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Abstract | De novo assembly is the process of reconstructing the genome sequence of an 
organism from sequencing reads. Genome sequences are essential to biology, and assembly 
has been a central problem in bioinformatics for four decades. Until recently, genomes were 
typically assembled into fragments of a few megabases at best but technological advances in 
long-read sequencing now enable near complete chromosome-level assembly, also known as 
telomere-to-telomere assembly, for many organisms. Here we review recent progress on 
assembly algorithms and protocols. We focus on how to derive near telomere-to-telomere 
assemblies and discuss potential future developments. 
 
[H1] Introduction 
 
Current sequencing technologies typically produce contiguous sequence reads of a hundred 
basepairs (bp) to a few tens of kilobases (kb) in length, very rarely more than one megabase 
(Mb). In contrast, most chromosomes in multi-cellular organisms are more than 10 Mb long, 
and they can be gigabases (Gb). To obtain the genome sequence of an organism, we need to 
obtain sequence reads that cover the genome multiple times and piece them together based 
on overlaps between them. The process of reconstructing the genome from sequence reads 
is called de novo assembly. In this review, we will often abbreviate this just to assembly for 
simplicity.  
 
Historically there were two major strategies for whole-genome assembly: hierarchical 
sequencing and whole-genome shotgun sequencing (WGS). With the first strategy, we first 
tile the genome in cloned fragments of tens to hundreds of kilobases, then sequence and 
assemble the sequences of each clone, confirming the order of clone sequences with a 
physical or genetic map of the genome. C. elegans, the first assembled multi-cellular genome, 
was assembled this way1. The commonly used human reference genome GRCh382 was mainly 
derived from clone-based sequencing as well3. However, constructing and maintaining a 
comprehensive clone library is costly and labor intensive, and this approach is rarely if ever 
used today. With the second strategy, WGS, we randomly shear a genome into fragments, 
sequence these fragments and then reconstruct the genome4,5. Because we have to consider 
possible overlaps between reads from across the whole genome rather than between smaller 
sets of reads from relatively short localized clones, WGS-based assembly is more 
computationally challenging than clone-based assembly. Nonetheless, with improved 
assembly algorithms and data quality, WGS has become the dominant sequencing strategy 
for genome assembly. 
 
The three critical properties of sequencing reads for assembly are length, accuracy and 
evenness of representation.  Many of the issues that arise in designing assembly strategies 
involve tradeoffs between these. 
 
The reference genomes of many model organisms were initially assembled about 20 years ago 
using Sanger reads of a few hundred to a thousand basepairs in length. Although high-
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throughput short reads are orders of magnitude cheaper to produce6, they led to more 
fragmented assemblies owing to the short read lengths. The advent of single molecule 
sequencing allowed much longer reads that marked a turning point in sequence assembly. 
With noisy long reads available in 2010s, we could routinely assemble complete bacterial 
genomes7 and start to automate human assemblies of reference quality8. Pure short-read 
assemblies are no longer competitive with assemblies that use long reads, in terms of 
continuity and contiguity. 
 
However, at the end of 2019, we still could not assemble the entire genome of most multi-
cellular organisms. Furthermore, almost all eukaryotes have a diploid or polyploid genome, 
consisting of two or more sets of haploid genomes in each living individual. In general, unless 
the organism is inbred as with laboratory models or otherwise experimentally manipulated, 
these haploid copies are similar but not identical. Assemblers developed up until 2020 either 
collapsed the sets of haploid genomes, losing 50% or more of genomic sequences, or 
produced fragmented assemblies of much lower quality than the reference genomes. 
 
The arrival of accurate long reads9 in 2019 has revolutionized the field of sequence assembly. 
With recent assemblers leveraging the high accuracy, we can routinely generate high-quality 
reference genome assemblies for new non-model research species10–16. An average human 
assembly we automatically produce today matches or exceeds the human reference genome 
GRCh38 which benefited from 20 years of curation efforts17. This enables whole genome de 
novo assembly of population samples17,18 and leads to systematic projects to sequence entire 
groups of species, including ultimately all eukaryotes19. Now we have finished a human 
genome for the first time with each chromosome complete from telomere to telomere (T2T)20. 
We expect the same to be achieved for a rapidly increasing number of species in years to 
come. 
 
In this article, we will review the current practices in the high-quality assembly of large 
eukaryotic genomes, ultimately towards finished telomere-to-telomere assembly. We will 
describe common data types, dissect recent assembly algorithms, explain methods for 
evaluating assemblies and discuss open challenges and future directions at the end. 
 
 
[H1] Properties of genomes that affect assembly 
 
The main determinant of how easy it is to assemble a genome is not its size but its repeat 
structure (Box 1). A repetitive sequence can be resolved by reads longer than the repeat. 
However, there are longer repetitive regions. The pericentromeric region of human 
chromosome 1, for example, harbors 20 Mb of repeats21, much longer than reads produced 
by current sequencing technologies. Nonetheless, we can still assemble this region with 
accurate long reads. Although it and other such regions are composed of similar repeat copies, 
they have accumulated mutations over time and rarely share an identical repeat sequence 
over 10 kb. Given long error-free reads, we can distinguish different repeat copies and 
successfully assemble them. Reads are never all entirely error-free, but when the read error 
rate is low enough and sequencing errors are sufficiently independent, we can correct most 
errors and achieve high-quality assembly. 
 
