim 19 nt from the 5′ end and map reads to reference 
constant regions. Reads which mapped constant sequences in the incorrect orientation or which had more than 
1 mismatch were discarded using the Picard FilterSamReads module. We reasoned that these reads represented 
inactive sgRNAs with defects from cloning. sgRNA target regions from the remaining reads were then 
analyzed by using bowtie2 to soft trim 21 nt from the 3′ end, isolating only the first 19 nt, and align the 
remaining read fragments to an sgRNA reference library. Reads with mapping quality ≤ 5 were filtered, and 
read counts for each position-specific sgRNA pair, or “construct” (denoted by X/Y), were then determined 
from the remaining aligned reads. 
 
Single-perturbation, genome-scale library analysis. Screen data was analyzed using a consensus approach, 
combining outputs from multiple tools to derive a set of hits. Using an established methodology,138 we first 
calculated growth phenotypes in reference (gamma, γ) and PARPi-treated (tau, τ) conditions as well as PARPi 
sensitization (rho, ρ) phenotypes for each sgRNA as follows: a pseudocount of 10 was added to all counts (see 
“Sequence alignment and count generation”), then enrichment values were calculated for each phenotype, 
followed by normalization to non-targeting controls and the number of population doublings. Specifically, 
enrichments were determined as γ = log2( fraction counts at DMSO endpoint / fraction counts at T0 ); τ = 
log2( fraction counts at PARPi endpoint / fraction counts at T0 ); and ρ = log2( fraction counts at PARPi 
endpoint / fraction counts at DMSO endpoint ), then, for each phenotype, the median enrichment among non-
targeting sgRNAs was subtracted from all enrichments, and these values were then divided by the number of 
population doublings in each endpoint (reference R1 = 7.65; reference R2 = 7.76; PARPi R1 = 4.71; PARPi 
R2 = 6.07; ρ R1 = 7.65 - 4.71 = 2.94; ρ R2 = 7.76 - 6.07 = 1.69). These phenotypes were supplied to 
CRISPhieRmix,143 and counts were supplied to each of Model-based Analysis of Genome-wide CRISPR-Cas9 
Knockout (MAGeCK),144 DrugZ,145 and the ScreenProcessing pipeline138 to analyze results from the genome-
scale screen. Tools were run under default parameters. Genes which were identified in a hit using two or more 
tools (247) were included in the interaction library. Gene-level significances produced by MAGeCK through 
robust rank aggregation146 and phenotypes calculated via the described approach are used in Figure 1B and are 
available in Table S1. 
 
Calculating construct and sgRNA phenotypes. Because each gene in our library is represented by two 
sgRNAs and each sgRNA can maximally occur in either position in the library vector (A or B), there are up to 
8 possible dual-sgRNA “constructs” associated with each pair of genes in our library. For each of these 
constructs, we calculated growth phenotypes in reference (gamma, γ) and PARPi-treated (tau, τ) conditions in 
addition to PARPi sensitization phenotypes (rho, ρ). First, we identified and removed constructs containing 
individual sgRNAs represented at low frequency. Specifically, we calculated the median coverage for each 
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sgRNA across replicates in each position and filtered constructs with any sgRNAs demonstrating a median 
coverage ＜30 reads in either position at T0. We then also removed any dual-sgRNA constructs with ＜25 
reads in either replicate at T0, and to further avoid effects from low frequency representation, we added a 
pseudocount of 10 to all surviving construct read counts. Next, we defined an enrichment value for individual 
constructs as log2 of the fraction of reads (i.e., reference or PARPi) in endpoint samples divided by the fraction 
of reads for that construct at T0 (Figure S2A). Enrichments were normalized to non-targeting controls, for γ 
and τ separately, by subtracting the median enrichment of non-targeting sgRNA pairs (NT/NT) and adjusted 
by dividing the total number of population doublings that occurred from T0 until endpoint (reference R1 = 
7.19, reference R2 = 7.73, PARPi R1 = 5.32, PARPi R2 = 5.36). The resulting values constitute our orientation-
dependent γ and τ “construct phenotypes”. To calculate construct ρ phenotypes, we divided the fraction of 
reads at the PARPi endpoint by the fraction of reads at the reference endpoint, normalized to non-targeting 
controls, and then adjusted the resulting values by dividing by the difference in the number of population 
doublings observed in the PARPi-treated and reference arms (R1 = 1.87, R2 = 2.37). To determine individual 
“sgRNA phenotypes”, we averaged the phenotypes of all constructs wherein a given sgRNA was paired with 
a non-targeting sgRNA, independent of orientation (i.e., including X/NT and NT/X) but separately for each 
replicate. Similarly, “single-gene phenotypes” were defined as the average of all sgRNA phenotypes for 
sgRNAs targeting the same gene. 
 
Calculating model-specific, sgRNA-level GI scores. We calculated γGI and τGI scores between sgRNAs using 
a model-based approach essentially as previously described.48 γGI and τGI scores were calculated 
independently using condition-specific data (reference or PARPi) and the following procedure: to reduce noise 
and increase sensitivity, we first calculated “sgRNA pair phenotypes” (γ and τ) for each unique sgRNA pair 
by averaging construct phenotypes (see “Calculating construct and sgRNA phenotypes”) with the same 
sgRNAs in different orientations (X/Y and Y/X), and then averaging sgRNA pair phenotypes across replicates. 
This process collapsed data from orientation-specific constructs into orientation-independent values for the 
vast majority of sgRNA pairs (99%) but, due to filtering, retained information from only one construct (X/Y 
or Y/X) for some sgRNA pairs (1%). We then determined the Pearson correlation between sgRNA pair 
phenotypes associated with a single “query” sgRNA and the corresponding sgRNA phenotypes for each 
partner or “object” sgRNA (see “Calculating construct and sgRNA phenotypes”). Note that for this step, we 
pulled phenotype information from an uncollapsed dataset where sgRNA pair phenotypes were recorded using 
construct identifiers and thus most measurements (99%) were listed twice. We accessed phenotypes non-
redundantly by pulling sgRNAs according to their position in the identifier, defining position B as the “query 
position” and position A the “object position”. To ensure high-quality interaction scores, we removed 
information associated with queried sgRNAs for which Pearson r < 0.2. Then, for each remaining query 
sgRNA, we fit a quadratic model to sgRNA-pair phenotypes associated with that query and corresponding 
sgRNA phenotypes from object sgRNAs. We defined model-specific “sgRNA-level GI scores” as the 
difference between observed sgRNA-pair phenotypes and model-defined combinatorial phenotypes (i.e., the 
model residuals), normalized for each query by the standard deviation of interaction scores from non-targeting 
object sgRNAs. Through this methodology, each individual sgRNA pair phenotype with two contributing 
construct phenotypes (X/Y and Y/X) generated two different, model-specific, sgRNA-level GI scores, one 
from the model determined by query X and one from query Y, while sgRNA pair phenotypes with only one 
contributing construct phenotype (Y/X or X/Y) generated one sgRNA-level GI score, from either the model 
determined by query X or the one from query Y.  
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We found that calculating PARPi-specific interaction scores in an analogous model-based way using ρ 
phenotypes resulted in high variance scores called from models with poorer explanatory power than observed 
for γ and τ phenotypes. Specifically, while ~35 to 40% of sgRNA models had an adjusted R2 value less 0.8 
when using γ or τ phenotypes, 85% of sgRNA models built from ρ phenotypes had adjusted R2 values in this 
range. We also observed that sgRNAs with strong individual ρ phenotypes (defined as |ρ| > 0.3 for this analysis) 
had an increased frequency of poor R2 values (adjusted R2 < 0.8; Fisher’s exact p = 1.57e-55), indicating that 
those genes in which we are most interested, those with a direct role in responding to PARPi-induced damage, 
are more likely to generate unreliable interaction scores with this approach. To overcome this limitation, we 
defined a differential interaction score, termed a νGI score, for each sgRNA pair using its associated γGI and 
τGI scores. To calculate νGI scores, sgRNA-level GI scores from both the γ and τ settings were unified by 
keeping only those called from equivalent models in both conditions, and then normalized γGI scores were 
subtracted from the corresponding model-specific, normalized τGI scores.  
 