The two homologous haplotypes in a diploid sample can also be viewed as repeats of each 
other. Correctly separating these two copies (or more than two in the case of polyploids) is 
known as “phasing”. For a diploid or polyploid sample, a telomere-to-telomere assembly also 
implies all chromosomes are correctly phased. Phasing haplotypes and assembling repeats 
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are related problems. An assembler capable of resolving similar repeats naturally has a high 
power to separate homologous haplotypes. Conversely, an assembler incapable of haplotype 
phasing is unable to resolve similar repeat copies. While traditional assembly algorithms 
collapse homologous haplotypes, current practices often preserve haplotype phasing over 
megabases, and can produce chromosome-scale haplotype-resolved assembly given multiple 
data types.  
 
 
[H1] Long-read and long-range sequencing technologies 
 
Deriving a near telomere-to-telomere assembly often requires multiple sequencing 
technologies (Table 1). A long-read technology produces contiguous read sequences typically 
of ≥10 kb in length. Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) are 
the two companies leading the development of long-read technologies. In 2019, PacBio 
introduced High-Fidelity (HiFi) reads that are 10–20 kb in length with an error rate below 0.5%. 
These have effectively replaced PacBio’s older Continuous Long Reads (CLR) of >10% error 
rate. At present, HiFi reads are the core data type for high-quality assembly. 
 
At the time of this review, ONT products available to the mass market have an accuracy 
broadly around 90–95%. For high-quality assembly, an important ONT data type is ultra-long 
reads that can be ≥100 kb in length. Despite their lower accuracy, these help to resolve 
remaining repetitive sequences that could not be assembled by HiFi reads. The most recent 
ONT v14 chemistry can generate simplex reads of 98–99% accuracy with the latest Dorado 
basecaller. ONT is actively developing duplex sequencing which sequences both strands of a 
DNA fragment. ONT duplex data approaches PacBio HiFi in accuracy and can be much longer. 
It will become a compelling data type once the technology matures. 
 
Even ultra-long reads rarely span more than a few hundred kilobases. To reliably obtain 
chromosome-long scaffolds and phasing, we need long-range data. The most widely used 
long-range data type is Hi-C22, which comprises short read pairs whose two ends can come 
from distant locations on the same chromosome. These provide phasing and contig ordering 
information over megabases. Pore-C23 is similar to Hi-C but sequenced with ONT. Strand-seq24 
is another technology particularly good at chromosome grouping and contig orientation. 
However, it is more expensive and is not commercially available. Parental sequence data, or 
trio data, is powerful for whole-genome phasing25,26 and can also be considered as a type of 
long-range data.  
 
Linked-read technologies, including stLFR27, TELL-seq28 and haplotagging29, produce clusters 
of short reads that come from fragments of the genome of ~100 kb. They require little DNA 
input and are cheap to produce. BioNano optical restriction digest maps provide long-range 
information as well. However, these technologies are not as powerful as ONT ultra-long reads 
or Hi-C in conjunction with HiFi contigs and are not often used in assembly. 
 
 
[H1] Recipes for near telomere-to-telomere assembly 
 
While the first finished human chromosome (chromosome X) was assembled with ONT ultra-
long reads30,31, the whole human genome could only be completed with the advent of PacBio 
HiFi reads20. Current efforts towards telomere-to-telomere assembly of diploid samples focus 
on accurate long reads in combination with ONT ultra-long, trio and Hi-C data. It is generally 
observed that ≥15-fold read coverage per haplotype is necessary for deriving a contiguous 
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assembly. Even thin ultra-long data of >100 kb at ~10-fold coverage noticeably improves the 
assembly, though higher coverage is still preferred. 30-fold Hi-C or trio coverage is usually 
sufficient. 
 
Having explained above that assembly of most eukaryotic genomes from a diploid or polyploid 
individual involves phasing two or more sets of homologous chromosomes, below we will first 
consider the case where these sets are identical, or homozygous, so that we are effectively 
only assembling a single haploid genome. We then proceed to the next simplest case of 
heterozygous diploid samples. Homozygous genomes can be obtained by repeated inbreeding, 
either naturally in species which are self-fertile such as many plants and hermaphroditic 
animals including the nematode C. elegans, or experimentally as in laboratory mice and 
Drosophila strains. The recent first complete T2T human genome assembly was obtained from 
a homozygous cell line CHM13hTERT derived from a rare hydatidiform mole that had 
duplicated a haploid genome32. 
 
[H2] Assembling homozygous genomes 
 
For a homozygous genome, the most reliable solution to a near telomere-to-telomere 
assembly uses both PacBio HiFi reads and ONT ultra-long reads (Fig. 1a). We use HiFi reads to 
construct an initial assembly graph that consists of linear segments (unitigs) which contain no 
long exact repeats, with possible connections between them depending on the repeat 
structure. Here “long” is approximately 10kb, with the details dependent on the algorithm 
used. Highly repetitive regions become represented as complex subgraphs, which we will refer 
to as tangles. We can then anchor ultra-long reads to the unitigs and thread them through the 
tangles to resolve most of the tangles. Ultra-long reads can also patch assembly gaps caused 
by occasional HiFi coverage drops. The human T2T-CHM13 genome was assembled without 
additional long-range data20. Nonetheless, when chromosomes are not separated well or not 
contiguous in the assembly graph, additional Hi-C data will help to generate chromosome-
long scaffolds. 
 
At present, verkko15,33 and hifiasm11,12,16 can integrate PacBio HiFi and ONT ultra-long data. 
They broadly follow the workflow in Fig. 1a but use different algorithms at each step. It is 
possible to achieve good assembly of a homozygous genome with HiFi data alone. Verkko, 
hifiasm, HiCanu10 and LJA13 can all assemble several human chromosomes from telomere to 
telomere with HiFi reads alone. When scaffolding is necessary, YaHS34 has replaced SALSA35 
and become the recommended method for high-quality HiFi assemblies with Hi-C data. It is 
the scaffolder of choice used by both the Vertebrate Genome Project (VGP)19 and the Darwin 
Tree of Life project (DToL)36. 
 
[H2] Assembling heterozygous diploid genomes 
 
Assembling a heterozygous diploid genome follows a similar strategy (Fig. 1b). For genomes 
with long homozygous regions, including human genomes, the combination of HiFi and ultra-
long alone may not phase the whole chromosomes. In this case, trio data that provides 
accurate phasing across the whole genome is recommended. When it is not possible to obtain 
parental samples, we may use Hi-C instead. Hi-C only provides relative phasing information 
between contigs and is not as powerful as trio data especially in tangled subgraphs. 
Nonetheless, Hi-C remains a key data type for reliably scaffolding chromosomes. VGP and 
DToL routinely generate Hi-C for most of the species they sequence. 
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For the time being, ONT ultra-long data is relatively expensive to obtain and requires large 
amounts for input DNA (typically tens of micrograms). Many sequencing projects do not 
generate ultra-long data. With HiFi alone, we can produce a primary/alternate assembly pair37 
or a dual assembly pair12,38 (Fig. 2). For deriving a single reference, the primary assembly may 
be preferred as primary contigs are generally longer. The alternate assembly is fragmented 
and error prone; it is usually ignored in downstream analysis. Representing both genomes in 
a diploid sample, the dual assembly pair supports assembly-based variant calling39 and also 
the use of both haplotypes in pangenome construction18. However, with shorter contigs, 
scaffolding can be more complex. In either approach there tend to be problems distinguishing 
paralogous tandem duplications from homologous haplotypic duplications, particularly at the 
ends of contigs, which can lead to false duplications40. For the primary assembly approach, 
many but not all of these issues can be found and fixed with heuristic methods, as 
implemented for example in purge_dups41.  
 
Combining HiFi with long-range data such as trio, Hi-C or Strand-seq, we can produce a pair of 
haplotype-resolved assemblies11,12,42,43 (Fig. 2). This assembly pair has comparable contiguity 
to a dual assembly pair. It additionally preserves phasing and can be further scaffolded into 
phased chromosomes with Hi-C. Even without parental data, it has been shown that it is 
possible to identify the parental origin of these chromosomes using imprinted methylation 
makers44 if they are known and sufficiently frequent to mark each homologous pair of contigs.  
 
For heterozygous genomes, both verkko and hifiasm can integrate PacBio HiFi, ONT ultra-long 
and long-range data, and can assemble several human chromosomes haplotype-resolved 
from telomere to telomere. They also work for HiFi data alone and produce dual or primary 
assembly. HiCanu can also generate a primary assembly with HiFi data and achieve 
comparable quality. 
 
All the assemblers mentioned so far are optimized for PacBio HiFi data.  They may assemble 
ONT duplex data of similar accuracy but there is as yet insufficient experience to generalise 
this across a wide range of organisms. They have not been demonstrated to work with other 
ONT data types, including the latest simplex reads produced by the v14 chemistry. The Shasta-
GFAse pipeline45,46 is a viable choice for contiguous haplotype-resolved assembly from ONT 
data alone. 
 
 
[H1] Core assembly algorithms 
 
Modern long-read assemblers are graph-based. They construct an assembly graph, either an 
overlap graph47,48 or a de Bruijn graph49,50, from input reads. In this graph, a vertex represents 
a sequence, and an edge indicates a possible connection inferred from reads. An assembly 
graph ideally retains all information in reads without redundancy. It is however often 
nonlinear due to repeats and ploidy. We integrate additional data types or rely on graph 
traversal to resolve remaining ambiguity in the graph and obtain long linear contigs. 
 
Although there are reviews on the theory of graph-based assembly algorithms, their 
formulations differ. For the completeness of this review, we will describe here the basic theory. 
In addition, DNA is double-stranded. As a result, unlike classical graphs in graph theory, 
assembly graphs are bidirected with each edge having two directions. For simplicity in our 
exposition, we assume DNA sequence only has one strand. Under this assumption, assembly 
graphs are directed graphs. 
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[H2] Read error correction 
 
While PacBio HiFi and ONT duplex reads are accurate, they are not error-free. The remaining 
errors are mixed with genetic variants and may impede the correct separation of homologous 
haplotypes or repeat copies, which would lead to fragmented assemblies. All T2T-capable 
assemblers attempt to correct sequencing errors on reads. HiCanu, verkko and hifiasm align 
all reads to each other. For each read, they correct a base if it is rarely seen among other 
overlapping reads aligned to the same position. LJA constructs an initial assembly graph 
without error correction, aligns each raw read to the graph and takes the graph path of high 
k-mer coverage as the corrected read sequence. While HiCanu, Verkko and LJA compress 
homopolymers in reads and correct reads in the homopoloymer-compressed space, hifiasm 
corrects in the original base space. These assemblers can correct the majority of errors51. 
 