Calculating gene-level GI scores. Gene-level γGI, τGI, and νGI scores were calculated as the average of all 
model-specific, sgRNA-level GI scores associated with a given gene pair in each setting (see “Calculating 
model-specific, sgRNA-level GI scores”). Because our library typically had two sgRNAs per gene post-
filtering, most gene pairs therefore had four sgRNA pairs, which together contributed eight model-specific, 
sgRNA-level GI scores per condition. However, as the query sgRNA correlation filter (see “Calculating model-
specific, sgRNA-level GI scores”) was applied to γ and τ phenotypes independently to preserve as much 
condition-specific information as possible, some sgRNA-level GI scores appear only in one context and not 
the other. When calculating gene-level νGI scores, such sgRNA-level scores are excluded, which can cause a 
discrepancy when comparing νGI scores to the underlying γGI and τGI scores. We have annotated which 
sgRNAs were modeled in each condition in Table S1 and noted gene pairs with such a difference in Table S3 
with the interaction category “uncharacterized”. For sgRNA pairs targeting the same gene, only sgRNA-level 
GI scores from distinct sgRNA combinations were used to define a “single-gene GI score” (i.e., X-1/X-1 is 
excluded when determining single-gene GI scores for gene X). Additionally, to generate pseudogene controls, 
we randomly assigned the 55 non-targeting sgRNAs within our library to 29 pseudogenes. Similar to true gene 
pairs post-filtering, 10% of these pseudogenes were supported by one sgRNA and 90% were supported by two. 
sgRNA-level GI scores involving one or two non-targeting sgRNAs were averaged according to these 
pseudogenes to produce a distribution of gene-level interactions involving non-targeting sgRNAs. 
 
As poorly represented elements (i.e., sgRNAs and constructs) were filtered from the data, we considered the 
effects of such dropout on gene-level GI scores. For clarity, when one of 4 possible sgRNAs targeting a pair 
of genes was filtered from the dataset, the maximum number of contributing model-specific, sgRNA-level GI 
scores dropped from 8 to 4, and if 2 such sgRNAs were filtered (i.e., one from each gene), then at most 2 such 
scores were used. Gene-level interaction scores “supported” by fewer model-specific, sgRNA-level scores had 
increased variance and identified higher proportions of interactions as significant, with scores supported by ≤ 
3 being particularly susceptible to this effect (Figure S3E). When considering individual genetic interactions 
from our dataset, the number of supporting scores underlying each gene-level measurement should therefore 
be considered (Table S3).  
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Assigning significance to GI scores. To estimate statistical significance of γGI and τGI scores, we used 
permutation testing, a non-parametric approach that uses the data itself to estimate the null distribution rather 
than making assumptions about the underlying distribution. This strategy is well-suited for our use case where 
standard probability models (e.g., Gaussian) poorly fit the distribution of observed GI scores. Sets of GI scores 
from null distributions were generated by permutation testing in the following way: we shuffled labels 
associated with construct phenotypes and recalculated individual sgRNA phenotypes (see “Calculating 
construct and sgRNA phenotypes”), rebuilt sgRNA-level models (performing no filtering of query sgRNAs) 
and, using those models, determined new gene-level γGI and τGI scores (147,658 for each; see “Calculating 
model-specific, sgRNA-level GI scores” and “Calculating gene-level GI scores”). This process was repeated 
2,000 times for γGIs and for τGIs to generate a set of 295,316,000 (147,658 x 2,000) gene-level GI scores 
estimating each null distribution. For each gene pair, we then calculated a two-sided p-value as the number of 
scores from the interaction screen or from null distributions at or exceeding the magnitude of the observed 
score, divided by the total number of scores from the original and permuted data. To control the false discovery 
rate (FDR), q-values and local FDR were determined for each set of p-values (Table S3; qvalue package147 in 
R). While q-values control the overall FDR of a given set of p-values, local FDR defines the likelihood of 
individual measurements being false discoveries. We define “high-confidence interactions” as those with local 
FDR ≤ 0.01 in the reference and PARPi conditions, and “significant interactions” as those with q-value ≤ 0.05. 
Similarly, to estimate the null distribution for νGI scores, labels for the unified set of observed model-specific 
sgRNA pair τGI scores were shuffled independently of those for γGI and νGI scores were then recomputed, 
generating 287,758,000 (143,879 x 2,000) gene pair scores from null distributions (see “Calculating model-
specific, sgRNA-level GI scores” and “Calculating gene-level GI scores”). Two-sided p-values, q-values, and 
local FDR values for observed νGI scores were calculated, and νGI “hits” were defined using a threshold of 
q-value <= 0.2 (Table S3). Increased tolerance for false discovery in the ν space was intended to account for 
the increase in noise observed by normalizing measurements across conditions. 
 