It is quite possible that, to a large extent, the differences between the results of different 
assemblers on the same data depend as much on variation in error correction as variation in 
assembly algorithm, but this is hard to establish because the steps are normally integrated. It 
would be helpful if method developers separated their error correction step from the 
assembly step. 
 
[H2] Assembly with overlap graphs 
 
In an overlap graph, each vertex is a read. We add a directed edge from read 𝐴 to 𝐵 if a suffix 
of 𝐴 can be aligned to a prefix of 𝐵; in this case, we say 𝐴 and 𝐵 have an overlap. Fig. 3a shows 
how to construct an assembly graph from reads. The example results in a single unitig. 
 
Practical overlap graphs are not this clean and need to be further processed. In particular, 
there will be overlaps between different repeat copies when the repeat length is longer than 
the overlap length (Fig. 3b). In case of human, if we keep overlaps shorter than a few kb, there 
will be many overlaps between the ~6kb LINE1 repeats. Nonetheless, given reads longer than 
LINE1, we expect overlaps involving unique regions to be longer than repetitive overlaps. If a 
read has two overlaps (e.g., read 2 overlaps with 3 and 4 in Fig. 3b), shorter overlaps are more 
likely to be caused by a repeat and may be cut. Meanwhile, uncorrected sequencing errors 
may lead to extra “tips” (e.g., read 3 in Fig. 3b) or “bubbles”. These are also removed during 
graph cleaning. 
 
Most overlap-based assemblers follow the procedure in Fig. 3a/3b. HiCanu10 and hifiasm11, 
the two overlap-based assemblers optimized for HiFi reads, are distinct from the rest in that 
they only allow perfect overlaps. This apparently minor difference is the main source of their 
power to distinguish repeat copies (Fig. 3c) and phase haplotypes (Fig. 3d). In this way they 
achieve more contiguous and more accurate assembly than older assemblers given accurate 
long reads52. 
 
It is worth noting that hifiasm is implementing string graphs48 to be exact. String graph is an 
alternative formulation of overlap graph. The two types of graphs can be transformed to each 
other without loss of information. We omit the theoretical details and take them as the same 
approach. 
 
[H2] Assembly with de Bruijn graphs 
 
There are two ways to construct a de Bruijn graph (DBG): node-centric or edge-centric53 (Fig. 
4a). In a node-centric graph, 𝐷𝐵𝐺𝑣(𝑘), each vertex is a k-mer in reads, and we have an edge 
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between two k-mers if they overlap by k-1 bases. In an edge-centric graph, 𝐷𝐵𝐺𝑒(𝑘), each 
edge is a k-mer in reads and each vertex is a (k-1)-mer. Mathematically speaking, 
𝐷𝐵𝐺𝑒(𝑘 + 1) is a subgraph of 𝐷𝐵𝐺𝑣(𝑘), while 𝐷𝐵𝐺𝑣(𝑘) is the line graph of 𝐷𝐵𝐺𝑒(𝑘). In the 
literature, both definitions are common. We take a node-centric view in this review due to its 
connection to overlap graphs. 
 
A node-centric DBG is an overlap graph consisting of k-mers at vertices with edges 
corresponding to k-1 bp overlaps. It does not have contained reads or transitive edges and is 
thus simpler. Strategies used for overlap graphs are often applicable to DBG. 
 
A basic DBG discards information longer than the k-mer size. This reduces its power for 
phasing and repeat resolution. It may be tempting to choose a large k to retain long-range 
information, but using a large k increases the chance of contig breakpoints in low coverage 
regions (Fig. 4b). There is no single best k-mer size for all situations. The multiplex DBG54,55 
provides a good solution to the dilemma of k-mer selection. Conceptually, a multiplex DBG 
can be thought as the merger of multiple DBGs constructed with different k-mer sizes (Fig. 
4b). It adaptively chooses large k in repetitive regions and small k in low-coverage regions. 
Nonetheless, using a multiplex DBG does not resolve all the ambiguities in DBGs (Fig. 4c). 
Practical assemblers heuristically use different sets of k-mer sizes in different subgraphs13,15. 
They retrieve reads used in a subgraph and replace the subgraph with a new subgraph 
constructed with longer k-mers if the new subgraph is simpler and remains contiguous. This 
procedure is closer to “read threading”50 than to the algorithm demonstrated in Fig. 4b. 
 
Minimizer-based sparsification33,56 is another technique employed in modern assemblers. 
Instead of storing every k-mer in reads, we only keep minimizers57 or closed syncmers58, a 
small subset of all k-mers, in memory. This strategy greatly reduces memory and speeds up 
construction. A related but distinct construction called the minimizer-space DBG (mDBG)14,59 
uses k consecutive minimizers as “k-mers” to construct a DBG. MetaMDBG59 implements 
multiplex mDBG which is close to the conceptual definition of multiplex DBG in Fig. 4b. 
 