Gene annotations. Genes selected for our dual-sgRNA library were supplied to DAVID Functional Annotation 
Tool148,149 for functional annotation using the UniProt Keyword “Biological Process”,150 Gene Ontology (GO) 
“Biological Process”,151,152 and KEGG Pathway153,154 databases. Annotation categories were clustered by 
DAVID 2021 and the top clusters were used to define general annotation categories (Figure 1C; Table S2). 
Genes annotated to DNA damage repair were re-queried against the same databases to provide more specific 
annotations (Table S2). Reactome pathway database64 was queried separately to identify enriched pathways 
among GI library genes. Previously validated interactions used in Figures 2D and 3B were identified using 
STRING v11.588 by searching for “experimentally validated interactions” or “gene fusions” with medium 
(score ≥ 0.4), high (score ≥ 0.7), and highest confidence (score ≥ 0.9). Note that in Figure 2D, the set of 1,950 
experimentally validated interactions identified by STRING only partially overlapped with interactions 
identified as significant in our dataset (263 of 1950, 13.5%). This may partly be explained by two factors: (1) 
the previously validated interactions identified by STRING are physical interactions rather than genetic, as 
with FANCA and FANCB, and (2) not all genetic interactions will show a phenotype in all contexts. Finally, 
PANTHER155,156 was used to query both the Reactome pathway and GO Cellular Component databases for 
analyses related to Figures S3F and 6C. For analysis in Figure 6C, genes were selected by having either a νGI 
hit (FDR ≤ 0.20) or high-confidence τGI (FDR ≤ 0.05) with AUNIP. 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2023. ; https://doi.org/10.1101/2023.08.19.553986doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.19.553986
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

33 

Clustering and visualization. Gene-level GI scores were rearranged into a square symmetric matrix by 
ordering genes in rows and columns so that matrix positions i,j and j,i encode the same score for one gene pair. 
Scores for gene pairs that did not survive all filters, and were thus missing from the final dataset (62), were 
imputed using the 10-nearest neighbors through the impute package157 in R. The resulting matrices were 
clustered using average linkage hierarchical clustering with uncentered Pearson correlation using the hclust 
function in R. To produce the heatmap enriched for supported, high-confidence γGIs shown in Figure 2E, 
genes were subset according to the following procedure: first, we defined gene-level γGI scores as “supported” 
if at least 4 model-specific, sgRNA-level γGI were averaged to generate the score. Scores with this 
classification increased confidence by ensuring that more than a single pair of sgRNAs (one or both 
orientations; i.e., A/B and B/A) contributed to the measurement (Figure S3E; see “Calculating gene-level GI 
scores”). Second, we defined “high-confidence” γGI scores as those with local FDR ≤ 0.01. Third, we 
computed the number of “supported high-confidence interactions” for each gene in our dual-sgRNA library 
and selected genes with at least the median number (determined among genes with at least one supported high-
confidence interaction). Although heatmaps of τGI scores were not displayed in the manuscript, we followed 
the same procedure for these data and included annotations of genes enriched for supported, high-confidence 
interactions in Table S4. Heatmaps throughout the paper were produced using the R package 
ComplexHeatmap.158  
 