While most short-read assemblers use the DBG approach, no assemblers use DBG for 
assembling noisy long reads of >5% error rate because long k-mers that are required to retain 
long-range information are mostly wrong. Nonetheless, with accurate long reads, we can 
correct most sequencing errors away and use k-mers over 10 kb in length. DBG once again 
becomes a viable choice. Verkko15,33 and LJA13 are DBG-based assemblers that can achieve 
broadly comparable assembly quality to HiCanu and hifiasm. 
 
[H2] Integrating multiple data types 
 
For a diploid sample, we can phase two heterozygous positions only if there is a read that 
harbors both sites. The diploid genomes of humans and many other species contain many 
regions that are longer than HiFi reads and do not contain any heterozygous loci. We would 
not be able to phase a human genome with HiFi reads alone. At the same time, segmental 
duplications that happened within the last thousands of years are likely to remain identical 
over tens of kb and would not be resolved by HiFi reads, either. We need additional data types 
to get chromosome-long phasing and to assemble recent duplications. 
 
The most powerful auxiliary data type is ONT ultra-long reads, simply owing to their long read 
length. Verkko aligns ultra-long reads to the initial assembly graph60 and identifies paths 
through the graph. It then simplifies the initial graph with the same read threading algorithm 
for constructing multiple DBG. Hifiasm instead does ultra-long-to-graph alignment with an 
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algorithm similar to minigraph61. It encodes an ultra-long read as a sequence of unitigs and 
applies the overlap-based assembly algorithm in the unitig space. Both assemblers can 
achieve assembly of higher quality by integrating ultra-long data, but they still cannot phase 
an entire chromosome. 
 
Trio data, which is obtained by sequencing both parents of a sample, is the most reliable data 
type for whole-genome phasing11,25,26. With a trio, we identify k-mers only occurring in one of 
the parents and use these k-mers to mark the parental origin of the unitigs in the assembly 
graph. We could, for example, connect paternal unitigs and unmarked unitigs to get long 
paternal contigs. Both verkko and hifiasm can use this sort of information. In practice, 
however, parental data may be difficult to obtain due to ethical concerns in humans or 
because the parents are not available for wild-caught animals. In principle data from other 
close relatives can provide similar information but this type of information is rarely used for 
assembling new species. 
 
The most common auxiliary data type is Hi-C. It plays two key roles in assembly: scaffolding 
and phasing. A Hi-C fragment connects two loci if they are spatially close in a nucleus. Due to 
chromosome packing, loci closer on the same chromosome are more likely to interact in 3D 
space as well. As a result, if the density of Hi-C reads is high between a pair of contigs, the pair 
is likely to be close on the same chromosome. Scaffolders use this information to group and 
order contigs into chromosomes. 
 
Meanwhile, because we are more likely to see Hi-C fragments bridging two loci on the same 
haploid chromosome than on different homologous chromosomes, Hi-C also provides long-
range phasing information. Hifiasm and GFAse adapted reference-based Hi-C phasing 
algorithms62,63 for de novo assemblies. Briefly, contigs that harbor the same Hi-C fragments 
attract each other to the same phasing group; contigs that have high sequence similarity repel 
each other to opposite phasing groups. Hifiasm and GFAse attempt to find a balance between 
attractive and repulsive forces to phase contigs. Verkko can optionally take GFAse phasing and 
generate a chromosome-phased assembly. 
 
 
[H1] Evaluating sequence assemblies 
 
For an assembly to be truly telomere-to-telomere it must both cover the whole of each 
chromosome without gaps, and also not contain large-scale assembly errors. It is critical to 
rigorously assess the quality of the assembly before concluding it is telomere-to-telomere. 
 
[H2] Basic metrics 
 
To get a first impression of an assembly, we calculate the assembly size, the sum of all contig 
lengths, and N50, defined as the length for which contigs no shorter than this number cover 
half of the assembly. For the autosomes of a diploid sample, we expect the two assemblies in 
a pair of dual (Fig. 2c) or chromosome-phased assemblies (Fig. 2d) to have similar sizes. A pair 
of unbalanced autosomal assemblies may indicate incomplete phasing and may benefit from 
manual parameter tuning or curation19.  Of course, in the heterogametic sex (e.g. XY males in 
mammals) the sex chromosomes will most likely have different sizes.  Other ploidy variation 
within species can also occur, for example due to somatic chromosome loss or diminution64. 
  
[H2] Evaluating gene completeness 
 



9	
	

BUSCO65 remains a gold standard for evaluating the completeness of an assembly. It works by 
aligning conserved single-copy proteins to the genome and counting alignments that are 
missing, broken or duplicated. A less complete assembly would have more proteins unaligned. 
A caveat is that BUSCO may underestimate the completeness of large genomes. For example, 
running BUSCO on annotated human genes will lead to a completeness of 99.2%, but running 
BUSCO on the human genome sequence will result in a completeness of 95.7%. This difference 
is caused by the difficulty in aligning proteins to the human genome. Compleasm66 is a recent 
reimplementation of BUSCO that addresses this problem with more accurate protein-to-
genome alignment67. 
 
The ”asmgene” tool from the minimap2 package68 is an alternative to BUSCO and also solves 
the low completeness problem when a high-quality reference genome is present. This tool 
identifies single-copy genes based on cDNA-to-reference alignment. It regards a gene to be 
complete if it is aligned about equally well to the target assembly. The “asmgene” tool 
additionally evaluates whether a multi-copy gene in the reference genome is assembled to 
multiple copies in the target assembly. Noisy read assemblers may have single-copy genes 
assembled but often miss multi-copy genes11. 
 
[H2] K-mer based evaluation 
 
Given uniform read coverage and a perfect assembly of the reads, we expect the count of a k-
mer in the assembly to be proportional to its count in reads. A k-mer occurring more often in 
assembly than in reads suggests a false duplication in the assembly, while a k-mer having high 
frequency in the reads but absent from the assembly suggests missing sequences. KAT69 is a 
powerful tool that makes use of these simple observations to evaluate an assembly. 
 
It is now a common practice to use k-mers to estimate the base accuracy of contig sequences, 
often measured in the Phred scale70 as QV (Quality Value). This method works by calculating 
the fraction of contig k-mers that are absent from reads. A higher fraction suggests a lower 
QV. Currently there are two implementations, Merqury71 and yak11. Yak is different in that it 
attempts to correct overestimated QV at high read depth. It is worth noting that because QV 
estimation depends on the quality and the depth of input reads, QV estimates based on 
different input reads are not strictly comparable. We cannot easily conclude the QV of one 
species to be higher than the QV of another species. When there is trio data, both Merqury 
and yak can also use parent-specific k-mers to evaluate the phasing accuracy of an assembly. 
 
[H2] Alignment-based evaluation 
 
Ideally, when we align sequence reads to their assembly, we expect even coverage at every 
contig position. Excessively low or high coverage over a long region would indicate a potential 
assembly error. We also expect contigs to be well supported by reads at base level. When we 
call variants from the read-to-assembly alignment, isolated confident small variant calls would 
indicate contig consensus errors, while clustered heterozygous variant calls could result from 
collapsed segmental duplications. Such signals played a crucial role in evaluating the 
homozygous CHM13 genome. For a diploid genome, we may merge the two haplotype 
assemblies and map reads to the merge. We should observe similar signals. Flagger, Asset72 
and Inspector73 are user-facing evaluation tools based on read-to-assembly alignment. 
 
For a sample with a near perfect curated assembly, such as CHM13, we can take the existing 
assembly as the ground truth to evaluate automated assemblies produced with fewer data 
types or at lower read coverage. QUAST74 is a popular tool for this purpose. Such methods 
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based on assembly-to-assembly alignment are invaluable for assembler developers to tune 
assembly algorithms but are not applicable to new species or when the “truth” assembly and 
the evaluated assembly were derived from different strains or different samples. In the latter 
case, QUAST would often report structural variants as misassemblies. An assembly more 
complete in complex regions would appear to have higher error rate. For example, if we take 
the human reference genome GRCh38 as ground truth to evaluate the telomere-to-telomere 
CHM13 assembly, QUAST would report over 20,000 misassemblies11. 
 
 
[H1] Challenges in de novo sequence assembly 
 
Despite the progress outlined above, de novo sequence assembly is not a solved problem. 
While all mainstream assemblers are built upon basic assembly algorithms established by 
1995, they heavily rely on hand tuned heuristics that do not have a solid theoretical 
foundation. Limited by the characteristics of practical data, they cannot resolve the most 
complex regions in genomes. They also perform poorly with polyploid genomes or more 
complex cases such as cancer genomes with heterogeneous large scale structural variation. 
 
[H2] Theoretical challenges 
 
Of the two assembly paradigms, overlap graph and de Bruijn graph, each has its own caveats. 
When constructing an overlap graph, we discard a read contained in longer reads. This 
apparently straightforward step may lead to assembly gaps when reads are variable in length 
(Fig. 3e). Such assembly gaps are infrequent but as modern assemblies are highly contiguous, 
additional assembly gaps caused by contained reads are noticeable. To alleviate this problem, 
hifiasm tries to rescue a contained read if having the read would patch an assembly gap. This 
heuristic works in simple cases but is not always reliable. Containment removal is the Achilles’ 
heel of overlap-based assembly algorithms75,76 and remains an open and critical problem. 
 
Leading DBG assemblers, including SPAdes, Verkko and LJA, all use multiplex DBG. While 
constructing multiplex DBG from a fixed set of k-mers across all input reads is well studied, 
modern DBG assemblers are not using these algorithms because one k-mer set may not work 
optimally across all subgraphs (Fig. 4c). They resort to heuristics and walk on the fine line 
between graph contiguity and complexity, not governed by solid theory. 
 
Multiplex DBG as it is implemented in modern assemblers is distinct from the basic DBG 
described in textbooks. It will be interesting to see if we could go a step further and come up 
with a new assembly paradigm to combine different length scales more smoothly. 
  
[H2] Practical challenges 
 
Assembly using Hi-C as long-range data is more difficult than assembly using trios. Without 
trios, current assemblers may have troubles with phasing acrocentric chromosomes or micro-
chromosomes. For a sample having different sex chromosomes (e.g., a male in a XY system or 
a female in a ZW system), they often do not cleanly separate the sex chromosomes, either. 
Nonetheless, by inspecting Hi-C alignment, human curators can often identify these issues and 
manually fix them. This suggests there is further room for improvement in using Hi-C data, 
perhaps using machine learning approaches. 
 