To annotate functional modules defined by our interaction map, we used weighted correlation network 
analysis, implemented via R package WGCNA.159 This approach combines a soft thresholding of noisy scores 
by raising the distance matrix to higher powers with dynamic branch cutting160 applied to the hierarchical tree 
that results from clustering the thresholded distances. Soft thresholding powers were chosen to produce a set 
of “medium- and high-stringency clusters” by identifying those which best approximated a scale free network 
topology, one where a few highly connected genes act as hubs linking less-critical genes to the system. We 
used this methodology to identify functional modules among all genes as well as a subset enriched for 
supported, high-confidence interactions using both γGI and τGI scores. For medium-stringency clusters, we 
used soft thresholding powers of 3 and 4 for γGI scores (all genes and enriched subset, respectively) and 4 and 
6 for τGI scores; for high-stringency clusters, 7 and 6 were used for γGI scores (all genes and enriched subset, 
respectively) and 9 and 15 were used for τGI scores (Table S4). 
 
Considerations to guide data exploration. Our data offer insights into the vast array of mechanisms underlying 
genome stability and response to PARP inhibition. As such, we anticipate that these data will be mined for 
hypothesis generation and validation purposes. To support these efforts, we examined features of the dataset 
with the potential to confound interpretation of individual gene-level interactions. We provide discussion on 
two of these features below and one above (see “Calculating gene-level GI scores”). Any information relevant 
to interpretation is also annotated alongside those interactions (21,543) in Table S3. 
 
Replicate variability. During our GI screen, the growth rate of one of our reference replicates diverged from 
the growth rate of the other temporarily, likely due to cell-handling stress (Figure S1E). Correspondingly, for 
some sgRNAs and sgRNA pairs in the reference condition, we observed a difference between replicate 
phenotypes (Figure S3F). More specifically, phenotypes of 19 individual sgRNAs (see “Calculating construct 
and sgRNA phenotypes”) were significantly different between replicates, as determined by Rosner's 
generalized extreme Studentized deviate test (Rosner’s Test, implemented in R package EnvStats;161 Figure 
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S3F). As we had sufficient data points that were approximately normally distributed, Rosner’s Test was 
preferred for its ability to identify multiple outliers simultaneously. Because genes targeted by these sgRNAs 
were enriched for homology directed repair (FDR = 1.82e-02, Reactome pathways; Table S2), with a single 
BRCA2-targeting sgRNA the strongest outlier, we examined γGI scores associated with these genes carefully. 
Indicating that gene-level scores were robust to phenotype variability across replicates, none deviated from the 
expected relationship between γGI score replicate correlation and the number of significant interactions per 
gene (Figure S3G).  
 
Poorly performing object sgRNAs. When evaluating the robustness of gene-level γGI scores (Figure S3G), we 
identified 13 genes with an abnormally high number of significant interactions relative to γGI score replicate 
correlation (Rosner’s Test). One such gene, NUP62, had 202 significant interactions, 50 more than any other 
gene. To understand what was driving this effect, we examined this gene. First, as one NUP62-targeting 
sgRNA was removed from the dataset during initial filtering, the maximum number of supporting sgRNA-
level γGI for each gene paired with NUP62 was reduced to four, thus decreasing the reliability of resulting 
scores (Figure S3E; see “Calculating construct and sgRNA phenotypes” and “Calculating gene-level GI 
scores”). Next, we defined the model generated by querying the surviving NUP62-targeting sgRNA as the 
“NUP62 query model”, and models generated with the partner sgRNA for each sgRNA pair with NUP62 as 
“NUP62 object models”, then contrasted the scores called by these models. 
 
Indicative of some technical artifact, the NUP62 query model did not show a convincing relationship between 
individual sgRNA and combinatorial phenotypes (Figure S3H). Moreover, phenotypes associated with non-
targeting pairs had a wide distribution, compressing the resulting normalized interaction scores (see 
“Calculating model-specific, sgRNA-level GI scores.”). Indeed, if gene-level γGI scores were calculated using 
just this model, only 22 would be called significant. The query model was therefore not driving the aberrantly 
high number of significant scores. By contrast, although generally correlated with query model scores, sgRNA-
level γGI scores called for NUP62 interactions from object models had high variance with stronger scores 
(Figure S3I). We attribute the abnormally high number of significant gene-level γGI scores to these models 
and, further, attribute poor performance of this sgRNA as an object to the relatively static phenotypes observed 
across pairs (Figure S3H). Since we interpret these phenotypes to be artifactual, most γGIs with NUP62 are 
also expected to be artifacts. Given this observation, we identified other sgRNAs with similar features and 
annotated any gene-level γGI and τGI scores that may be affected (15,552) in Table S3.  
 
Notably, read counts for the constructs involving the 35 sgRNAs identified as poor objects across both the γ 
and τ phenotypes were found to be less than half that of the mean representation at T0 (117 vs 258). 
 
Additional resources. Interaction screen data can be interactively explored through our accompanying web 
application at https://parpi.princeton.edu/map.  
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SUPPLEMENTARY FIGURES AND LEGENDS 
 

 
 
Figure S1. Designing, building, and screening a dual-sgRNA CRISPRi library, related to Figure 1. 
 
(A) Distribution of GI library gene growth phenotypes from single-perturbation genome-scale screen.  
(B) Dual-sgRNA CRISPRi library cloning strategy (Methods).  
(C) Dual-sgRNA library sequencing strategy (Methods). 
(D) Lorenz curves of the distribution of dual-sgRNA library elements at different experimental points. The gray line indicates a 
theoretical library in which every element appears with the same frequency. Gini inequality coefficients are shown in parentheses, 
with smaller coefficients indicating a more even distribution of library elements. 
(E) Population doublings during interaction screen for vehicle- (gray) and niraparib-treated (purple) replicates. 
(F) Pearson correlations of counts at start of interaction screen (T0). 
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Figure S2. Phenotype reproducibility from single- and double-perturbation across conditions, related 
to Figure 2. 
 
 (A) Conceptual definition of gamma (γ, left), tau (τ, middle), and rho (ρ, right) phenotypes (Methods). 
(B) γ (left), τ (middle), and ρ (right) sgRNA pair phenotypes across independent replicates. Pearson correlations are indicated.  
(C) Gene pair phenotypes across independent replicates. As in B. 
(D) Pearson correlations across orientations (X/Y vs Y/X) for independent replicates and the replicate average construct phenotypes. 
Only sgRNA pairs which had both orientations survive low frequency filters (Methods) were used in this analysis. As in B. 
(E) Cross-screen gene phenotype comparison. As in B. 
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Figure S3. Considerations to guide data exploration, related to Figure 2. 
 