The current telomere-to-telomere strategy emphasizes the use of long reads with accuracy 
well above 99%. In fact, they rely on pre-assembly error correction to operate so that the 
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majority of reads are perfect. With the latest v14 ONT chemistry, ONT simplex reads can reach 
an accuracy 98–99%. We suspect it may be possible to devise error correction strategies for 
the new ONT simplex reads that allow use of current or adapted long read assembly 
algorithms that require exact matches. If this works, there is a prospect of accurate telomere-
to-telomere assembly from a single data type, which would greatly streamline high quality 
genome assembly. 
 
Experimental challenges often have a bigger impact than computational challenges in practice. 
Standard protocols for long read generation require large amounts of DNA (over a microgram) 
which can be hard or impossible to obtain from small organisms or clinical samples.  There are 
unamplified low input library protocols for PacBio that work down to 0.1 microgram77, but 
below this whole genome amplification is necessary, which introduces coverage bias and 
dropouts. There are also coverage biases with long reads. For example, PacBio HiFi reads 
struggle to sequence through long GA-rich repeats. ONT reads have trouble with telomere 
sequences78. ONT duplex reads may also have sequence-dependent coverage drops. These 
coverage biases were shown to lead to over 25% of the assembly gaps in a recent study79.  
 
[H2] Beyond diploid samples  
 
While excellent progress has been made recently on telomere-to-telomere assembly of 
diploid genomes, we do not have a satisfactory solution for polyploid genomes. There have 
been two recent haplotype phased assemblies of the tetraploid potato, using single-cell 
sequencing data80 or genetic maps81 for phasing, but these are not methods that can be 
deployed at scale. We would prefer to derive polyploid assembly using common data types; 
in principle the necessary information should be present in HiFi long reads, ultra-long reads 
and Hi-C data. 
 
A cancer genome is polyploid to some extent, with ploidy varying between or within 
chromosomes. They are even harder to assemble. Beyond cancer, we would like to assemble 
metagenomic samples which contain a large variety of species, typically microbial, at very 
different relative abundances.  A metagenome can also be considered as a polyploid genome 
with even higher ploidy variation. Nonetheless, when we assemble a metagenome sample, 
the bar is lower in comparison to polyploid genome assembly: for example, it is not normally 
expected to phase highly similar genomes. There are dedicated metagenome assemblers, 
such as MetaFlye82, hifiasm-meta83 and metaMDBG59, that can reconstruct up to a few 
hundred closed bacterial genomes from a deeply sequenced metagenome sample, although 
they are still missing species detectable based on 16S or k-mer profiling84. There is still a long 
way to go to achieve complete metagenome assembly. 
 
 
[H1] Conclusions/Outlook 
 
Thanks to the availability of PacBio HiFi reads and ONT ultra-long reads, the quality of de novo 
assembly has improved dramatically in the past two years. Now a fully automated assembler 
can phase and assemble some chromosomes from telomere to telomere for diploid mammals 
and other species with large genomes. This was unthinkable in mid 2020. 
 
Can we automatically assemble all chromosomes from telomere to telomere with current 
data? We think the answer is generally “no”. We believe that most of the advances in the past 
few years have been made because of improvements in data quality, and current assemblers 
pull most of the information from the available input data. Algorithm improvement alone may 
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not reliably resolve all assembly gaps. We look forward to continuing new advances in 
sequencing technologies to truly complete a genome without human intervention. 
 
It is important to note that a complete assembly only sets a start for downstream biological 
discoveries. While genome assembly has progressed rapidly, genome alignment and 
annotation tools have lagged far behind. We hope to see continued development of these 
tools in the future to realize the full power of (near) complete assembly. 
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[H1] Glossary terms  
 
● Genome. The set of distinct chromosomal sequences from an organism. 
● Read. The nucleotide sequence of a fragment of DNA inferred by a sequencing 

instrument. 
● Assembly. A set of non-redundant sequences supposedly representing a genome or 

regions in a genome. Assembly also denotes the process of reconstructing a genome from 
sequence reads. 

● Contig. A contiguous sequence in an assembly. A contig does not contain long stretches 
of unknown sequence. 

● Assembly gap. A region in the genome that is not assembled into contigs. 
● Scaffold. A sequence consisting of multiple contigs connected in a defined order and 

orientation  with gaps. 
● Telomere-to-telomere contig or scaffold. A sequence representing an entire eukaryotic 

chromosome. 
● Unitig. A sequence of a non-branching path in an assembly graph. 
● Ploidy. The number of homologous copies of chromosomes in the cells of an organism. 

Ploidy can vary between chromosomes, parts of a chromosome, and cells in an organism. 
● Haplotig. A contig or scaffold that comes from a single haploid chromosome. A contig that 

is not a haplotig may contain subsequences from two or more homologous chromosomes. 
● Haplotype-resolved assembly. An assembly composed of haplotigs only. 
● Diploid assembly. Two sets of non-redundant sequences with each set representing one 

haploid genome in a diploid sample. 
 