(A) Models for sgRNAs targeting PHC2 (yellow), EMC2 (red), and ZNF574 (blue). In each case, a linear model (lines) outperformed 
a quadratic model. 
(B) Relationship between the degree of correction (model slope) for a query sgRNA and its γ growth phenotype. Data shown for all 
sgRNAs for which a linear fit worked well, in our screen (black) and a separate published interaction screen (gray).48 Pearson 
correlations are shown. 
(C) Average unnormalized γGI score for each gene across all pairs involving that gene against the associated single-gene γ 
phenotypes. Expected combinatorial phenotypes were calculated as either the sum of contributing phenotypes (black) or via a 
quadratic fit (gray; Methods). Pearson correlations are shown. 
(D) γGI score comparison, GI screen against low-throughput validation experiments (Methods). Pearson correlation is shown. 
(E) Distribution of γGI scores by number of supporting interactions (Methods). Dotted lines indicate significance thresholds 
corresponding to FDR ≤ 0.05. 
(F) Individual sgRNA γ phenotypes across independent replicates. sgRNAs in yellow were identified by Rosner’s test as having 
significantly different phenotypes across replicates (threshold indicated by dotted lines). Genes targeted by identified sgRNAs are 
listed; (2) indicates that both sgRNAs targeting that gene were identified. 
(G) Number of significant γGI called per gene against the cross-replicate correlation of its γGI scores. Dotted lines indicate 
boundaries of outliers according to Rosner’s test, and genes from the analysis in F are indicated in yellow. 
(H) NUP62 guide model. Model fit is shown as the black line and distribution of non-targeting guides is shown in blue (boxplot). 
(I) Comparison of NUP62 γGI scores called from the NUP62 query and object sgRNA models. 
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Figure S4. Analysis and validation of genetic interaction scores, related to Figures 3 and 4. 
 
(A) sgRNA pair γGI (left) and τGI (right) scores across independent replicates. Scores are the average of up to two model-specific, 
sgRNA-level GI scores (Methods). Pearson correlations are indicated.  
(B) Gene-level τGI score measurements for independent replicates. Dotted lines indicate significance bounds corresponding to FDR 
≤ 0.05. Pearson correlations are given for all interactions and for high-confidence interactions.  
(C-D) Relationship between the number of significant γGI (C) and τGI (D) identified for a gene and its individual γ or τ phenotype. 
Only genes with growth phenotype γ, τ ≤ -0.05 were included, and Pearson correlations are listed. 
(E) Hierarchical clustering comparison using either distances calculated from only genes in the high-confidence enriched submap 
presented in Figure 2E or from distances calculated using all genes in the GI library.  
(F) qPCR confirms knockdown of PSMC3IP and MND1 by both sgRNAs used for validation experiments in K562 CRISPRi (left) 
and RPE1 CRISPRi (right) cell lines. ACTB served as the reference gene. Cells transduced with non-targeting sgRNAs served as 
reference samples. ΔΔCt value was calculated and converted to percentage of expression level. 
(G-H) Validation of buffering interaction between BLM and SPIDR with two sets of sgRNAs in K562 CRISPRi (G) and RPE1 
CRISPRi (H) cell lines. As in Figure 3D. 
(I) Relationship between the number of νGI hits identified for a gene and the magnitude of its ⍴ phenotype. Only genes with PARPi 
sensitization phenotype |⍴| ≥ 0.05 were included; PARP1 was excluded as an outlier. Pearson correlation is listed. 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2023. ; https://doi.org/10.1101/2023.08.19.553986doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.19.553986
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

50 

 
 
Figure S5. Expanded interaction topology and additional validation, related to Figures 4 and 5. 
 
(A) Expanded interaction category definitions (Methods; Tables S3 and S5). Dotted lines define significance thresholds 
corresponding to FDR ≤ 0.05. (N) after each category definition indicates the number of observed interactions in that category. 
(B) PARP2 interaction topology. As in Figure 4C. 
(C-D) Additional validation experiments for the PARP1:RNASEH2C (top) and PARP2:RNASEH2C (bottom) interactions in K562 
CRISPRi (C) and RPE1 CRISPRi (D) cell lines. As in Figure 3D. 
(E) qPCR confirms knockdown of PARP1 sgRNAs expressed from either BFP or GFP tagged single-perturbation vector in K562 
CRISPRi cells. ACTB served as the reference gene. Cells transduced with non-targeting sgRNAs served as reference samples. ΔΔCt 
value was calculated and converted to percentage of expression level. 
(F) Alleles from both PARP2 knockout RPE1 CRISPRi clones at the targeted PARP2 locus determined by sequencing. Reference 
sequence was from the GRCh38 assembly of the human genome. 
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Figure S6. Analysis of interactions between AUNIP and BRCA1-A complex genes, related to Figure 6. 
 