 
[H1] Display Items 
 
Table 1 | Common data types for high-quality assembly 

Data type Technologies Description Roles 
Accurate long 
reads 

PacBio HiFi, 
ONT duplex 

>10 kb in length; error 
rate <0.5% 

Initial assembly graph construction; 
phasing where variants are <10kb 
apart 

Ultra-long 
reads 

ONT ultra-long >100 kb in length; error 
rate <10% 

Resolving tangles; longer range 
phasing 

Trio data Short-read Standard WGS of 
parents 

Whole-genome phasing 

Long-range 
data 

Hi-C, Pore-C, 
Strand-seq 

Information over 1 kb 
– >10 Mb 

chromosomal phasing; 
chromosome-scale scaffolding 
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Figure 1| Strategy for near telomere-to-telomere assembly. a, Assembling a haploid or 
homozygous genome. After sequencing errors on accurate long reads are corrected, error-
free reads are assembled into an initial assembly graph, where a thick arrow denotes a 
sequence, and a thin line connects sequences. Ultra-long reads are then threaded through the 
assembly graph to resolve tangled subgraphs and patch small assembly gaps. Long-range data 
such as Hi-C helps to scaffold across remaining gaps. b, Assembling a heterozygous diploid 
genome. Heterozygous differences between haplotypes are preserved during error 
correction. The assembly graphs often consist of a chain of “bubbles”, representing 
polymorphisms between haplotypes. Ultra-long reads and long-range data can be used to 
phase haplotypes as well as resolve tangles. 
 
 

 
 
Figure 2| Types of phased assembly of diploid samples. a, The assembly graph from Fig. 1b 
can be further processed into different types of assemblies. b, Primary/alternate assembly 
pair. The primary assembly represents a complete haploid genome with occasional phase 
switches. The alternate assembly is fragmented. c, A pair of dual assemblies. Each dual 
assembly is similar to a primary assembly. d, A pair of chromosome-phased assemblies. 
Contigs from the same haploid chromosome are partitioned to the same assembly. e, A pair 
of chromosome-phased assemblies with scaffolding. Contigs are joined into chromosomes 
across assembly gaps. 
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Figure 3| Assembly with overlap graphs. a, Simple overlap graph assembly. Find overlaps 
between all reads, identify transitive overlaps (dashed arrows) that can be inferred from other 
overlaps, remove transitive overlaps, and merge vertices with one incoming edge and one 
outgoing edge to get the final unitigs. b, Graph cleaning. An uncorrected sequencing error 
(yellow hexagon) may lead to a tip (read 3) that should be trimmed off. Repeats (red regions) 
may result in overlaps between repeat copies that can be cut with graph cleaning. c, 
Assembling a tandem duplication longer than reads. Disallowing inexact overlaps (red arrows) 
resolves the region into a simple graph. d, Assembling a diploid sample. Allowing inexact 
overlaps leads to the loss of heterozygous differences and collapses the two haplotypes. Using 
only exact overlaps eliminates alignments between haplotypes and thus preserves the 
heterozygous alleles and their local phasing. e, Removing contained reads (yellow lines) leads 
to assembly gaps on the red haplotypes. 
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Figure 4| De Bruijn graphs. a, Node(vertex)-centric de Bruijn graphs of a string of different k-
mer lengths. b, Multiplex DBG improves assembly. The compacted de Bruijn graph using 6-
mers as nodes, 𝐷𝐵𝐺𝑣(6) , is fragmented into two unitgs. 𝐷𝐵𝐺𝑣(5)  has one connected 
component but the graph has a cycle. A multiplex de Bruijn graph, 𝐷𝐵𝐺𝑣(5,6), is conceptually 
constructed from the combined set of unitigs in 𝐷𝐵𝐺𝑣(5) and 𝐷𝐵𝐺𝑣(6), using 6-mers as 
nodes. c, However, multiplex DBG does not resolve all cases. In this case, the multiplex DBG 
is still fragmented, while an overlap-based method (requiring ≥4bp overlaps) assembles to a 
single contig (as in b). 
 
 
Box 1 | Repetitive sequences and de novo assembly 
 
A repetitive sequence, or repeat, is a sequence that occurs multiple times in the genome. The 
copies of a repeat do not have to be identical; they may slightly differ from one another. 
Repetitive sequences are abundant in eukaryotic genomes and are the leading factor that 
complicates de novo assembly. A repeat can be computationally resolved by a very long read 
that bridges between non-repetitive sequences on both sides of the repeated region, or by 
long reads that are accurate enough to distinguish inexact repeat copies (bridging between 
the differences between the repeats). 
 
Repetitive sequences can be approximately classified into three categories: interspersed 
repeats, tandem repeats, and segmental duplications. Interspersed repeats are mostly 
transposable elements scattered in the genome. They are almost all shorter than modern long 
reads and so no longer pose a major challenge to assembly. Most tandem repeats on 
chromosome arms are shorter than long reads and hence are easy to assemble as well. 
However, satellite repeats, a type of extra-long tandem repeat typically enriched in 
centromeres, are particularly hard to assemble because an entire satellite array cannot be 
spanned by long reads. Segmental duplications refer to very long DNA segments duplicated in 
the genome, frequently longer than long or even ultralong reads. Many of them are clustered 
and can be tandem. While ancient fixed segmental duplications are easy to resolve because 
they have accumulated differences by mutation since their common ancestor, long 
polymorphic duplications are challenging. Ribosome DNA (rDNA) may be organized as long 
tandem arrays consisting of highly similar copies. Long rDNA arrays are among the most 
difficult regions to assemble20,85. 
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