(A) Interaction topologies for ABRA1 or FAM175A (top left), RAP80 or UIMC1 (top right), BRCC3 (bottom left), and BABAM1 
(bottom right). As in Figure 4C. 
(B) Observed single and combinatorial growth phenotypes from interaction screen in reference (top) and PARPi-treated conditions 
(bottom) for AUNIP (blue) with BRCC3 (yellow), RAP80 or UIMC1 (red), and ABRA1 or FAM175A (green). As in Figure 3C. 
(C) Growth phenotype replicate correlations with and without presence of drug in AUNIP target screen. The upper left triangle 
contains correlations measured in RPE1 CRISPRi cells, with K562 CRISPRi cell phenotype correlations in the bottom right. Black 
squares section phenotypes and drugs.  
(D) Comparison of niraparib ρ phenotypes observed in the interaction screen and in the AUNIP target screen by cell line (K562 
CRISPRi, teal; RPE1 CRISPRi, navy). Colored lines indicate a linear fit for each cell line. Pearson correlations are listed. 
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SUPPLEMENTARY TABLE TITLES AND LEGENDS 
 
Table S1. Single-perturbation genome-scale screen results, related to Figure 1. Per sgRNA counts in each 
replicate at beginning of screen (T0) and at each endpoint (DMSO-treated and PARPi-treated). γ, τ, and ρ sgRNA phenotypes, along 
with gene-level p-values and q-values determined by MAGeCK are given. Additionally, annotation columns indicate whether an 
sgRNA was selected for inclusion in the GI library (“GI.Screen”), and if so, whether the guide survived all filters and generated 
gamma (“GI.Gamma”) or tau (“GI.Tau”) GI scores. 
 
Table S2. Results from all database enrichment searches performed, related to Figures 1-3 and 6. Genes 
used for each search are listed (“Query genes”).  
 
Table S3. Genetic interaction scores, assigned interaction categories, and sgRNA-level considerations, 
related to Figures 2-6. Gene-level γ, τ, and ν GI scores (“Gamma.GI”, “Tau.GI”, “Nu.GI”) with number of supporting model-
specific, sgRNA-level interaction scores (“Nsupp”) are listed alongside significance values. Interaction categories and the number 
of contributing scores with an sgRNA identified as having either replicate variability in the gamma setting (“Gamma.RepVar”) or 
as a poor object sgRNA in either setting (“Gamma.PoorObject”, “Tau.PoorObject”) are given. 
 
Table S4. Gene clusters and phenotypes, related to Figures 2-6. Gene-level γ, τ, and ρ phenotypes are provided 
beside assigned clusters identified using either all genes (“All”) or a subset enriched for high-confidence interactions (“Sel”, 
“Gamma.Selected”, “Tau.Selected”) under either a medium (“Medium”) or high (“High”) stringency soft thresholding (Methods).  
 
Table S5. Interaction category enrichments by gene, related to Figure 4. P-value determined by Fisher’s exact 
test indicating whether each gene is enriched for interactions of the indicated types (Figure S5A). Pearson correlation between ρ 
phenotypes and τGI scores as in Figure 4C are provided (“Pearson.r”). 
 
Table S6. AUNIP and BRCA1-A target interaction screen results, related to Figure 6. Per replicate and per 
cell line counts and phenotypes for each library construct are provided. Drug treatments used are veliparib (“VELIP”), niraparib 
(“NIRAP”), talazoparib (“TALAZOP”), and hydroxyurea (“HU”). 
 
Table S7. Oligonucleotide primer sequences. Collected identifiers and sequences for primers used in this study. 
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